Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis—A Systematic Review
Abstract
:1. Introduction
- Which is the metabolite with potential diagnostic value for gastric cancer metastasis?
- What role does every metabolite have in understanding the molecular pathway of metastatic gastric cancer?
2. Materials and Methods
3. Results
Author Name | Year of Publication | Title of the Article | Aim of the Study |
---|---|---|---|
Hu et al. [18] | 2011 | Prediction of gastric cancer metastasis through urinary metabolomic investigation using * GC/MS | Identifying metabolomic biomarkers of gastric cancer invasiveness and elucidating the underlying mechanisms of metastasis |
Chen et al. [19] | 2010 | Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry | Identifying metabolomic biomarkers of gastric cancer invasiveness and elucidating the underlying mechanisms of metastasis |
Shi et al. [20] | 2021 | Abnormal arginine metabolism is associated with prognosis in patients with gastric cancer | Investigating the function of arginine in pathogenesis and its prognostic significance in metastatic gastric cancer |
Pan et al. [22] | 2020 | Discovering biomarkers in peritoneal metastasis of gastric cancer by metabolomics | Evaluating the role of metabolomics in gastric cancer peritoneal metastases |
Gu et al. [21] | 2015 | Perioperative dynamics and significance of amino acid profiles in patients with cancer | Evaluating the role of metabolomics in gastric cancer peritoneal metastases |
Zhang et al. [23] | 2018 | * H NMR metabolic profiling of gastric cancer patients with lymph node metastasis | Identifying metabolomic biomarkers for carcinogenesis, invasion, and metastasis in gastric cancer. The first metabolomic study of lymph node metastasis in gastric cancer |
Sun et al. [1] | 2020 | Activation of * SREBP-1c alters lipogenesis and promotes tumor growth and metastasis in gastric cancer | Identifying metabolomic biomarkers in gastric cancer tissue, relevant lipids, and primary upstream regulatory factors |
Author Name, Year of Publication | Patients or Animal Subjects/Sample Size | Biological Product (Method Used) | Increased Levels of Metabolites in Biological Samples | Decreased Level of Metabolites in Biological Samples |
---|---|---|---|---|
Hu et al., 2011 [18] | Male SCID mice Human gastric cancer * SCG-7901 cell line (intestinal-type adenocarcinoma) Gastric cancer group (n = 16) Metastatic (=8) Non-metastatic (=8) Control group (n = 8) | Urine (* GC-MS) | Myo-inositol Butanedioic acid | L-proline Alanine Glycerol Butanoic acid L-threonic acid |
Chen et al., 2010 [19] | Male SCID mice Human gastric cancer SCG-7901 cell line (intestinal-type adenocarcinoma) Gastric cancer group (n = 16) Metastasis (=8) Non-metastasis (=8) Control group (n = 6) | Tissue sample (GC-MS) | Myo-inositol Lactic acid L-alanine L-valine Leucine Malic acid L-aspartic acid Serine Proline Phosphoserine Dimethylglycine Glycine L-glutamic acid L-lysine Propanedioic acid Docosanoic acid Octadecanoic acid Arginine Pyrrodine Pyrimidine | Butanedioic acid L-threonic acid Glucose Succinate L-isoleucine L-methionine Propanamide Glutamine Hypoxanthine |
Shi et al., 2021 [20] | Human subjects Total subjects (n = 454) Gastric cancer group (=92) (intestinal adenocarcinoma, mixed and diffuse type) Gastric ulcer group (= 51) Gastric polyps group (=206) Gastritis group (=105) | Plasma (* LC-MS/MS) | - | Arginine |
Pan et al., 2020 [22] | Patients Total subjects (n = 62) (histological type not mentioned) | Peritoneal lavage fluid (LC-MS) | Sulfite G3P Cl (63:4) * PE-NMe TG (54:2) α-aminobutyric acid α-CEHC Dodecanol Glutamyl alanine 3-methylpropionic acid Retinol 3-hydroxysterol Tetradecanoic acid * [MG (21:0/0:0/0:0)] Tridecanoic acid Myristate glycine Octadecanoic acid * TG (53:4) | - |
Gu et al., 2015 [21] | Patients Gastric cancer group (n = 56) (intestinal-type adenocarcinoma) Breast cancer group (n = 28) Thyroid cancer group (n = 33) Healthy age-matched control group (n = 137) | Plasma (LC-MS/MS) | - | Threonine Histidine * EAAs * GAAs |
Zhang et al., 2018 [23] | Patients Total subjects (n = 120) (intestinal-type adenocarcinoma and diffuse-type signet ring cells) LNM-positive GC group (=40) LNM-negative GC group (=40) Normal control group (=40) | Tissue sample (* H NMR spectroscopy) | Isoleucine Leucine Valine Glutathione | Glycine Choline Betaine Tyrosine Hypoxanthine |
Sun et al., 2020 [1] | Patients AGS cells SGC-7901 cells MGC-803 cells GES-1 cells Gastric cancer group (n = 29) (intestinal-type adenocarcinoma) Control group (n = 20) | Tissue sample (* UPLC-MS/MS) | - | Palmitic acid |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Yu, X.; Peng, C.; Liu, N.; Chen, W.; Xu, H.; Wei, H.; Fang, K.; Dong, Z.; Fu, C.; et al. Activation of SREBP-1c alters lipogenesis and promotes tumor growth and metastasis in gastric cancer. Biomed. Pharmacother. 2020, 128, 110274. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Peleteiro, B.; Malvezzi, M.; Bosetti, C.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Worldwide trends in Gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur. J. Cancer 2014, 50, 1330–1344. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Amieva, M.; Peek, R.M. Pathobiology of helicobacter pylori–induced gastric cancer. Gastroenterology 2016, 150, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yum, S.; Kang, C.; Kang, S.-J. Gene-gene interactions in gastrointestinal cancer susceptibility. Oncotarget 2016, 7, 67612–67625. [Google Scholar] [CrossRef] [PubMed]
- Raei, N.; Behrouz, B.; Zahri, S.; Latifi-Navid, S. Helicobacter pylori infection and dietary factors act synergistically to promote gastric cancer. Asian Pac. J. Cancer Prev. 2016, 17, 917–921. [Google Scholar] [CrossRef]
- Sasako, M.; Sakuramoto, S.; Katai, H.; Kinoshita, T.; Furukawa, H.; Yamaguchi, T.; Nashimoto, A.; Fujii, M.; Nakajima, T.; Ohashi, Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in Stage ii or III gastric cancer. J. Clin. Oncol. 2011, 29, 4387–4393. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Kim, Y.-W.; Yang, H.-K.; Chung, H.C.; Park, Y.-K.; Lee, K.H.; Lee, K.-W.; Kim, Y.H.; Noh, S.-I.; Cho, J.Y.; et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 2012, 379, 315–321. [Google Scholar] [CrossRef]
- Carcas, L.P. Gastric cancer review. J. Carcinog. 2014, 13, 14. [Google Scholar] [CrossRef]
- Cervantes, A.; Roda, D.; Tarazona, N.; Roselló, S.; Pérez-Fidalgo, J.A. Current questions for the treatment of Advanced gastric cancer. Cancer Treat. Rev. 2013, 39, 60–67. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, L. Gastric cancer: Metabolic and Metabolomics Perspectives (review). Int. J. Oncol. 2017, 51, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On respiratory impairment in cancer cells. Science 1956, 124, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.V.; Markowitz, S.; Zhou, S.; et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009, 325, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.-H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.-T.; et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 2007, 109, 3812–3819. [Google Scholar] [CrossRef] [PubMed]
- Dietl, K.; Renner, K.; Dettmer, K.; Timischl, B.; Eberhart, K.; Dorn, C.; Hellerbrand, C.; Kastenberger, M.; Kunz-Schughart, L.A.; Oefner, P.J.; et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J. Immunol. 2009, 184, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-D. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J. Gastroenterol. 2011, 17, 727. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-L. Metabolomics of gastric cancer metastasis detected by gas chromatography and Mass Spectrometry. World J. Gastroenterol. 2010, 16, 5874. [Google Scholar] [CrossRef]
- Shi, L.-Y.; Wang, Y.-Y.; Jing, Y.; Xu, M.-H.; Zhu, Z.-T.; Wang, Q.-J. Abnormal arginine metabolism is associated with prognosis in patients of gastric cancer. Transl. Cancer Res. 2021, 10, 2451–2469. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, T.; Fu, S.; Sun, X.; Wang, L.; Wang, J.; Lu, Y.; Ding, S.; Ruan, G.; Teng, L.; et al. Perioperative dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med. 2015, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Ma, Y.; Suo, J.; Li, W.; Zhang, Y.; Qin, S.; Jiao, Y.; Zhang, S.; Li, S.; Kong, Y.; et al. Discovering biomarkers in peritoneal metastasis of gastric cancer by Metabolomics. OncoTargets Ther. 2020, 13, 7199–7211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cui, L.; Liu, W.; Wang, Z.; Ye, Y.; Li, X.; Wang, H. 1H NMR metabolic profiling of gastric cancer patients with lymph node metastasis. Metabolomics 2018, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, F.J.F.; de Jesus, V.H.F.; Franco, C.P.; Calsavara, V.F.; Ribeiro, H.S.C.; Diniz, A.L.; de Godoy, A.L.; de Farias, I.C.; Riechelmann, R.P.; Begnami, M.D.F.S.; et al. Predicting overall and major postoperative morbidity in gastric cancer patients. J. Surg. Oncol. 2019, 120, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-H.; Song, X.-H.; Chen, X.-Z.; Yang, K.; Liu, K.; Chen, Z.-X.; Zhou, Z.-G.; Hu, J.-K. Characteristics and survival outcomes related to the infra-pyloric lymph node status of gastric cancer patients. World J. Surg. Oncol. 2018, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, W.; Dai, F.; Long, Z.; Cai, H.; Liu, X.; Zhou, Y.; Huang, H.; Wang, Y. Marital status and survival in patients with Gastric Cancer. Cancer Med. 2016, 5, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Jiao, Y.; Li, Y.; Yang, Z.; He, M.; Liu, Y. Low CYP24A1 mrna expression and its role in prognosis of breast cancer. Sci. Rep. 2019, 9, 13714. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, X.; Jiao, Y.; Li, Y.; Zhao, Y.; Guan, Y.; Liu, Z. ATP binding cassette subfamily B member 9 (ABCB9) is a prognostic indicator of overall survival in ovarian cancer. Medicine 2019, 98, e15698. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Jiang, P.; Han, W.; Liu, Y. PGM5: A novel diagnostic and prognostic biomarker for liver cancer. PeerJ 2019, 7, e7070. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Liu, S.; Chen, Q.; Liu, Y. ITGA3 serves as a diagnostic and prognostic biomarker for pancreatic cancer. OncoTargets Ther. 2019, 12, 4141–4152. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Lu, Z.; Liu, Y. High trophinin-associated protein expression is an independent predictor of poor survival in liver cancer. Dig. Dis. Sci. 2018, 64, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiao, Y.; Fu, Z.; Luo, Z.; Su, J.; Li, Y. High miR-454-3p expression predicts poor prognosis in hepatocellular carcinoma. Cancer Manag. Res. 2019, 11, 2795–2802. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiao, Y.; Li, Y.; Liu, Y. Expression of la ribonucleoprotein domain family member 4B (LARP4B) in liver cancer and their clinical and prognostic significance. Dis. Mrk. 2019, 2019, 1569049. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiao, Y.; Luo, Z.; Li, Y.; Liu, Y. High peroxidasin-like expression is a potential and independent prognostic biomarker in breast cancer. Medicine 2019, 98, e17703. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Yan, P.; Zhang, S.; Lu, Y.; Pan, L.; Tang, W.; Chen, S.; Chen, S.; Zhang, A.; Liu, W. Cell-free circulating methylated sept9 for noninvasive diagnosis and monitoring of colorectal cancer. Dis. Mrk. 2018, 2018, 6437104. [Google Scholar] [CrossRef] [PubMed]
- Ieni, A.; Angelico, G.; Barresi, V.; Giuffrè, G.; Arena, F.; Caruso, R.A.; Tuccari, G. Human epidermal growth factor receptor 2 status in gastric carcinomas with distinctive prevalent cribriform component. Dis. Mrk. 2018, 2018, 1505428. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Zheng, Q.; Lei, J.; Chen, C.; Yu, C. Prognostic value of long noncoding RNAS in patients with gastrointestinal cancer: A systematic review and meta-analysis. Dis. Mrk. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.-W. Glucose metabolism in gastric cancer: The cutting-edge. World J. Gastroenterol. 2016, 22, 2046. [Google Scholar] [CrossRef]
- Langbein, S.; Frederiks, W.M.; Hausen, A.Z.; Popa, J.; Lehmann, J.; Weiss, C.; Alken, P.; Coy, J.F. Metastasis is promoted by a bioenergetic switch: New targets for Progressive Renal Cell Cancer. Int. J. Cancer 2008, 122, 2422–2428. [Google Scholar] [CrossRef]
- Walenta, S.; Schroeder, T.; Mueller-Klieser, W. Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology. Curr. Med. Chem. 2004, 11, 2195–2204. [Google Scholar] [CrossRef]
- Brown, G.T.; Murray, G.I. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 2015, 237, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M.; Donald, S.P.; Pandhare, J.; Liu, Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 2008, 35, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Jung, Y.; Bang, E.J.; Cho, S.-I.; Jang, Y.-J.; Kwak, J.-M.; Ryu, D.H.; Park, S.; Hwang, G.-S. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based Metabolomic profiling. Ann. Surg. Oncol. 2014, 21, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Wu, K.; Liu, Y.; Shi, L.; Wang, D.; Li, G.; Tao, K.; Wang, G. Omental adipocytes enhance the invasiveness of gastric cancer cells by oleic acid-induced activation of the PI3K-akt signaling pathway. Int. J. Biochem. Cell Biol. 2017, 84, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Fan, Z.; Wang, Z.; Dai, Q.; Xiang, Z.; Yuan, F.; Yan, M.; Zhu, Z.; Liu, B.; Li, C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/gsk-3β/β-catenin pathway. J. Exp. Clin. Cancer Res. 2019, 38, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Guo, T.; Qu, X.; Hu, X.; Zhang, Y.; Che, X.; Song, H.; Gong, J.; Ma, R.; Li, C.; et al. Β-elemene increases the sensitivity of gastric cancer cells to trail by promoting the formation of disc in lipid rafts. Cell Biol. International. 2018, 42, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Hu, X.; Zhang, Y.; Huang, G. Adverse prognosis of clustered-cell versus single-cell micrometastases in PN0 early gastric cancer. J. Surg. Oncol. 2010, 103, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.-H.; Hyung, W.J.; Shen, J.G.; Song, C.; Kim, J.; Choi, S.H.; Noh, S.H. The N ratio predicts recurrence and poor prognosis in patients with node-positive early gastric cancer. Ann. Surg. Oncol. 2006, 13, 377–385. [Google Scholar] [CrossRef]
- LofgLofgren, J.L.; Whary, M.T.; Ge, Z.; Muthupalani, S.; Taylor, N.S.; Mobley, M.; Potter, A.; Varro, A.; Eibach, D.; Suerbaum, S.; et al. Lack of commensal flora in helicobacter pylori–infected INS-gas mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 2011, 140, 210–220.e4. [Google Scholar] [CrossRef]
- Lertpiriyapong, K.; Whary, M.T.; Muthupalani, S.; Lofgren, J.L.; Gamazon, E.R.; Feng, Y.; Ge, Z.; Wang, T.C.; Fox, J.G. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 2014, 63, 54–63. [Google Scholar] [CrossRef]
Author Name | Year of Publication | Significant Findings |
---|---|---|
Hu et al. [18] | 2011 | Differences with regard to 10 metabolites between the gastric cancer group (metastatic and non-metastatic groups) and the control group—lactic acid, malic acid, butanoic acid, citric acid, glycerol, hexadecanoic acid, pyrimidine, uric acid, propanoic acid, and butanedioic acid. There were 7 distinct metabolites that exhibited distinctive differences between metastatic cancer and non-metastatic cancer—alanine (Ala), L-proline (Pro), glycerol, butanoic acid, butanedioic acid, L-threonic acid, and myo-inositol. The diagnostic value of changes in lactic acid and butanoic acid has been demonstrated. Gastric cancer metastatic model has been constructed by a sequence of 7 metabolite markers. |
Chen et al. [19] | 2010 | 29 distinctive metabolites had different levels of expression between the metastatic and non-metastatic group—lactate (Lac), alanine (Ala), propanedioic, leucine (Leu), glycine (Gly), proline (Pro), serine (Ser), valine (Val), pyrimidine, dimethylglycine, succinate, isoleucine, propanamide, butanedioic, pyrrolidine, malic acid, methionine, threonine (Thr), glucose, glutamine (Glu), aspartic (Asp), phosphoserine, glutamate (Glu), lysine (Lys), hypoxanthine, arginine (Arg), insositol, octadecaoic, and docosanoic. 20 metabolites mentioned in the tumor models were up-regulated and 9 metabolites were down-regulated in the metastasis group. Proline and serine metabolisms are involved in the metastasis process of gastric cancer. |
Shi et al. [20] | 2021 | The plasma concentrations of arginine were shown to be significantly elevated in individuals diagnosed with non-metastatic gastric cancer (stages I, II, and III) compared to those with metastatic gastric cancer. Arginine level before oncological treatment can be used as an independent prognostic factor. High arginine overexpression has been associated with long-term survival of the patient. The upregulation of argininosuccinate synthase 1 (ASS1) was associated with a significant extension in the overall survival of individuals diagnosed with gastric cancer. |
Pan et al. [22] | 2020 | The following 18 metabolites: TG (54:2), G3P, α-aminobutyric acid, α-CEHC, dodecanol, glutamyl alanine, 3-methylalanine, sulfite, CL (63:4), PE-NMe (40:5), TG (53:4), retinol, 3-hydroxysterol, tetradecanoic acid, MG (21:0/0:0/0:0), tridecanoic acid, myristoyl glycine, and octacosanoic acid possess significant diagnostic potential for peritoneal metastasis in gastric cancer. Fatty acids have the potential to serve as an early detection marker and independent predictive factor for gastric cancer. |
Gu et al. [21] | 2015 | Cancer patients displayed notably elevated concentrations of Thr, Arg, and essential amino acids (EAAs), while experiencing considerably reduced levels of Asp, Glu, Gly, Pro, non-essential amino acids (NEAAs), and ammonia (NH3), in comparison to healthy controls. Patients diagnosed with gastric cancer exhibited dramatically reduced levels of serine, alanine, valine, lysine, histidine, branched-chain amino acids (BCAAs), glucogenic amino acids (GAAs), and total amino acids (TAAs). Lymph node metastases were correlated with increased levels of threonine (Thr), histidine (His), essential amino acids, and glucogenic amino acids. Notable elevation in the concentrations of methionine, leucine, tyrosine, and lysine is seen in individuals diagnosed with thyroid cancer. Alanine is playing a specific role in cancer biology by expressing inhibitory effects on the proliferation of gastric cancer cells, in comparison to glutamine, which promotes cell proliferation in breast cancer. |
Zhang et al. [23] | 2018 | A total of 33 metabolites were successfully identified as differentiating factors between gastric cancer tissues and normal control samples: glutamine, acetic acid, alanine, threonine, citrulline, N-acetyl glycoprotein, O-acetyl glycoprotein, lactate, valine, leucine, isoleucine, very-low-density lipoprotein (VLDL), glucose, myo-inositol, acetone, D-ribose, Lipid-CH2-C=O, succinate, pyruvate, glutathione, choline, methylamine, phosphocholine, taurine, trimethylamine-N-oxide, lysine, betaine, glycine, serine, uracil, tyrosine, fumarate, and hypoxanthine. A total of 8 metabolites have shown significant discriminatory ability in distinguishing between lymph node metastasis (LNM)-positive and LNM-negative individuals with gastric cancer: branched-chain amino acids (BCAAs: leucine, isoleucine, valine), glycine, glutathione, betaine, hypoxanthine, and tyrosine. |
Sun et al. [1] | 2020 | The activation of SREBP-1c led to alterations in lipogenic enzymes, including increased expression of stearoyl-CoA desaturase 1 (SCD1) and fatty acid synthase (FASN) and decreased expression of fatty acid elongase 6 (ELOVL6). The combined effect of these enzymes has caused a decrease in the concentration of palmitic acid. In comparison to the control group, the gastric cancer group exhibited an elevated serum concentration of palmitic acid. |
Energy Production | Structural Protein Synthesis | Pro-Apoptotic Effect Cell Cycle Arrest | Antioxidant Capacity | Tumoral Angiogenesis |
---|---|---|---|---|
Glucose Lactic acid Alanine Glycerol TG (54:2) PE-NMe Cl (63:4) TG (53:4) MG (21:0/0:0/0:0:0:0) Myristate glycine Tridecanoic acid Octadecanoic acid 3-methylpropionic acid Tetradecanoic acid Dodecanol Succinate Malic acid Serine Glyceraldehyde-3-phosphate | L-proline Arginine Glycine Serine Aspartic acid Glutamic acid Glutamine Valine Methionine Histidine Isoleucine Leucine Lysine Phenylalanine Threonine Tryptophan | L-proline Arginine Sulfite Cystein Methionine Alanine Glutamine | Glutathione Choline Betain Homocysteine | Lactic acid Arginine Glyceraldehyde-3-phosphate |
Enhanced Degradation of Collagen Extracellular Matrix | Mitochondrial Enzyme Impairment | T-Cell Dysfunction/Inactivation | Cell Viability, Migration, and Invasion | |
Lactic acid L-proline | Tricarboxylic acid (TCA) intermediates Butanedioic acid Malic acid Citric acid L-proline | Lactic acid Arginine | Palmitic acid Sulfite Retinol Arginine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursu, Ș.; Ciocan, A.; Ursu, C.-P.; Gherman, C.D.; Ciocan, R.A.; Pop, R.S.; Spârchez, Z.; Zaharie, F.; Al Hajjar, N. Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis—A Systematic Review. Diagnostics 2023, 13, 3401. https://doi.org/10.3390/diagnostics13223401
Ursu Ș, Ciocan A, Ursu C-P, Gherman CD, Ciocan RA, Pop RS, Spârchez Z, Zaharie F, Al Hajjar N. Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis—A Systematic Review. Diagnostics. 2023; 13(22):3401. https://doi.org/10.3390/diagnostics13223401
Chicago/Turabian StyleUrsu, Ștefan, Andra Ciocan, Cristina-Paula Ursu, Claudia Diana Gherman, Răzvan Alexandru Ciocan, Rodica Sorina Pop, Zeno Spârchez, Florin Zaharie, and Nadim Al Hajjar. 2023. "Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis—A Systematic Review" Diagnostics 13, no. 22: 3401. https://doi.org/10.3390/diagnostics13223401
APA StyleUrsu, Ș., Ciocan, A., Ursu, C. -P., Gherman, C. D., Ciocan, R. A., Pop, R. S., Spârchez, Z., Zaharie, F., & Al Hajjar, N. (2023). Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis—A Systematic Review. Diagnostics, 13(22), 3401. https://doi.org/10.3390/diagnostics13223401