Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Data
2.3. Radiofrequency Catheter Ablation
2.4. Postoperative Follow-Up and Recurrence
2.5. Post-Analysis Variable Definitions
2.6. Statistical Methods
3. Results
3.1. Characteristics and Univariate Analysis of Recurrent AF after RFCA
3.2. Variable Selection Based on the LASSO Regression
3.3. Development of the Model for Predicting the Risk of Early Recurrence of AF after RFCA
3.4. Prediction Model Validation
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | Neutrophil granulocyte count |
L | Lymphocyte count |
M | Monocyte count |
P | Platelet count |
Hb | Hemoglobin |
NLR | Neutrophil to lymphocyte ratio |
PLR | Platelet to lymphocyte ratio |
LMR | Lymphocyte to monocyte ratio |
SII | Systemic immune inflammation index |
RDW | Red cell distribution width |
HRR | The ratio of hemoglobin to red cell distribution width |
TG | Triglyceride |
TC | Total cholesterol |
LDL-c | Low density lipoprotein cholesterol |
HDL-c | High density lipoprotein cholesterol |
CRI-I | Castelli risk index I |
CRI-II | Castelli risk index II |
COPD | Chronic obstructive pulmonary disease |
References
- Ball, J.; Carrington, M.J.; McMurray, J.J.; Stewart, S. Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century. Int. J. Cardiol. 2013, 167, 1807–1824. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Norby, F.L.; Whitsel, E.A.; Soliman, E.Z.; Chen, L.Y.; Loehr, L.R.; Fuster, V.; Heiss, G.; Coresh, J.; Alonso, A. Cardiac Autonomic Dysfunction and Incidence of Atrial Fibrillation: Results From 20 Years Follow-Up. J. Am. Coll. Cardiol. 2017, 69, 291–299. [Google Scholar] [CrossRef]
- Blomström-Lundqvist, C.; Gizurarson, S.; Schwieler, J.; Jensen, S.M.; Bergfeldt, L.; Kennebäck, G.; Rubulis, A.; Malmborg, H.; Raatikainen, P.; Lönnerholm, S.; et al. Effect of Catheter Ablation vs Antiarrhythmic Medication on Quality of Life in Patients With Atrial Fibrillation: The CAPTAF Randomized Clinical Trial. JAMA 2019, 321, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Toquero, J.; Castro, V.; Lozano, I.F. Radiofrequency Ablation as Initial Therapy in Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2013, 368, 477. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Marrouche, N.F.; Martin, D.O.; Verma, A.; Bhargava, M.; Saliba, W.; Bash, D.; Schweikert, R.; Brachmann, J.; Gunther, J.; et al. Radiofrequency Ablation vs Antiarrhythmic Drugs as First-line Treatment of Symptomatic Atrial Fibrillation. JAMA 2005, 293, 2634–2640. [Google Scholar] [CrossRef]
- Kuck, K.-H.; Brugada, J.; Fürnkranz, A.; Metzner, A.; Ouyang, F.; Chun, K.J.; Elvan, A.; Arentz, T.; Bestehorn, K.; Pocock, S.J.; et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2016, 374, 2235–2245. [Google Scholar] [CrossRef]
- Callahan, T.D.; Di Biase, L.; Horton, R.; Sanchez, J.; Gallinghouse, J.G.; Natale, A. Catheter Ablation of Atrial Fibrillation. Cardiol. Clin. 2009, 27, 163–178. [Google Scholar] [CrossRef]
- Luik, A.; Kunzmann, K.; Hörmann, P.; Schmidt, K.; Radzewitz, A.; Bramlage, P.; Schenk, T.; Schymik, G.; Merkel, M.; Kieser, M.; et al. Cryoballoon vs. open irrigated radiofrequency ablation for paroxysmal atrial fibrillation: Long-term FreezeAF outcomes. BMC Cardiovasc. Disord. 2017, 17, 135. [Google Scholar] [CrossRef]
- Noujaim, C.; Lim, C.; Mekhael, M.; Feng, H.; Chouman, N.; Younes, H.; Assaf, A.; Shan, B.; Shamaileh, G.; Dhore-Patil, A.; et al. Identifying the prognostic significance of early arrhythmia recurrence during the blanking period and the optimal blanking period duration: Insights from the DECAAF II study. Europace 2023, 25, euad173. [Google Scholar] [CrossRef]
- Zink, M.D.; Chua, W.; Zeemering, S.; di Biase, L.; Antoni, B.d.L.; David, C.; Hindricks, G.; Haeusler, K.G.; Al-Khalidi, H.R.; Piccini, J.P.; et al. Predictors of recurrence of atrial fibrillation within the first 3 months after ablation. Europace 2020, 22, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.J.; Dixit, S.; Santangeli, P. Mechanisms and clinical significance of early recurrences of atrial arrhythmias after catheter ablation for atrial fibrillation. World J. Cardiol. 2016, 8, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Yamada, T.; Mizuno, H.; Minamiguchi, H.; Konishi, S.; Ohtani, T.; Yamaguchi, O.; Okuyama, Y.; Uematsu, M.; Sakata, Y. Impact of atrial fibrillation ablation on cardiac sympathetic nervous system in patients with and without heart failure. Int. J. Cardiol. 2015, 199, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.J.; Clarke, S.A.; Quinn, T.A.; Holmes, J.W. Physiological Implications of Myocardial Scar Structure. Compr. Physiol. 2015, 5, 1877–1909. [Google Scholar] [CrossRef] [PubMed]
- Marrouche, N.F.; Brachmann, J.; Andresen, D.; Siebels, J.; Boersma, L.; Jordaens, L.; Merkely, B.; Pokushalov, E.; Sanders, P.; Proff, J.; et al. Catheter Ablation for Atrial Fibrillation with Heart Failure. N. Engl. J. Med. 2018, 378, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Choi, J.-I.; Boo, K.Y.; Kim, D.Y.; Oh, S.-K.; Park, H.-S.; Lee, K.-N.; Shim, J.; Kim, J.S.; Park, S.W.; et al. Clinical and Echocardiographic Risk Factors Predict Late Recurrence after Radiofrequency Catheter Ablation of Atrial Fibrillation. Sci. Rep. 2019, 9, 6890. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Jiang, C.-Y.; Betts, T.R.; Chen, J.; Deisenhofer, I.; Mantovan, R.; Macle, L.; Morillo, C.A.; Haverkamp, W.; Weerasooriya, R.; et al. Approaches to Catheter Ablation for Persistent Atrial Fibrillation. N. Engl. J. Med. 2015, 372, 1812–1822. [Google Scholar] [CrossRef]
- Ping, X.; Dong, J.Z.; Liu, X.P.; Long, D.Y.; Yu, R.H.; Tian, Y.; Tang, R.B.; Zheng, B.; Hu, F.L.; Shi, L.S.; et al. Predictive Value of Early Recurrence and Delayed Cure After Catheter Ablation for Patients With Chronic Atrial Fibrillation. Circ. J. 2008, 72, 1125–1129. [Google Scholar] [CrossRef]
- Oka, T.; Koyama, Y.; Tanaka, K.; Hirao, Y.; Tanaka, N.; Okada, M.; Yoshimoto, I.; Kitagaki, R.; Okamura, A.; Iwakura, K.; et al. Early recurrence during the blanking period and left atrial reverse remodeling after catheter ablation for non-paroxysmal atrial fibrillation. IJC Hear. Vasc. 2020, 30, 100588. [Google Scholar] [CrossRef]
- Takayama, K.; Hachiya, H.; Iesaka, Y.; Hirao, K.; Isobe, M. Early Recurrence after Longstanding Persistent Atrial Fibrillation Ablation. Int. Hear. J. 2018, 59, 321–327. [Google Scholar] [CrossRef]
- Mugnai, G.; de Asmundis, C.; Hünük, B.; Ströker, E.; Velagic, V.; Moran, D.; Ruggiero, D.; Hacioglu, E.; Poelaert, J.; Verborgh, C.; et al. Second-generation cryoballoon ablation for paroxysmal atrial fibrillation: Predictive role of atrial arrhythmias occurring in the blanking period on the incidence of late recurrences. Hear. Rhythm. 2015, 13, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Willems, S.; Khairy, P.; Andrade, J.G.; Hoffmann, B.A.; Levesque, S.; Verma, A.; Weerasooriya, R.; Novak, P.; Arentz, T.; Deisenhofer, I.; et al. Redefining the Blanking Period After Catheter Ablation for Paroxysmal Atrial Fibrillation: Insights From the ADVICE (Adenosine Following Pulmonary Vein Isolation to Target Dormant Conduction Elimination) Trial. Circ. Arrhythmia Electrophysiol. 2016, 9, e003909. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Boo, K.Y.; Choi, J.-I.; Choi, Y.Y.; Choi, H.Y.; Roh, S.-Y.; Shim, J.; Kim, J.S.; Kim, Y.-H. Early Recurrence Is Reliable Predictor of Late Recurrence After Radiofrequency Catheter Ablation of Atrial Fibrillation. JACC Clin. Electrophysiol. 2021, 7, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, K.M.A.; Nilsson, B.; Bruunsgaard, H.; Chen, X.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients undergoing radiofrequency catheter ablation for atrial fibrillation. Scand. Cardiovasc. J. 2009, 43, 285–291. [Google Scholar] [CrossRef]
- Cabrera-Bueno, F.; Medina-Palomo, C.; Ruiz-Salas, A.; Flores, A.; Rodríguez-Losada, N.; Barrera, A.; Jiménez-Navarro, M.; Alzueta, J. Serum levels of interleukin-2 predict the recurrence of atrial fibrillation after pulmonary vein ablation. Cytokine 2015, 73, 74–78. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, M.; Huang, H.; Yang, B.; Jiang, H.; Huang, C. A Variant of IL6R Is Associated with the Recurrence of Atrial Fibrillation after Catheter Ablation in a Chinese Han Population. PLoS ONE 2014, 9, e99623. [Google Scholar] [CrossRef]
- Kimura, T.; Takatsuki, S.; Inagawa, K.; Katsumata, Y.; Nishiyama, T.; Nishiyama, N.; Fukumoto, K.; Aizawa, Y.; Tanimoto, Y.; Tanimoto, K.; et al. Serum Inflammation Markers Predicting Successful Initial Catheter Ablation for Atrial Fibrillation. Hear. Lung Circ. 2014, 23, 636–643. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2014, 52, 86–105. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Hidru, T.H.; Sun, Y.; Gao, L.; Yang, X.; Xia, Y. Long Atrial Fibrillation Duration and Early Recurrence Are Reliable Predictors of Late Recurrence After Radiofrequency Catheter Ablation. Front. Cardiovasc. Med. 2022, 9, 864417. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Liu, Z.; Wang, X.; Geng, S.; Li, J.; Li, T.; Ye, S. Predicting medication nonadherence risk in a Chinese inflammatory rheumatic disease population: Development and assessment of a new predictive nomogram. Patient Prefer. Adher. 2018, 12, 1757–1765. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Saville, B.R.; Lewis, R.J. Decision Curve Analysis. JAMA 2015, 313, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Chen, X.; Zha, X.; Zhang, F. A Nomogram to Improve Predictability of Small-Incision Lenticule Extraction Surgery. Med. Sci. Monit. 2017, 23, 5168–5175. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Larson, M.G.; Yamamoto, J.F.; Sullivan, L.M.; Pencina, M.J.; Meigs, J.B.; Tofler, G.H.; Selhub, J.; Jacques, P.F.; Wolf, P.A.; et al. Relations of Biomarkers of Distinct Pathophysiological Pathways and Atrial Fibrillation Incidence in the Community. Circulation 2010, 121, 200–207. [Google Scholar] [CrossRef]
- Conen, D.; Ridker, P.M.; Everett, B.M.; Tedrow, U.B.; Rose, L.; Cook, N.R.; Buring, J.E.; Albert, C.M. A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women. Eur. Hear. J. 2010, 31, 1730–1736. [Google Scholar] [CrossRef]
- Frustaci, A.; Chimenti, C.; Bellocci, F.; Morgante, E.; Russo, M.A.; Maseri, A. Histological Substrate of Atrial Biopsies in Patients With Lone Atrial Fibrillation. Circulation 1997, 96, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-C.; Chang, J.-P.; Liu, W.-H.; Yang, C.-H.; Chen, Y.-L.; Tsai, T.-H.; Wang, Y.-H.; Pan, K.-L. Increased Inflammatory Cell Infiltration in the Atrial Myocardium of Patients With Atrial Fibrillation. Am. J. Cardiol. 2008, 102, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Plebani, M. Red blood cell distribution width (RDW) and human pathology. One size fits all. Clin. Chem. Lab. Med. 2014, 52, 1247–1249. [Google Scholar] [CrossRef]
- Malavasi, V.L.; Proietti, M.; Spagni, S.; Valenti, A.C.; Battista, A.; Pettorelli, D.; Colella, J.; Vitolo, M.; Lip, G.Y.; Boriani, G. Use fulness of Red Cells Distribution Width to Predict Worse Outcomes in Patients With Atrial Fibrillation. Am. J. Cardiol. 2019, 124, 1561–1567. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A.A. The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review. J. Clin. Med. 2022, 11, 5642. [Google Scholar] [CrossRef]
- Perlstein, T.S.; Weuve, J.; Pfeffer, M.A.; Beckman, J.A. Red Blood Cell Distribution Width and Mortality Risk in a Community-Based Prospective Cohort. JAMA Intern. Med. 2009, 169, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Lappé, J.M.; Horne, B.D.; Shah, S.H.; May, H.T.; Muhlestein, J.B.; Lappé, D.L.; Kfoury, A.G.; Carlquist, J.F.; Budge, D.; Alharethi, R.; et al. Red cell distribution width, C-reactive protein, the complete blood count, and mortality in patients with coronary disease and a normal comparison population. Clin. Chim. Acta 2011, 412, 2094–2099. [Google Scholar] [CrossRef]
- Hou, H.; Sun, T.; Li, C.; Li, Y.; Guo, Z.; Wang, W.; Li, D. An overall and dose-response meta-analysis of red blood cell distribution width and CVD outcomes. Sci. Rep. 2017, 7, 43420. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Yang, Y.; Zhu, J.; Huang, B.; Wang, J.; Wu, S.; Shao, X.; Zhang, H. The relationship between elevated red cell distribution width and long-term outcomes among patients with atrial fibrillation. Clin. Biochem. 2015, 48, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Eryd, S.A.; Borné, Y.; Melander, O.; Persson, M.; Smith, J.G.; Hedblad, B.; Engström, G. Red blood cell distribution width is associated with incidence of atrial fibrillation. J. Intern. Med. 2013, 275, 84–92. [Google Scholar] [CrossRef]
- Gurses, K.M.; Yalcin, M.U.; Kocyigit, D.; Evranos, B.; Ates, A.H.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Ozer, N.; Oto, M.A.; et al. Red blood cell distribution width predicts outcome of cryoballoon-based atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2014, 42, 51–58. [Google Scholar] [CrossRef]
- Welty, F.K. How Do Elevated Triglycerides and Low HDL-Cholesterol Affect Inflammation and Atherothrombosis? Curr. Car diol. Rep. 2013, 15, 400. [Google Scholar] [CrossRef]
- Balse, E.; El-Haou, S.; Dillanian, G.; Dauphin, A.; Eldstrom, J.; Fedida, D.; Coulombe, A.; Hatem, S.N. Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc. Natl. Acad. Sci. USA 2009, 106, 14681–14686. [Google Scholar] [CrossRef]
- Abi-Char, J.; Maguy, A.; Coulombe, A.; Balse, E.; Ratajczak, P.; Samuel, J.; Nattel, S.; Hatem, S.N. Membrane cholesterol modu lates Kv1.5 potassium channel distribution and function in rat cardiomyocytes. J. Physiol. 2007, 582, 1205–1217. [Google Scholar] [CrossRef]
- Ding, W.Y.; Protty, M.B.; Davies, I.G.; Lip, G.Y.H. Relationship between lipoproteins, thrombosis, and atrial fibrillation. Cardio vasc. Res. 2021, 118, 716–731. [Google Scholar] [CrossRef]
- Feng, L.; Nian, S.; Tong, Z.; Zhu, Y.; Li, Y.; Zhang, C.; Bai, X.; Luo, X.; Wu, M.; Yan, Z. Age-related trends in lipid levels: A large-scale cross-sectional study of the general Chinese population. BMJ Open 2020, 10, e034226. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, J.; Liu, T.; Yin, Z.; Jin, Y.; Han, J.; Guo, Z.; Wang, H. The systemic-immune-inflammation index predicts the recurrence of atrial fibrillation after cryomaze concomitant with mitral valve surgery. BMC Cardiovasc. Disord. 2022, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Chen, X.; Wu, N.; Xie, W.; Tang, H.; Li, C.; Wu, L.; Xiang, Y.; Zhong, L.; et al. Association of Systemic Inflam mation Score with Atrial Fibrillation: A Case-Control Study With Propensity Score Matching. Hear. Lung Circ. 2017, 27, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, S.; Wang, P.; Xu, Q.; Zhang, Y.; Xiao, J.; Xue, X.; Yang, Q.; Xi, W.; Wang, J.; et al. Predictive value of lymphocyte- to-monocyte ratio in critically Ill patients with atrial fibrillation: A propensity score matching analysis. J. Clin. Lab. Anal. 2021, 36, e24217. [Google Scholar] [CrossRef]
- Karavelioğlu, Y.; Karapınar, H.; Yüksel, M.; Memiç, K.; Sarak, T.; Kurt, R.; Yilmaz, A. Neutrophil to Lymphocyte Ratio is Pre dictor of Atrial Fibrillation Recurrence After Cardioversion With Amiodarone. Clin. Appl. Thromb./Hemost. 2014, 21, 5–9. [Google Scholar] [CrossRef]
- Saylik, F.; Akbulut, T. Systemic Immune-Inflammation Index Predicts Major Cardiovascular Adverse Events in Patients with ST-Segment Elevated Myocardial Infarction. Arq. Bras. de Cardiol. 2022, 119, 14–22. [Google Scholar] [CrossRef]
- Dey, S.; Kashav, R.; Kohli, J.K.; Magoon, R.; Shri, I.; Walian, A.; Grover, V. Systemic Immune-Inflammation Index Predicts Poor Outcome After Elective Off-Pump CABG: A Retrospective, Single-Center Study. J. Cardiothorac. Vasc. Anesthesia 2021, 35, 2397–2404. [Google Scholar] [CrossRef]
- Halmaciu, I.; Arbănași, E.M.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Bacalbasa, N.; Suciu, B.A.; Cojocaru, I.I.; Runcan, A.I.; Grosu, F.; et al. Chest CT Severity Score and Systemic Inflammatory Biomarkers as Predictors of the Need for Invasive Mechanical Ventilation and of COVID-19 Patients’ Mortality. Diagnostics 2022, 12, 2089. [Google Scholar] [CrossRef]
- De Giorgi, U.; Procopio, G.; Giannarelli, D.; Sabbatini, R.; Bearz, A.; Buti, S.; Basso, U.; Mitterer, M.; Ortega, C.; Bidoli, P.; et al. Association of Systemic Inflammation Index and Body Mass Index with Survival in Patients with Renal Cell Cancer Treated with Nivolumab. Clin. Cancer Res. 2019, 25, 3839–3846. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Wu, C.-H.; Hsu, P.-F.; Chen, S.-C.; Huang, S.-S.; Chan, W.L.; Lin, S.-J.; Chou, C.-Y.; Chen, J.-W.; Pan, J.-P.; et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Investig. 2020, 50, e13230. [Google Scholar] [CrossRef]
- Öcal, L.; Keskin, M.; Cerşit, S.; Eren, H.; Çakmak, E.; Karagöz, A.; Çakir, H.; Gürsoy, M.O.; Doğan, S.; Zhalilov, M.; et al. Systemic immune-inflammation index predicts in-hospital and long-term outcomes in patients with ST-segment elevation myocardial infarction. Coron. Artery Dis. 2022, 33, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Bağcı, A.; Aksoy, F.; Baş, H.A. Systemic Immune-Inflammation Index May Predict the Development of Contrast-Induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2021, 73, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Uğuz, B.; Topal, D.; Badem, S.; Kahraman, N.; Uğuz, I. Systemic Immune-Inflammation Index: A Novel Predictor for Risk of Postoperative Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Hear. Surg. Forum 2022, 25, E665–E673. [Google Scholar] [CrossRef] [PubMed]
Rhythm after Surgery (3 m) | p-Value | ||
---|---|---|---|
Recurrence (n = 47) | Non-Recurrence (n = 89) | ||
Age (year) | 61.09 ± 11.88 | 59.51 ± 11.41 | 0.456 |
Gender (n, %) (Male versus female) | 31 (34.8) versus 16 (34.0) | 58 (65.2) versus 31 (66.0) | 1.000 |
Hypertension (n, %) | 19 (40.4) | 39 (43.8) | 0.843 |
Coronary artery disease (n, %) | 7 (14.9) | 11 (12.4) | 0.882 |
Diabetes mellitus (n, %) | 8 (17.0) | 14 (15.7) | 1.000 |
Severe renal dysfunction (n, %) | 3 (6.4) | 4 (4.5) | 0.947 |
Severe cardiac insufficiency (n, %) | 13 (27.7) | 22 (24.7) | 0.868 |
COPD (n, %) | 0 (0.0) | 0 (0.0) | - |
N | 4.12 ± 1.75 | 3.90 ± 1.41 | 0.419 |
L | 1.84 ± 0.53 | 1.93 ± 0.63 | 0.392 |
M | 0.44 ± 0.15 | 0.46 ± 0.19 | 0.725 |
P | 226.57 ± 65.65 | 202.85 ± 57.33 | 0.031 |
Hb | 138.30 ± 18.20 | 137.90 ± 15.43 | 0.893 |
NLR | 2.38 ± 1.28 | 2.22 ± 1.13 | 0.474 |
PLR | 130.17 ± 42.92 | 111.64 ± 36.53 | 0.009 |
LMR | 4.42 ± 1.55 | 4.75 ± 2.49 | 0.398 |
SII | 540.64 ± 360.91 | 448.47 ± 261.72 | 0.090 |
RDW | 13. 17± 1.48 | 12.62 ± 0.84 | 0.006 |
HRR | 10.66 ± 1.93 | 11.00 ± 1.57 | 0.272 |
TG | 1.28 ± 0.52) | 1.39 ± 0.84 | 0.416 |
TC | 4.36 ± 0.91 | 4.09 ± 1.04 | 0.136 |
HDL | 1.11 ± 0.23 | 1.13 ± 0.28 | 0.816 |
LDL | 2.95 ± 0.76 | 2.64 ± 0.79 | 0.030 |
CRI-I | 4.00 ± 0.91 | 3.73 ± 0.94 | 0.117 |
CRI-II | 2.71 ± 0.79 | 2.42 ± 0.78 | 0.044 |
Antiplatelet drugs | 18 (20.2) | 6 (12.8) | 0.396 |
Βeta-blockers | 37 (41.6) | 6 (12.8) | 0.522 |
ACEI/ARBs | 39 (83.0) | 69 (77.5) | 0.600 |
Calcium channel blockers | 7 (14.9) | 4 (15.7) | 1.000 |
Statin drugs | 25 (53.2) | 55 (61.8) | 0.431 |
Factors | LASSO Coefficient |
---|---|
PLR | 0.002958548 |
RDW | 0.148474080 |
LDL | 0.127461973 |
CRI-II | 0.002393739 |
OR | 95% CI | p-Value | |
---|---|---|---|
PLR | 1.002 | 1.000–1.004 | 0.048 |
RDW | 1.102 | 1.028–1.181 | 0.006 |
LDL | 1.134 | 1.029–1.249 | 0.012 |
CRI-II | 1.592 | 1.006–2.520 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Li, Q.; Zhang, J.; Chen, Y. Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Diagnostics 2023, 13, 3403. https://doi.org/10.3390/diagnostics13223403
Liu M, Li Q, Zhang J, Chen Y. Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Diagnostics. 2023; 13(22):3403. https://doi.org/10.3390/diagnostics13223403
Chicago/Turabian StyleLiu, Mengdie, Qianqian Li, Junbao Zhang, and Yanjun Chen. 2023. "Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation" Diagnostics 13, no. 22: 3403. https://doi.org/10.3390/diagnostics13223403
APA StyleLiu, M., Li, Q., Zhang, J., & Chen, Y. (2023). Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Diagnostics, 13(22), 3403. https://doi.org/10.3390/diagnostics13223403