Clinical Performance of Diagnostic Methods in Third Molar Teeth with Early Occlusal Caries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Clinical Visual Examination (ICDAS II)
2.3. Examination by Using Intraoral Radiography Method
2.4. Examination by Using NIR-LT Method
2.5. Examination by Using LF Method
2.6. Validation by Using Micro-CT Examination/Reference Standard Method
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashley, P. Diagnosis of occlusal caries in primary teeth. Int. J. Paediatr. Dent. 2000, 10, 166–171. [Google Scholar] [CrossRef]
- Alkurt, M.T.; Bala, O. Caries detection with laser energy. Acta Odontol. Turc. 2007, 24, 125–130. [Google Scholar]
- Alkurt, M.T.; Bala, O. Evaluation of Efficiencies of Visual, Conventional and Digital Radiographic Examinations for Occlusal Caries Detection. Acta Odontol. Turc. 2007, 24, 101–107. [Google Scholar]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [PubMed]
- Akgun, O.M.; Oflaz, U.; Altun, C. Current Approaches in Dental Caries Detection. Türkiye Klin. J. Pediatr Dent Spec. Top. 2018, 4, 10–14. [Google Scholar]
- Poorterman, J.H.; Aartman, I.H.; Kalsbeek, H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Community Dent. Oral Epidemiol. 1999, 27, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Poorterman, J.H.; Aartman, I.H.; Kieft, J.A.; Kalsbeek, H. Value of bitewing radiographs in a clinical epidemiological study and their effect on the DMFS index. Caries Res. 2000, 34, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Aktan, A.M.; Cebe, M.A.; Ciftçi, M.E.; Sirin Karaarslan, E. A novel LED-based device for occlusal caries detection. Lasers Med. Sci. 2012, 27, 1157–1163. [Google Scholar] [CrossRef]
- Novaes, T.F.; Matos, R.; Gimenez, T.; Braga, M.M.; DE Benedetto, M.S.; Mendes, F.M. Performance of fluorescence-based and conventional methods of occlusal caries detection in primary molars—An in vitro study. Int. J. Paediatr. Dent. 2012, 22, 459–466. [Google Scholar] [CrossRef]
- Souza, J.F.; Boldieri, T.; Diniz, M.B.; Rodrigues, J.A.; Lussi, A.; Cordeiro, R.C. Traditional and novel methods for occlusal caries detection: Performance on primary teeth. Lasers Med. Sci. 2013, 28, 287–295. [Google Scholar] [CrossRef]
- Lussi, A.; Megert, B.; Longbottom, C.; Reich, E.; Francescut, P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur. J. Oral Sci. 2001, 109, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Jablonski-Momeni, A.; Stachniss, V.; Ricketts, D.N.; Heinzel-Gutenbrunner, M.; Pieper, K. Reproducibility and accuracy of the ICDAS-II for detection of occlusal caries in vitro. Caries Res. 2008, 42, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Espelid, I.; Mejàre, I.; Weerheijm, K. EAPD guidelines for use of radiographs in children. Eur. J. Paediatr. Dent. 2003, 4, 40–48. [Google Scholar]
- American Dental Association Council on Scientific Affairs; U.S. Food and Drug Administration. 2012 Dental Radiographic Examinations: Recommendations for Patient Selection and Limiting Radiation Exposure. Available online: http://www.ada.org/en/member-center/oralhealth-topics/x-rays (accessed on 15 March 2022).
- European Commission. Radiation protection 136. European guidelines on radiation protection in dental radiology. In The Safe Use of Radiographs in Dental Practice; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- Hibst, R.; Paulus, R.; Lussi, A. Detection of occlusal caries by laser fluorescence: Basic and clinical investigations. Med. Laser Appl. 2001, 16, 205–213. [Google Scholar] [CrossRef]
- Jablonski-Momeni, A.; Rosen, S.M.; Schipper, H.M.; Stoll, R.; Roggendorf, M.J.; Heinzel-Gutenbrunner, M.; Stachniss, V.; Pieper, K. Impact of measuring multiple or single occlusal lesions on estimates of diagnostic accuracy using fluorescence methods. Lasers Med. Sci. 2012, 27, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Diniz, M.B.; Rodrigues, J.A.; de Paula, A.B.; Cordeiro, R.C. In vivo evaluation of laser fluorescence performance using different cut-off limits for occlusal caries detection. Lasers Med. Sci. 2009, 24, 295–300. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Rahiotis, C.; Stamatakis, H.; Kakaboura, A. Diagnostic performance of the visual caries classification system ICDAS II versus radiography and micro-computed tomography for proximal caries detection: An in vitro study. J. Dent. 2010, 38, 859–867. [Google Scholar] [CrossRef]
- Soviero, V.M.; Leal, S.C.; Silva, R.C.; Azevedo, R.B. Validity of Micro CT for in vitro detection of proximal carious lesions in primary molars. J. Dent. 2012, 40, 35–40. [Google Scholar] [CrossRef]
- Boca, C.; Truyen, B.; Henin, L.; Schulte, A.G.; Stachniss, V.; De Clerck, N.; Cornelis, J.; Bottenberg, P. Comparison of micro-CT imaging and histology for approximal caries detection. Sci. Rep. 2017, 7, 6680. [Google Scholar] [CrossRef] [PubMed]
- Kamburoğlu, K.; Kurt, H.; Kolsuz, E.; Öztaş, B.; Tatar, I.; Çelik, H.H. Occlusal caries depth measurements obtained by five different imaging modalities. J. Digit. Imaging 2011, 24, 804–813. [Google Scholar]
- Schaefer, G.; Pitchika, V.; Litzenburger, F.; Hickel, R.; Kühnisch, J. Evaluation of occlusal caries detection and assessment by visual inspection, digital bitewing radiography and near-infrared light transillumination. Clin. Oral Investig. 2018, 22, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Oral Health Surveys, Basic Methods; World Health Organization: Geneva, Switzerland, 1997.
- Mortensen, D.; Hessing-Olsen, I.; Ekstrand, K.R.; Twetman, S. In-vivo performance of impedance spectroscopy, laser fluorescence, and bitewing radiographs for occlusal caries detection. Quintessence Int. 2018, 49, 293–299. [Google Scholar] [PubMed]
- Luczaj-Cepowicz, E.; Marczuk-Kolada, G.; Obidzinska, M.; Sidun, J. Diagnostic validity of the use of ICDAS II and DIAGNOdent pen verified by micro-computed tomography for the detection of occlusal caries lesions-an in vitro evaluation. Lasers Med. Sci. 2019, 34, 1655–1663. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zeng, N.; Wang, N. Sensitivity, Specificity, Accuracy, Associated Confidence İnterval and ROC Analysis with Practical SAS İmplementations; Health Care and Life Sciences: Baltimore, MD, USA, 2010. [Google Scholar]
- Florkowski, C.M. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests. Clin. Biochem. Rev. 2008, 29, 83–87. [Google Scholar]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Heinrich-Weltzien, R.; Kühnisch, J.; Weerheijm, K.; Stößer, L. Diagnosis of hidden caries on occlusal surfaces using bitewing x-rays. Dtsch Zahnärztl Z. 2001, 56, 476–480. (In Germany) [Google Scholar]
- Poorterman, J.H.; Weerheijm, K.L.; Groen, H.J.; Kalsbeek, H. Clinical and radiographic judgement of occlusal caries in adolescents. Eur. J. Oral Sci. 2000, 108, 93–98. [Google Scholar] [CrossRef]
- Hopcraft, M.S.; Morgan, M.V. Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population. Community Dent. Oral Epidemiol. 2005, 33, 212–218. [Google Scholar] [CrossRef]
- Machiulskiene, V.; Nyvad, B.; Baelum, V. A comparison of clinical and radiographic caries diagnoses in posterior teeth of 12-year-old Lithuanian children. Caries Res. 1999, 33, 340–348. [Google Scholar] [CrossRef]
- Machiulskiene, V.; Nyvad, B.; Baelum, V. Comparison of diagnostic yields of clinical and radiographic caries examinations in children of different age. Eur. J. Paediatr. Dent. 2004, 5, 157–162. [Google Scholar] [PubMed]
- Ozkan, G.; Kanli, A.; Başeren, N.M.; Arslan, U.; Tatar, I. Validation of micro-computed tomography for occlusal caries detection: An in vitro study. Braz. Oral Res. 2015, 29, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abogazalah, N.; Eckert, G.J.; Ando, M. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries. J. Dent. 2017, 63, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühnisch, J.; Söchtig, F.; Pitchika, V.; Laubender, R.; Neuhaus, K.W.; Lussi, A.; Hickelet, R. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin. Oral Investig. 2016, 20, 821–829. [Google Scholar] [CrossRef]
- Kocak, N.; Cengiz-Yanardag, E. Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries. Lasers Med. Sci. 2020, 35, 1621–1628. [Google Scholar] [CrossRef]
- Kamburoglu, K.; Senel, B.; Yüksel, S.P.; Ozen, T. A comparison of the diagnostic accuracy of in vivo and in vitro photostimulable phosphor digital images in the detection of occlusal caries lesions. Dentomaxillofac. Radiol. 2010, 39, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, S.; Gokce, A.P.; Unver, T. Simulation of three intraoral radiographic techniques in pediatric dental patients: Subjective comfort assessment using the VAS and Wong-Baker FACES Pain Raiting Scale. BMC Oral Health 2020, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, G.D.; Selvi Kuvvetli, S. Current approaches to caries detection methods. Selcuk. Dent. J. 2019, 6, 82–90. [Google Scholar]
- Walsh, T.; Macey, R.; Riley, P.; Glenny, A.M.; Schwendicke, F.; Worthington, H.V.; Clarkson, J.E.; Ricketts, D.; Su, T.L.; Sengupta, A. Imaging modalities to inform the detection and diagnosis of early caries. Cochrane Database Syst. Rev. 2021, 3, CD014545. [Google Scholar]
- Macey, R.; Walsh, T.; Riley, P.; Glenny, A.M.; Worthington, H.V.; Fee, P.A.; Clarkson, J.E.; Ricketts, D. Fluorescence devices for the detection of dental caries. Cochrane Database Syst. Rev. 2020, 12, CD013811. [Google Scholar]
- Macey, R.; Walsh, T.; Riley, P.; Hogan, R.; Glenny, A.M.; Worthington, H.V.; Clarkson, J.E.; Ricketts, D. Transillumination and optical coherence tomography for the detection and diagnosis of enamel caries. Cochrane Database Syst. Rev. 2021, 1, CD013855. [Google Scholar]
- Rankovic, M.J.; Kapor, S.; Khazaei, Y.; Crispin, A.; Schüler, I.; Krause, F.; Ekstrand, K.; Michou, S.; Eggmann, F.; Lussi, A.; et al. Systematic review and meta-analysis of diagnostic studies of proximal surface caries. Clin. Oral Investig. 2021, 25, 6069–6079. [Google Scholar] [CrossRef] [PubMed]
- Tassoker, M.; Ozcan, S.; Karabekiroglu, S. Occlusal Caries Detection and Diagnosis Using Visual ICDAS Criteria, Laser Fluorescence Measurements, and Near-Infrared Light Transillumination Images. Med. Princ. Pract. 2020, 29, 25–31. [Google Scholar] [CrossRef]
- Capparè, P.; D’Ambrosio, R.; De Cunto, R.; Darvizeh, A.; Nagni, M.; Gherlone, E. The Usage of an Air Purifier Device with HEPA 14 Filter during Dental Procedures in COVID-19 Pandemic: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 5139. [Google Scholar] [CrossRef] [PubMed]
- Cagidiaco, E.F.; Carboncini, F.; Parrini, S.; Doldo, T.; Nagni, M.; Nuti, N.; Ferrari, M. Functional Implant Prosthodontic Score of a one-year prospective study on three different connections for single-implant restorations. J. Osseointegr. 2018, 10, 130–135. [Google Scholar]
- D’Orto, B.; Polizzi, E.; Nagni, M.; Tetè, G.; Capparè, P. Full Arch Implant-Prosthetic Rehabilitation in Patients with Type I Diabetes Mellitus: Retrospective Clinical Study with 10 Year Follow-Up. Int. J. Environ. Res. Public Health 2022, 19, 11735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xing, L.; Yu, H.; Zhao, L. Prevalence of dental caries in children and adolescents with type 1 diabetes: A systematic review and meta-analysis. BMC Oral Health 2019, 19, 213. [Google Scholar] [CrossRef] [PubMed]
Method | Examiner | Sensitivity (%) | Specificity (%) | Positive Predictive Value (%) | Negative Predictive Value (%) | Area under the ROC Curve/Az | Accuracy (%) | p | |
---|---|---|---|---|---|---|---|---|---|
Enamel | Clinical visual examination | Examiner 1 | (82.67) | (57.69) | (84.93) | (53.57) | 0.702 | (76.24) | <0.001 |
Clinical visual examination | Examiner 2 | (82.67) | (57.69) | (84.93) | (53.57) | 0.702 | (76.24) | <0.001 | |
PR | Examiner 1 | (58.67) | (73.08) | (86.27) | (38.00) | 0.659 | (62.38) | <0.005 | |
PR | Examiner 2 | (61.33) | (61.54) | (82.14) | (35.56) | 0.614 | (61.39) | <0.043 | |
LF | Examiner 1 | (76.00) | (69.23) | (87.69) | (50.00) | 0.726 | (74.26) | <0.001 | |
LF | Examiner 2 | (76.00) | (65.38) | (86.36) | (48.57) | 0.707 | (73.27) | <0.001 | |
NIR-LT | Examiner 1 | (90.67) | (38.46) | (80.95) | (58.82) | 0.646 | (77.23) | <0.001 | |
NIR-LT | Examiner 2 | (90.67) | (42.31) | (81.93) | (61.11) | 0.665 | (78.22) | <0.001 | |
Dentin | Clinical visual examination | Examiner 1 | (10.42) | (94.34) | (62.50) | (53.76) | 0.524 | (54.46) | 0.377 |
Clinical visual examination | Examiner 2 | (18.75) | (92.45) | (69.23) | (55.68) | 0.556 | (57.43) | 0.093 | |
PR | Examiner 1 | (33.33) | (88.68) | (72.73) | (59.49) | 0.610 | (62.38) | <0.007 | |
PR | Examiner 2 | (33.33) | (86.79) | (69.57) | (58.97) | 0.601 | (61.39) | <0.016 | |
LF | Examiner 1 | (70.83) | (62.26) | (62.96) | (70.21) | 0.665 | (66.34) | <0.001 | |
LF | Examiner 2 | (54.17) | (64.15) | (57.78) | (60.71) | 0.592 | (59.41) | 0.064 | |
NIR-LT | Examiner 1 | (64.58) | (66.04) | (63.27) | (67.31) | 0.653 | (65.35) | <0.002 | |
NIR-LT | Examiner 2 | (52.08) | (62.26) | (55.56) | (58.93) | 0.572 | (57.43) | 0.147 |
ICC | Examiner 1 | Examiner 2 | Inter-Examiner |
---|---|---|---|
Clinical visual examination | 0.963 (0.932–0.979) | 0.978 (0.960–0.988) | 0.967 (0.952–0.978) |
PR | 0.950 (0.910–0.973) | 0.968 (0.942–0.982) | 0.982 (0.974–0.988) |
LF | 0.964 (0.935–0.980) | 0.940 (0.890–0.967) | 0.965 (0.947–0.976) |
NIR-LT | 0.918 (0.851–0.955) | 0.930 (0.873–0.962) | 0.949 (0.925–0.966) |
ICC | Micro-CT- Examiner 1 | Micro-CT- Examiner 2 |
---|---|---|
Clinical visual examination | 0.617 (0.432–0.742) | 0.613 (0.425–0.739) |
PR | 0.563 (0.351–0.705) | 0.530 (0.303–0.683) |
LF | 0.542 (0.320–0.691) | 0.484 (0.235–0.652) |
NIR-LT | 0.507 (0.269–0.668) | 0.426 (0.148–0.613) |
1 | Patient Comfort Score | Clinical Application Time | ||||
---|---|---|---|---|---|---|
Mean | s.d. | Median | Mean | s.d. | Median | |
Clinical visual examination | 0.33 | ±0.60 | 0.00 | 3.96 | ±2.07 | 4.00 |
PR | 4.06 | ±3.47 | 4.00 | 55.16 | ±3.18 | 55.00 |
LF | 0.39 | ±0.58 | 0.00 | 9.68 | ±4.89 | 8.00 |
NIR-LT | 3.11 | ±2.40 | 3.00 | 17.14 | ±8.12 | 15.00 |
2 | Patient comfort score (p value) | Clinical application time (p value) | ||||
Clinical visual examination—PR | <0.001 | <0.001 | ||||
Clinical visual examination—LF | 0.292 | <0.001 | ||||
Clinical visual examination—NIR-LT | <0.001 | <0.001 | ||||
PR—LF | <0.001 | <0.001 | ||||
PR—NIR-LT | 0.092 | <0.001 | ||||
LF—NIR-LT | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocak-Topbas, N.; Kamburoğlu, K.; Ertürk-Avunduk, A.T.; Ozemre, M.O.; Eratam, N.; Çakmak, E.E. Clinical Performance of Diagnostic Methods in Third Molar Teeth with Early Occlusal Caries. Diagnostics 2023, 13, 284. https://doi.org/10.3390/diagnostics13020284
Kocak-Topbas N, Kamburoğlu K, Ertürk-Avunduk AT, Ozemre MO, Eratam N, Çakmak EE. Clinical Performance of Diagnostic Methods in Third Molar Teeth with Early Occlusal Caries. Diagnostics. 2023; 13(2):284. https://doi.org/10.3390/diagnostics13020284
Chicago/Turabian StyleKocak-Topbas, Nazan, Kıvanç Kamburoğlu, Ayşe Tuğba Ertürk-Avunduk, Mehmet Ozgur Ozemre, Nejlan Eratam, and Esra Ece Çakmak. 2023. "Clinical Performance of Diagnostic Methods in Third Molar Teeth with Early Occlusal Caries" Diagnostics 13, no. 2: 284. https://doi.org/10.3390/diagnostics13020284
APA StyleKocak-Topbas, N., Kamburoğlu, K., Ertürk-Avunduk, A. T., Ozemre, M. O., Eratam, N., & Çakmak, E. E. (2023). Clinical Performance of Diagnostic Methods in Third Molar Teeth with Early Occlusal Caries. Diagnostics, 13(2), 284. https://doi.org/10.3390/diagnostics13020284