Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals
Abstract
:1. Introduction
- This is the first time ConvMixer architecture has been applied to BCG-based hypertension detection.
- The developed model is simple and computationally less complex.
2. Database
3. Methodology
3.1. Normalization
3.2. Filtering
3.3. Spectrogram
3.4. Convolution Mixer (ConvMixer)
4. Experimental Works and Results
5. Discussions
- 1-
- A simple, accurate, and efficient model is developed for hypertension detection using BCG signals.
- 2-
- Most discriminative frequency components are extracted from the time-frequency image-based signal classification purposes domain using the spectrogram approach.
- 3-
- This is the first study to use the ConvMixer model with a time-frequency image-based classification application for BCG signals.
- 4-
- The ConvMixer model is computationally efficient when it takes a shorter training time than the traditional deep CNN models.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC); Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.; Bennett, J.; Solomon, B.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Bandyopadhyay, A.; Shelgikar, A.V. Emerging technologies and their potential role in sleep medicine. Neurosci. Biobehav. Psychol. 2021. [Google Scholar] [CrossRef]
- Parmar, K.S.; Kumar, A.; Kalita, U. ECG signal based automated hypertension detection using fourier decomposition method and cosine modulated filter banks. Biomed. Signal Process. Control 2022, 76, 103629. [Google Scholar] [CrossRef]
- Soh, D.C.K.; Ng, E.; Jahmunah, V.; Oh, S.L.; Tan, R.S.; Acharya, U. Automated diagnostic tool for hypertension using convolutional neural network. Comput. Biol. Med. 2020, 126, 103999. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G.; Goldberger, A.L. PhysioNet: Physiologic signals, time series and related open source software for basic, clinical, and applied research. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2011, 8327–8330. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Rajput, J.S.; Sharma, M.; Acharya, U.R. Hypertension Diagnosis Index for Discrimination of High-Risk Hypertension ECG Signals Using Optimal Orthogonal Wavelet Filter Bank. Int. J. Environ. Res. Public Health 2019, 16, 4068. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Gajbhiye, P.; Tripathy, R.; Acharya, U.R. A two-stage deep CNN architecture for the classification of low-risk and high-risk hypertension classes using multi-lead ECG signals. Inform. Med. Unlocked 2020, 21, 100479. [Google Scholar] [CrossRef]
- Zink, M.D.; Brüser, C.; Stüben, B.-O.; Napp, A.; Stöhr, R.; Leonhardt, S.; Marx, N.; Mischke, K.; Schulz, J.B.; Schiefer, J. Unobtrusive Nocturnal Heartbeat Monitoring by a Ballistocardiographic Sensor in Patients with Sleep Disordered Breathing. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Inan, O.T.; Migeotte, P.-F.; Park, K.-S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2014, 19, 1414–1427. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Ni, H.; Zhou, X.; Zhao, W.; Wang, T. Extracting features for cardiovascular disease classification based on ballistocardiography. In Proceedings of the 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015. [Google Scholar]
- Liu, F.; Zhou, X.; Wang, Z.; Cao, J.; Wang, H.; Zhang, Y. Unobtrusive Mattress-Based Identification of Hypertension by Integrating Classification and Association Rule Mining. Sensors 2019, 19, 1489. [Google Scholar] [CrossRef]
- Rajput, J.S.; Sharma, M.; Kumar, T.S.; Acharya, U.R. Automated Detection of Hypertension Using Continuous Wavelet Transform and a Deep Neural Network with Ballistocardiography Signals. Int. J. Environ. Res. Public Health 2022, 19, 4014. [Google Scholar] [CrossRef]
- Gupta, K.; Bajaj, V.; Ansari, I.A. A support system for automatic classification of hypertension using BCG signals. Expert Syst. Appl. 2023, 214, 119058. [Google Scholar] [CrossRef]
- Gupta, K.; Bajaj, V.; Ansari, I.A.; Acharya, U.R. Hyp-Net: Automated detection of hypertension using deep convolutional neural network and Gabor transform techniques with ballistocardiogram signals. Biocybern. Biomed. Eng. 2022, 42, 784–796. [Google Scholar] [CrossRef]
- Seok, W.; Lee, K.; Cho, D.; Roh, J.; Kim, S. Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram and Convolutional Neural Networks. Sensors 2021, 21, 2303. [Google Scholar] [CrossRef]
- Rajput, J.S.; Sharma, M.; Kumbhani, D.; Acharya, U.R. Automated detection of hypertension using wavelet transform and nonlinear techniques with ballistocardiograms signals. Inform. Med. Unlocked 2021, 26, 100736. [Google Scholar] [CrossRef]
- Chang, I.S.; Boger, J.; Mak, S.; Grace, S.L.; Arcelus, A.; Chessex, C.; Mihailidis, A. Load Distribution Analysis for Weight and Ballistocardiogram Measurements of Heart Failure Patients using a Bed Scale. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1–5 November 2021; pp. 7369–7372. [Google Scholar]
- Köseoğlu, M.; Uyanik, H. Effect of Spectrogram Parameters and Noise Types on The Performance of Spectro-temporal Peaks Based Audio Search Method. GAZI Univ. J. Sci. 2022, 36, 624–643. [Google Scholar] [CrossRef]
- Köseoğlu, M.; Uyanık, H. The Effect of Different Noise Levels on The Performance of The Audio Search Algorithm. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–28 June 2020; pp. 1–7. [Google Scholar]
- Uyanık, H.; Köseoğlu, M. Performance Evaluation of Different Window Functions for Audio Fingerprint Based Audio Search Algorithm. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–4. [Google Scholar]
- Available online: https://www.mathworks.com/help/matlab/ref/double.normalize.html#mw_dcfb89d2-e230-4be0-bb16-d672f91b8e91 (accessed on 12 November 2022).
- Kuo, C.-E.; Chen, G.-T.; Liao, P.-Y. An EEG spectrogram-based automatic sleep stage scoring method via data augmentation, ensemble convolution neural network, and expert knowledge. Biomed. Signal Process. Control 2021, 70, 102981. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V.; Taran, S.; Sinha, G.R. Multiclass sleep stage classification using artificial intelligence based time-frequency distribution and CNN. In Artificial Intelligence-Based Brain-Computer Interface; Academic Press: Cambridge, MA, USA, 2022; pp. 1–21. [Google Scholar]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. SPWVD-CNN for Automated Detection of Schizophrenia Patients Using EEG Signals. IEEE Trans. Instrum. Meas. 2021, 70, 2507409. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Wu, R.; Wang, H.; Luo, Z.; Li, G. Speech neuromuscular decoding based on spectrogram images using conformal predictors with Bi-LSTM. Neurocomputing 2021, 451, 25–34. [Google Scholar] [CrossRef]
- Athulya, K.M.; Sindhu, S. Deep Learning Based Music Genre Classification Using Spectrogram (10 July 2021). Proceedings of the International Conference on IoT Based Control Networks & Intelligent Systems—ICICNIS 2021. Available online: https://ssrn.com/abstract=3883911 (accessed on 22 November 2022).
- Fang, G.; Li, Y.E.; Nilot, E.; Zhao, Y.; Cheng, A. Anonymous vehicle identification on seismic spectrograms. SEG Tech. Program Expand. Abstr. 2021, 1886–1890. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Available online: https://openreview.net/pdf?id=TVHS5Y4dNvM (accessed on 30 September 2022).
Subject Information | Hypertensive | Normotensive |
---|---|---|
Number of Subjects | 61 | 67 |
Sex (Male/Female) | 33/38 | 35/32 |
Age (Years) | 55.6 ± 7.9 | 53.2 ± 9.2 |
Heart Rate (BPM) | 77.1 ± 9.2 | 73.6 ± 8.3 |
Body Mass Index (kg/m2) | 24.3 ± 3.6 | 23.7 ± 3.4 |
Systolic Blood Pressure (mmHg) | 155.6 ± 11.2 | 112.1 ± 15.7 |
Diastolic Blood Pressure (mmHg) | 103.6 ± 8.2 | 74.4 ± 6.3 |
CNN | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
ResNet 18 | 93.96 | 94.07 | 93.86 | 93.97 |
ResNet 50 | 95.90 | 95.87 | 95.92 | 95.90 |
ConvMixer | 93.84 | 93.81 | 93.84 | 93.83 |
CNN | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
ResNet 18 | 98.18 | 98.20 | 98.16 | 98.18 |
ResNet 50 | 98.79 | 98.78 | 98.78 | 98.78 |
ConvMixer | 97.69 | 97.82 | 97.56 | 97.69 |
Authors | Feature/Method | Classifier | Database | Performance (%) |
---|---|---|---|---|
Song et al. [11] | Heart Rate Variability (HRV) time/Heart Beat (RR) interval, Detrended fluctuation analysis | Naïve Bayes | Their dataset (18 participants) | 92.3 |
Liu et al. [12] | HRV time, Frequency domain feature, Sample Entropy, BCG fluctuation features | Lib Support Vector Machine, Decision tree, Naïve Bayes | Their dataset (128 participants) | 84.4Acc. 82.5 Precision 85.3 Recall |
Rajput et al. [13] | Cosines wavelet transform scalogram | 2-D CNN | [12] | 86.14 |
Gupta et al. [14] | Tunable Q factor wavelet transform (TQWT), Shannon entropy, log energy, Hjorth complexity, standard derivation, root mean square value, kurtosis, skewness, mean value, maximum value, and minimum value, Kruskal-Wallis | k-NN | [12] | 92.21 |
Gupta et al. [15] | Gabor transform, smoothed pseudo-Wigner Ville distribution, short Fourier transform | Hyp-Net (CNN) | [12] | 97.65 |
Seok et al. [16] | Hilbert transform with EMD method | CNN Regression | Their dataset (30 participants) | Standard deviation 6.24 in systolic blood pressure, 5.42 in diastolic blood pressure |
Rajput et al. [17] | Empirical mode decomposition (EMD), Wavelet Transform (WT) | Ensemble gentle boost classifier, support vector machine (SVM), k-NN, decision tree | [12] | 89 |
Proposed study | Fine-tuned spectrogram images and ConvMixer model | CNN | [12] | 97.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozcelik, S.T.A.; Uyanık, H.; Deniz, E.; Sengur, A. Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals. Diagnostics 2023, 13, 182. https://doi.org/10.3390/diagnostics13020182
Ozcelik STA, Uyanık H, Deniz E, Sengur A. Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals. Diagnostics. 2023; 13(2):182. https://doi.org/10.3390/diagnostics13020182
Chicago/Turabian StyleOzcelik, Salih T. A., Hakan Uyanık, Erkan Deniz, and Abdulkadir Sengur. 2023. "Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals" Diagnostics 13, no. 2: 182. https://doi.org/10.3390/diagnostics13020182
APA StyleOzcelik, S. T. A., Uyanık, H., Deniz, E., & Sengur, A. (2023). Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals. Diagnostics, 13(2), 182. https://doi.org/10.3390/diagnostics13020182