The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Clinical Medical Records of Patients
2.4. Imaging Study
2.5. Imaging Data Analysis
2.6. Feature Extraction
2.7. Feature Selection and Supervised Learning Protocol
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittal, S.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma: Consider the population. J. Clin. Gastroenterol. 2013, 47, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, S.; Ragusa, A.; Marisi, G.; De Domenico, S.; Casadei Gardini, A.; Bonafè, M.; Giudetti, A.M. Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities. Oxidative Med. Cell. Longev. 2018, 2018, 7512159. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.; Soerjomataram, I. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 2022, 161, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Daher, S.; Massarwa, M.; Benson, A.A.; Khoury, T. Current and Future Treatment of Hepatocellular Carcinoma: An Updated Comprehensive Review. J. Clin. Transl. Hepatol. 2018, 6, 69–78. [Google Scholar] [CrossRef]
- Lu, L.C.; Hsu, C.H.; Hsu, C.; Cheng, A.L. Tumor Heterogeneity in Hepatocellular Carcinoma: Facing the Challenges. Liver Cancer 2016, 5, 128–138. [Google Scholar] [CrossRef]
- Ding, J.; Wen, Z.J.B.c. Survival improvement and prognosis for hepatocellular carcinoma: Analysis of the SEER database. BMC Cancer 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol. 2016, 25, 74–85. [Google Scholar] [CrossRef]
- Gao, Q.; Anwar, I.J.; Abraham, N.; Barbas, A.S. Liver Transplantation for Hepatocellular Carcinoma after Downstaging or Bridging Therapy with Immune Checkpoint Inhibitors. Cancers 2021, 13, 6307. [Google Scholar] [CrossRef]
- Lingiah, V.A.; Niazi, M.; Olivo, R.; Paterno, F.; Guarrera, J.V.; Pyrsopoulos, N.T. Liver Transplantation Beyond Milan Criteria. J. Clin. Transl. Hepatol. 2020, 8, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Sharma, R.; Allara, E.; Yen, C.; Arizumi, T.; Kubota, K.; Bettinger, D.; Jang, J.W.; Smirne, C.; Kim, Y.W.; et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J. Hepatol. 2017, 66, 338–346. [Google Scholar] [CrossRef]
- Yu, J.H.; Lee, J.W. Limitations of the Barcelona clinic liver cancer staging treatment strategy in hepatocellular carcinoma patients with performance status 1. Ann. Transl. Med. 2020, 8, 1042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lou, Y.; Bai, X.L.; Liang, T.B. Intratumoral heterogeneity of hepatocellular carcinoma: From single-cell to population-based studies. World J. Gastroenterol. 2020, 26, 3720–3736. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.-P.; Zhang, C.-D.; Liang, Y.; Zhang, C.; Wu, K.-Z.; Zhao, Z.-M.; Dai, D.-Q.J.F.i.o. Novel nomograms individually predicting overall survival of non-metastatic colon cancer patients. Front. Oncol. 2020, 10, 733. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Mendiratta-Lala, M.; Bartholmai, B.J.; Ganeshan, D.; Abramson, R.G.; Burton, K.R.; Yu, J.P.; Scalzetti, E.M.; Yankeelov, T.E.; Subramaniam, R.M.; et al. Clinical utility of quantitative imaging. Acad. Radiol. 2015, 22, 33–49. [Google Scholar] [CrossRef]
- Aliyari Ghasabeh, M.; Shaghaghi, M.; Pandey, A.; Ameli, S.; Ambale Venkatesh, B.; Jacob, A.; Pandey, P.; Hazhirkarzar, B.; Luo, Y.; Rezvani Habibabadi, R.; et al. Integrating baseline MR imaging biomarkers into BCLC and CLIP improves overall survival prediction of patients with hepatocellular carcinoma (HCC). Eur. Radiol. 2021, 31, 1630–1641. [Google Scholar] [CrossRef]
- Ma, L.; Deng, K.; Zhang, C.; Li, H.; Luo, Y.; Yang, Y.; Li, C.; Li, X.; Geng, Z.; Xie, C. Nomograms for Predicting Hepatocellular Carcinoma Recurrence and Overall Postoperative Patient Survival. Front. Oncol. 2022, 12, 843589. [Google Scholar] [CrossRef]
- Abbasian Ardakani, A.; Bureau, N.J.; Ciaccio, E.J.; Acharya, U.R. Interpretation of radiomics features-A pictorial review. Comput. Methods Programs Biomed. 2022, 215, 106609. [Google Scholar] [CrossRef]
- Pons, F.; Varela, M.; Llovet, J.M.J.H. Staging Systems in Hepatocellular Carcinoma; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 35–41. [Google Scholar]
- Perito, E.R.; Bucuvalas, J.; Lai, J.C. Functional status at listing predicts waitlist and posttransplant mortality in pediatric liver transplant candidates. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2019, 19, 1388–1396. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, C.K.; Park, B.K.; Kwon, G.Y.J.A.J.o.R. Comparison of apparent diffusion coefficient calculation between two-point and multipoint B value analyses in prostate cancer and benign prostate tissue at 3 T: Preliminary experience. J. Roentgenol. 2014, 203, W287–W294. [Google Scholar] [CrossRef]
- Alley, S.; Fedorov, A.; Menard, C.; Kadoury, S. Evaluation of intensity-based deformable registration of multi-parametric MRI for radiomics analysis of the prostate. In Proceedings of Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, Huston, TX, USA, 15–20 February 2020; pp. 371–381. [Google Scholar]
- Cozzi, L.; Dinapoli, N.; Fogliata, A.; Hsu, W.C.; Reggiori, G.; Lobefalo, F.; Kirienko, M.; Sollini, M.; Franceschini, D.; Comito, T.; et al. Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer 2017, 17, 829. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, C.; Nougaret, S.J.R.I.C. Radiomic ADC Metrics as a Tool to Better Understand Tumor Biology. Radiol. Imaging Cancer 2020, 2, e2000051. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.; Fernando, D.; Sirlin, C.C.; Nayyar, M.; Goodwin, S.C.; Imagawa, D.K.; Lall, C. Value of the portal venous phase in evaluation of treated hepatocellular carcinoma following transcatheter arterial chemoembolisation. Clin. Radiol. 2017, 72, 994.e9–994.e16. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Lee, J.-M.; Sirlin, C.B.J.R. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part I. Development, growth, and spread: Key pathologic and imaging aspects. Radiology 2014, 272, 635. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.J.R. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Li, H.; Gao, L.; Ma, H.; Arefan, D.; He, J.; Wang, J.; Liu, H. Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer. Front. Oncol. 2021, 11, 658887. [Google Scholar] [CrossRef]
- Llovet, J.M.; Fuster, J.; Bruix, J.J.L.t. The Barcelona approach: Diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transplant. 2004, 10, S115–S120. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Pawlik, T.M.J.H.R. Hepatocellular carcinoma beyond Barcelona clinic liver cancer resection criteria: Resecting the aggressive tumor. Hepatoma Res. 2021, 7, 63. [Google Scholar] [CrossRef]
- Duseja, A. Staging of hepatocellular carcinoma. J. Clin. Exp. Hepatol. 2014, 4, S74–S79. [Google Scholar] [CrossRef] [Green Version]
- Schaub, S.K.; Hartvigson, P.E.; Lock, M.I.; Høyer, M.; Brunner, T.B.; Cardenes, H.R.; Dawson, L.A.; Kim, E.Y.; Mayr, N.A.; Lo, S.S.J.T.i.C.R.; et al. Stereotactic body radiation therapy for hepatocellular carcinoma: Current trends and controversies. Technol. Cancer Res. Treat. 2018, 17, 1533033818790217. [Google Scholar] [CrossRef] [PubMed]
- Curley, S.A.; Barnett, C.; Abdalla, E.J.U. Staging and prognostic factors in hepatocellular carcinoma. UpToDate 2015, 10. [Google Scholar]
- Ettorre, G.M.; Sandri, G.B.L.; Colasanti, M.; Mascianà, G.; de Werra, E.; Santoro, R.; Lepiane, P.; Montalbano, M.; Antonini, M.; Vennarecci, G.J.T.G.; et al. Liver resection for hepatocellular carcinoma≥ 5 cm. Transl. Gastroenterol. Hepatol. 2017, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, M.M.; Voigtländer, T.; Schweitzer, N.; Hinrichs, J.B.; Marquardt, J.; Wörns, M.A.; Kloeckner, R.; Fründt, T.W.; Ittrich, H.; Wacker, F.; et al. Transarterial chemoembolization versus sorafenib in patients with hepatocellular carcinoma and extrahepatic disease. United Eur. Gastroenterol. J. 2018, 6, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Park, B.W.; Kim, J.K.; Heo, C.; Park, K.J. Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters. Sci. Rep. 2020, 10, 3852. [Google Scholar] [CrossRef]
- Jiang, L.; You, C.; Xiao, Y.; Wang, H.; Su, G.-H.; Xia, B.-Q.; Zheng, R.-C.; Zhang, D.-D.; Jiang, Y.-Z.; Gu, Y.-J.; et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer. Cell Rep. Med. 2022, 3, 100694. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.R.; Gillies, R.J. The Biological Meaning of Radiomic Features. Radiology 2021, 298, 505–516. [Google Scholar] [CrossRef]
- Ameli, S.; Venkatesh, B.A.; Shaghaghi, M.; Ghadimi, M.; Hazhirkarzar, B.; Rezvani Habibabadi, R.; Aliyari Ghasabeh, M.; Khoshpouri, P.; Pandey, A.; Pandey, P.J.D. Role of MRI-Derived Radiomics Features in Determining Degree of Tumor Differentiation of Hepatocellular Carcinoma. Diagnostics 2022, 12, 2386. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Fang, Q.; Zhang, X.; Hou, P.; Wu, H.; Wang, X. Radiomics analysis of [(18)F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2599–2614. [Google Scholar] [CrossRef]
- Oh, J.; Lee, J.M.; Park, J.; Joo, I.; Yoon, J.H.; Lee, D.H.; Ganeshan, B.; Han, J.K. Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival. Korean J. Radiol. 2019, 20, 569–579. [Google Scholar] [CrossRef]
- Rizzetto, F.; Calderoni, F.; De Mattia, C.; Defeudis, A.; Giannini, V.; Mazzetti, S.; Vassallo, L.; Ghezzi, S.; Sartore-Bianchi, A.; Marsoni, S. Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases. Eur. Radiol. Exp. 2020, 4, 62. [Google Scholar] [CrossRef] [PubMed]
- Dekker, A.; Gillies, R. Long title: Repeatability and reproducibility of radiomic features: A systematic review Short title: Radiomics repeatability and reproducibility. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B.J. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, X.D.; Li, M.; Liu, X.J.; Ye, Z.; Song, B.; Yuan, F.; Yuan, Y.; Xia, C.C.; Zhang, X.; et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. World J. Gastroenterol. 2020, 26, 2388–2402. [Google Scholar] [CrossRef] [PubMed]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 2015, 60, 5471. [Google Scholar] [CrossRef]
Low Risk (BCLC 0,1) | Medium Risk (BCLC 2) | High Risk (BCLC 3,4) | p Value | |||
---|---|---|---|---|---|---|
Number (%) | 96 (36.0%) | 86 (32.3%) | 84 (31.5%) | N/A | ||
Gender (Male, Female) | 71(74%), 25(26%) | 69(80.2%), 17 (19.8%) | 70 (83.3%), 14(16.7%) | 0.290 | ||
Age (Mean ± SD) | 66.6 ± 10.8 | 64.6 ±10.5 | 64.1± 9.8 | 0.677 | ||
Cirrhosis (%) | 77 (80.2%) | 61 (70.9%) | 64 (76.2%) | 0.343 | ||
Ascites (%) | 26 (27.1%) | 35(40.7%) | 38 (45.3%) | 0.04 | ||
Transplant (Yes, No) | 51 (53.1%), 45 (46.9%) | 15 (17.4%), 71 (82.6%) | 7 (8.3%), 77 (91.7%) | 0.0001 | ||
Event (Transplant or Death) | 54 (56.3%) | 60 (68.9%) | 72 (85.7%) | N/A | ||
Performance Status | 0 | 68 (70.0%) | 42 (48.8%) | 28 (33.3%) | 0.001 | |
1 | 27 (29.0%) | 37 (43.0%) | 42 (50.0%) | |||
2 | 1 (1.0%) | 7 (8.2) | 10 (11.9%) | |||
3 | 0 (0.0%) | 0 (0.0%) | 4 (4.7%) | |||
Underlying Hepatic Condition | ALD | 10 (10.4%) | 15 (17.4%) | 12 (14.3%) | 0.390 | |
Hepatitis C | 57 (59.4%) | 37 (43%) | 36 (42.9%) | 0.036 | ||
Hepatitis B | 12(12.5%) | 6 (7.0%) | 15 (17.9%) | 0.09 | ||
Other | 2 (2.1%) | 7 (8.1%) | 5 (6.0%) | N/A | ||
Child’s Classification | Class A | 73 (76%) | 54 (62.8%) | 51 (60.7%) | N/A | |
Class B | 23 (24%) | 32 (37.2%) | 29 (34.5%) | |||
Class C | 0 | 0 | 4 (4.%) | |||
Okuda Classification | Stage I | 59 (61.2%) | 34 (39.5%) | 39 (46.4%) | N/A | |
Stage II | 35 (36.5%) | 38 (44.2%) | 32 (38.1%) | |||
Stage III | 2 (2.1%) | 14 (16.3%) | 13 (15.5%) | |||
CLIP Score | 0 | 48 (50%) | 0 | 4 (4.8%) | N/A | |
1 | 37 (38.5%) | 29 (33.7%) | 9 (10.7%) | |||
2 | 9 (9.4%) | 33 (38.4%) | 30 (35.7%) | |||
3 | 2 (2.1%) | 20 (23.3%) | 25 (29.8%) | |||
4 | 0 | 4 (4.7%) | 12 (14.3%) | |||
5 | 0 | 0 | 3 (3.6%) | |||
6 | 0 | 0 | 1 (1.2%) | |||
Tumor Margin | Well defined | 67 (69.8%) | 53 (61.6%) | 63 (75%) | 0.001 | |
Ill-defined | 29 (30.2%) | 33 (38.4%) | 21 (25%) | |||
Portal Invasion | 8(8.3%) | 14 (16.3%) | 70 (83.3%) | 0.001 | ||
Varices | 4 (4.1%) | 7 (8%) | 11 (13.0%) | 0.09 | ||
AFP (Mean ± SD) | 1544.4 ± 4776 | 5676 ± 16654 | 13179 ± 39141 | 0.002 | ||
Albumin | 3.6 ± 0.7 | 3.59 ± 0.73 | 3.56 ± 0.67 | 0.3 | ||
Bilirubin | 1.29 ± 1.27 | 1.78 ± 2.1 | 1.70 ± 2.1 | 0.4 | ||
INR | 1.15 ± 0.29 | 1.2 ± 0.23 | 1.15 ± 0.19 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirza-Aghazadeh-Attari, M.; Ambale Venkatesh, B.; Aliyari Ghasabeh, M.; Mohseni, A.; Madani, S.P.; Borhani, A.; Shahbazian, H.; Ansari, G.; Kamel, I.R. The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis. Diagnostics 2023, 13, 552. https://doi.org/10.3390/diagnostics13030552
Mirza-Aghazadeh-Attari M, Ambale Venkatesh B, Aliyari Ghasabeh M, Mohseni A, Madani SP, Borhani A, Shahbazian H, Ansari G, Kamel IR. The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis. Diagnostics. 2023; 13(3):552. https://doi.org/10.3390/diagnostics13030552
Chicago/Turabian StyleMirza-Aghazadeh-Attari, Mohammad, Bharath Ambale Venkatesh, Mounes Aliyari Ghasabeh, Alireza Mohseni, Seyedeh Panid Madani, Ali Borhani, Haneyeh Shahbazian, Golnoosh Ansari, and Ihab R. Kamel. 2023. "The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis" Diagnostics 13, no. 3: 552. https://doi.org/10.3390/diagnostics13030552
APA StyleMirza-Aghazadeh-Attari, M., Ambale Venkatesh, B., Aliyari Ghasabeh, M., Mohseni, A., Madani, S. P., Borhani, A., Shahbazian, H., Ansari, G., & Kamel, I. R. (2023). The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis. Diagnostics, 13(3), 552. https://doi.org/10.3390/diagnostics13030552