Time-Serial Evaluation of the Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Spectral Domain Optical Coherence Tomography
2.3. Correction of Distortions in OCT Images
2.4. Establishment of Optical Model
3. Results
3.1. Time-Serial Evaluation of Ocular Biological Parameters
3.2. Time-Serial Evaluation of Imaging Performance
3.3. Statistics Correlation Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolgin, E. The myopia boom. Nature 2015, 519, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. (Optom.) 2005, 25, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Matsui, K.; Jonas, J.B.; Spaide, R.F. Macular Bruch Membrane Holes in Highly Myopic Patchy Chorioretinal Atrophy. Am. J. Ophthalmol. 2016, 166, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Kurihara, T.; Kunimi, H.; Miyauchi, M.; Ikeda, S.I.; Mori, K.; Tsubota, K.; Torii, H.; Tsubota, K. A highly efficient murine model of experimental myopia. Sci. Rep. 2018, 8, 2026. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.M.; Verkicharla, P.K.; Sepehrband, F.; Suheimat, M.; Schmid, K.L.; Atchison, D.A. Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia. Biomed. Opt. Express 2017, 8, 2386–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Luo, H.H.; Zhuang, J.; Yu, K.M. Comparison of anterior section parameters using anterior segment optical coherence tomography and ultrasound biomicroscopy in myopic patients after ICL implantation. Int. J. Ophthalmol. 2016, 9, 58–62. [Google Scholar] [PubMed]
- Akashi, A.; Kanamori, A.; Nakamura, M.; Fujihara, M.; Yamada, Y.; Negi, A. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6025–6032. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shi, G.; Li, X.; Lu, J.; Ding, Z.; Sun, X.; Jiang, C.; Zhang, Y. Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J. Biomed. Opt. 2012, 17, 116008. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, Z. Advances of application with intraoperative coherence optical tomography in ophthalmic surgery. Chin. J. Ophthalmol. 2015, 51, 629–635. [Google Scholar]
- Westphal, V.; Rollins, A.; Radhakrishnan, S.; Izatt, J. Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt. Express 2002, 10, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ramasubramanian, V.; Glasser, A. Distortion Correction of Visante Optical Coherence Tomography Cornea Images. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2015, 92, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Katona, M.; Nyúl, L.G. An approach to the quantitative assessment of retinal layer distortions and subretinal fluid in SD-OCT images. Acta Cybern. 2017, 23, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Breher, K.; Agarwala, R.; Leube, A.; Wahl, S. Direct modeling of foveal pit morphology from distortion-corrected OCT images. Biomedical optics express 2019, 10, 4815–4824. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Qiu, R.; Ding, X.; Dai, C.; Meng, J.; Zhao, J.; Ma, F.; Qi, S. Correction of refractive distortion in whole-eye optical coherence tomography imaging of the mouse eye. J. Biophotonics 2022, 15, e202200146. [Google Scholar] [CrossRef]
- Charman, W.N. Aberrations and myopia. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2005, 25, 285–301. [Google Scholar] [CrossRef]
- Wallman, J.; Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 2004, 43, 447–468. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; McNabb, R.P.; Zheng, F.H.; Chua, J.; Kuo, A.N.; Schmetterer, L. Distortion-corrected retinal curvature using a Fourier domain mode locking (FDML) laser ultrawide-field optical coherence tomography (OCT). Investig. Ophthalmol. Vis. Sci. 2021, 62, 1810. [Google Scholar]
- Ohlendorf, A.; Breher, K.; Studtrucker, K.; Wahl, S. Retinal and foveal shape integrity is preserved in myopia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2687. [Google Scholar]
- Patel, S.; Marshall, J.; Fitzke, F.W., 3rd. Model for deriving the optical performance of the myopic eye corrected with an intracorneal ring. J. Refract. Surg. 1995, 11, 248–252. [Google Scholar] [CrossRef]
- Sha, J.; Tilia, D.; Diec, J.; Fedtke, C.; Yeotikar, N.; Jong, M.; Thomas, V.; Bakaraju, R.C. Visual performance of myopia control soft contact lenses in non-presbyopic myopes. Clin. Optom. 2018, 10, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guirao, A.; González, C.; Redondo, M.; Geraghty, E.; Norrby, S.; Artal, P. Average optical performance of the human eye as a function of age in a normal population. Investig. Ophthalmol. Vis. Sci. 1999, 40, 203–213. [Google Scholar]
- He, J.C.; Burns, S.A.; Marcos, S. Monochromatic aberrations in the accommodated human eye. Vis. Res. 2000, 40, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Bharadwaj, S.R.; Reddy, J.C.; Vaddavalli, P.K. Longitudinal Changes in Optical Quality, Spatial Vision, and Depth Vision after Laser Refractive Surgery for Myopia. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2020, 97, 360–369. [Google Scholar] [CrossRef]
- Rodriguez-Vallejo, M.; Benlloch, J.; Pons, A.; Monsoriu, J.A.; Furlan, W.D. The effect of fractal contact lenses on peripheral refraction in myopic model eyes. Curr. Eye Res. 2014, 39, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Shaker, L.M.; Al-Amiery, A.A.; Kadhum AA, H.; Takriff, M.S. Manufacture of Contact Lens of Nanoparticle-Doped Polymer Complemented with ZEMAX. Nanomaterials 2020, 10, 2028. [Google Scholar] [CrossRef]
- De La Cera, E.G.; Rodríguez, G.; Llorente, L.; Schaeffel, F.; Marcos, S. Optical aberrations in the mouse eye. Vis. Res. 2006, 46, 2546–2553. [Google Scholar] [CrossRef]
- Tkatchenko, T.V.; Shen, Y.; Tkatchenko, A.V. Mouse experimental myopia has features of primate myopia. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, A.E.; Kim, M.K.; Iuvone, P.M.; Pardue, M.T. Head-mounted goggles for murine form deprivation myopia. J. Neurosci. Methods 2007, 161, 96–100. [Google Scholar] [CrossRef]
- Dunsby, C.; Frenchm, P.M.W. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D Appl. Phys. 2003, 36, R207. [Google Scholar] [CrossRef]
- Podoleanu, A.; Charalambous, I.; Plesea, L.; Dogariu, A.; Rosen, R. Correction of distortions in optical coherence tomography imaging of the eye. Phys. Med. Biol. 2004, 49, 1277–1294. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahimzadeh, B.; Piraino, D.C.; Albanese, G.; Cruciani, F.; Rahimi, S. Neurofibromatosis: An update of ophthalmic characteristics and applications of optical coherence tomography. Clin. Ophthalmol. 2016, 10, 851–860. [Google Scholar] [PubMed] [Green Version]
- Chou, T.H.; Kocaoglu, O.P.; Borja, D.; Ruggeri, M.; Uhlhorn, S.R.; Manns, F.; Porciatti, V. Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: In vivo analysis with whole-eye OCT. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3604–3612. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Li, Y.Y.; Zhang, P.P.; Qian, K.W.; Ding, J.H.; Hu, G.; Weng, S.J.; Yang, X.L.; Zhong, Y.M. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 967–977. [Google Scholar] [CrossRef]
- Zhang, P.; Mocci, J.; Wahl, D.J.; Meleppat, R.K.; Manna, S.K.; Quintavalla, M.; Muradore, R.; Sarunic, M.V.; Bonora, S.; Pugh, E.N., Jr.; et al. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Exp. Eye Res. 2018, 172, 86–93. [Google Scholar] [CrossRef]
- Schmucker, C.; Schaeffel, F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vis. Res. 2004, 44, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Garner, L.F.; Yap, M.; Scott, R. Crystalline lens power in myopia. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1992, 69, 863–865. [Google Scholar] [CrossRef]
- Ashby, R. Animal Studies and the Mechanism of Myopia-Protection by Light? Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2016, 93, 1052–1054. [Google Scholar] [CrossRef]
- Mao, J.F.; Liu, S.Z.; Dou, X.Q. Retinoic acid metabolic change in retina and choroid of the guinea pig with lens-induced myopia. Int. J. Ophthalmol. 2012, 5, 670–674. [Google Scholar]
- Goss, D.A.; Van Veen, H.G.; Rainey, B.B.; Feng, B. Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1997, 74, 489–495. [Google Scholar] [CrossRef]
- Muralidharan, G.; Martínez-Enríquez, E.; Birkenfeld, J.; Velasco-Ocana, M.; Pérez-Merino, P.; Marcos, S. Morphological changes of human crystalline lens in myopia. Biomed. Opt. Express 2019, 10, 6084–6095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, R.; Lacy, K.D.; Tan, C.C.; Park, H.N.; Pardue, M.T. Refractive index measurement of the mouse crystalline lens using optical coherence tomography. Exp. Eye Res. 2014, 125, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Barbero, S.; Marcos, S.; Jiménez-Alfaro, I. Optical aberrations of intraocular lenses measured in vivo and in vitro. J. Opt. Soc. America. A Opt. Image Sci. Vis. 2003, 20, 1841–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkicharla, P.K.; Suheimat, M.; Schmid, K.L.; Atchison, D.A. Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2016, 93, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Nan, X.; Mo, Z. Effects of budgetary goal characteristics on managerial attitudes and performance. In Proceedings of the 2010 International Conference on Management and Service Science, Wuhan, China, 24–26 August 2010; pp. 1–5. [Google Scholar]
Eye Parameters | Group A | Group B | Group C |
---|---|---|---|
Curvature radius of corneal anterior surface (mm) | 0.18314 | 0.18906 | 0.20604 |
Curvature radius of corneal posterior surface (mm) | 0.17591 | 0.18326 | 0.18600 |
Center corneal thickness (mm) | 0.01261 | 0.01092 | 0.00758 |
Pupil width (mm) | 0.08467 | 0.08166 | 0.07890 |
Anterior chamber depth (mm) | 0.08189 | 0.08047 | 0.08295 |
Curvature radius of lens anterior surface (mm) | 0.06936 | 0.04579 | 0.05918 |
Curvature radius of lens posterior surface (mm) | 0.06474 | 0.04494 | 0.05091 |
Central lens thickness (mm) | 0.12945 | 0.04989 | 0.08313 |
Vitreous chamber depth (mm) | 0.03546 | 0.02466 | 0.01982 |
Curvature radius of retinal anterior surface (mm) | 0.03227 | 0.04508 | 0.03862 |
Curvature radius of retinal posterior surface (mm) | 0.03661 | 0.04259 | 0.03800 |
Retinal thickness (mm) | −0.04092 | −0.02511 | −0.04328 |
Axial length (mm) | 0.28114 | 0.20966 | 0.24514 |
A | B | C | D | E | F | G | H | I | J | K | L | M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 0.018 * | 0.007 ** | 0.030 * | 0.024 * | 0.005 ** | 0.011 * | 0.004 ** | 0.024 * | 0.012 * | 0.001 ** | 0.003 ** | 0.050 * | 0.000 ** |
5° | 0.014 * | 0.005 ** | 0.030 * | 0.021 * | 0.005 ** | 0.009 ** | 0.003 ** | 0.023 * | 0.011 * | 0.001 ** | 0.002 ** | 0.042 * | 0.000 ** |
10° | 0.008 ** | 0.002 ** | 0.031 * | 0.016 * | 0.007 ** | 0.005 ** | 0.002 ** | 0.022 * | 0.011 * | 0.000 ** | 0.001 ** | 0.030 * | 0.000 ** |
15° | 0.004 ** | 0.001 ** | 0.032 * | 0.011 * | 0.012 * | 0.003 ** | 0.001 ** | 0.021 * | 0.011 * | 0.000 ** | 0.001 ** | 0.018 ** | 0.002 ** |
20° | 0.002 ** | 0.000 ** | 0.035 * | 0.007 ** | 0.022 * | 0.001 ** | 0.002 ** | 0.021 * | 0.013 * | 0.002 ** | 0.001 ** | 0.010 ** | 0.008 ** |
25° | 0.052 | 0.112 | 0.416 | 0.247 | 0.183 | 0.157 | 0.063 | 0.356 | 0.300 | 0.109 | 0.153 | 0.029 * | 0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Tan, J.; Meng, J.; Shao, Y.; Shen, M.; Dai, C. Time-Serial Evaluation of the Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX. Diagnostics 2023, 13, 379. https://doi.org/10.3390/diagnostics13030379
Ding X, Tan J, Meng J, Shao Y, Shen M, Dai C. Time-Serial Evaluation of the Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX. Diagnostics. 2023; 13(3):379. https://doi.org/10.3390/diagnostics13030379
Chicago/Turabian StyleDing, Xueqing, Jinzhen Tan, Jing Meng, Yilei Shao, Meixiao Shen, and Cuixia Dai. 2023. "Time-Serial Evaluation of the Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX" Diagnostics 13, no. 3: 379. https://doi.org/10.3390/diagnostics13030379
APA StyleDing, X., Tan, J., Meng, J., Shao, Y., Shen, M., & Dai, C. (2023). Time-Serial Evaluation of the Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX. Diagnostics, 13(3), 379. https://doi.org/10.3390/diagnostics13030379