Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Study Population
2.2. Multi-Channel Surface Electromyography Setting and Facial Movement Tasks
2.3. Data Processing and EMG Data Labeling
2.4. EMG Classification with a Support Vector Machine (SVM)
2.5. Statistical Analysis
3. Results
3.1. Optimal Window Lengths for Algorithmic Classification
3.2. Determination of the Optimal Auricular Muscle EMG Recording Setting
3.3. Comparison of the per Class Macro F1-Scores between the Face at Rest and the Activation Tasks
3.4. Comparison of the Auricular Muscle Activation between the Paretic and the Contralateral Side
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paulsen, F.; Waschke, J. Atlas of Anatomy. Head, Neck and Neuroanatomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3. [Google Scholar]
- Berzin, F.; Fortinguerra, C.R. EMG study of the anterior, superior and posterior auricular muscles in man. Ann. Anat. 1993, 175, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Ruschenschmidt, H.; Volk, G.F.; Anders, C.; Guntinas-Lichius, O. Electromyography of Extrinsic and Intrinsic Ear Muscles in Healthy Probands and Patients with Unilateral Postparalytic Facial Synkinesis. Diagnostics 2022, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Serra, G.; Tugnoli, V.; Cristofori, M.C.; Eleopra, R.; De Grandis, D. The electromyographic examination of the posterior auricular muscle. Electromyogr. Clin. Neurophysiol. 1986, 26, 661–665. [Google Scholar] [PubMed]
- Liugan, M.; Zhang, M.; Cakmak, Y.O. Neuroprosthetics for Auricular Muscles: Neural Networks and Clinical Aspects. Front. Neurol. 2017, 8, 752. [Google Scholar] [CrossRef] [PubMed]
- Schmalfuss, L.; Rupp, R.; Tuga, M.R.; Kogut, A.; Hewitt, M.; Meincke, J.; Klinker, F.; Duttenhoefer, W.; Eck, U.; Mikut, R.; et al. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury. Restor. Neurol. Neurosci. 2016, 34, 79–95. [Google Scholar] [CrossRef]
- Frigerio, A.; Heaton, J.T.; Cavallari, P.; Knox, C.; Hohman, M.H.; Hadlock, T.A. Electrical Stimulation of Eye Blink in Individuals with Acute Facial Palsy: Progress toward a Bionic Blink. Plast. Reconstr. Surg. 2015, 136, 515e–523e. [Google Scholar] [CrossRef]
- Rantanen, V.; Ilves, M.; Vehkaoja, A.; Kontunen, A.; Lylykangas, J.; Makela, E.; Rautiainen, M.; Surakka, V.; Lekkala, J. A survey on the feasibility of surface EMG in facial pacing. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1688–1691. [Google Scholar] [CrossRef]
- Leistritz, L.; Hochreiter, J.; Bachl, F.; Volk, G.F. Classification of facial movements in chronic facial palsy based on intramuscular EMG signals recorded from the paretic side. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 662–665. [Google Scholar] [CrossRef]
- Volk, G.F.; Schaede, R.A.; Thielker, J.; Modersohn, L.; Mothes, O.; Nduka, C.C.; Barth, J.M.; Denzler, J.; Guntinas-Lichius, O. Reliability of grading of facial palsy using a video tutorial with synchronous video recording. Laryngoscope 2019, 129, 2274–2279. [Google Scholar] [CrossRef]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Technol. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Xie, H. The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Comput. Methods Programs Biomed. 2008, 90, 275–284. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Multiple-Comparisons Procedures. Informal Report; Los Alamos National Lab: Los Alamos, New Mexico, 1979.
- Tobey, D.N.; Sutton, D. Contralaterally elicited electrical stimulation of paralyzed facial muscles. Otolaryngology 1978, 86, 812–818. [Google Scholar] [CrossRef]
- Rothstein, J.; Berlinger, N.T. Electronic reanimation of facial paralysis—A feasibility study. Otolaryngol. Head Neck Surg. 1986, 94, 82–85. [Google Scholar] [CrossRef]
- Kurita, M.; Takushima, A.; Muraoka, Y.; Shiraishi, T.; Harii, K. Feasibility of bionic reanimation of a paralyzed face: A preliminary study of functional electrical stimulation of a paralyzed facial muscle controlled with the electromyography of the contralateral healthy hemiface. Plast. Reconstr. Surg. 2010, 126, 81e–83e. [Google Scholar] [CrossRef]
- Griffin, G.R.; Kim, J.C. Potential of an electric prosthesis for dynamic facial reanimation. Otolaryngol. Head Neck Surg. 2011, 145, 365–368. [Google Scholar] [CrossRef]
- Frigerio, A.; Cavallari, P.; Frigeni, M.; Pedrocchi, A.; Sarasola, A.; Ferrante, S. Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection. JAMA Facial Plast. Surg. 2014, 16, 335–342. [Google Scholar] [CrossRef]
- Frigerio, A.; Hadlock, T.A.; Murray, E.H.; Heaton, J.T. Infrared-based blink-detecting glasses for facial pacing: Toward a bionic blink. JAMA Facial Plast. Surg. 2014, 16, 211–218. [Google Scholar] [CrossRef]
- Jowett, N.; Kearney, R.E.; Knox, C.J.; Hadlock, T.A. Toward the Bionic Face: A Novel Neuroprosthetic Device Paradigm for Facial Reanimation Consisting of Neural Blockade and Functional Electrical Stimulation. Plast. Reconstr. Surg. 2019, 143, 62e–76e. [Google Scholar] [CrossRef]
- Hasmat, S.; McPherson, S.; Suaning, G.J.; Lovell, N.H.; Hubert Low, T.H.; Clark, J.R. Recreation of eyelid mechanics using the sling concept. J. Plast. Reconstr. Aesthet. Surg. JPRAS 2020, 73, 942–950. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long shortterm memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Geron, A. Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow; O’Reilly UK Ltd.: Farnham, UK, 2019. [Google Scholar]
- Simão, M.; Neto, P.; Gibaru, O. EMG-based online classification of gestures with recurrent neural networks. Pattern Recognit. Lett. 2019, 128, 45–51. [Google Scholar] [CrossRef]
- Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. A Novel Feature Extraction for Robust EMG Pattern Recognition. J. Comput. 2009, 1, 71–80. [Google Scholar]
- Torres, G.A.; Benitez, V.H. Finger movements classification from grasping spherical objects with surface electromyography using time domain based features. In Proceedings of the 2016 IEEE Conference on Mechatronics, Adaptive and Intelligent Systems (MAIS), Hermosillo, Mexico, 20–22 October 2016. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M. Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition. Front. Neurosci. 2015, 9, 416. [Google Scholar] [CrossRef]
- Li, X.; Aruin, A. Muscle activity onset time detection using teager-kaiser energy operator. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 31 August–3 September 2005; pp. 7549–7552. [Google Scholar] [CrossRef]
- Shannon, C.E. The mathematical theory of communication. 1963. MD Comput. 1997, 14, 306–317. [Google Scholar]
Number of Windows, WL = 66 ms | ECE | S and ST | Clenching the Teeth | Frowning | Lip Pursing | Nose Wrinkling | Face at Rest |
---|---|---|---|---|---|---|---|
Mean | 293.4 | 2109.8 | 685.1 | 691.5 | 713.4 | 687.4 | 4356.4 |
Standard diviation | 24.8 | 145.9 | 89.3 | 58.7 | 39.3 | 44.0 | 541.1 |
Minimum | 215 | 1899 | 615 | 596 | 649 | 598 | 3231 |
Maximum | 332 | 2503 | 981 | 804 | 791 | 779 | 5142 |
Patient | Selected Muscles | γ | C | Macro F1-Score | Selected Features |
---|---|---|---|---|---|
1 | PAM, TM | 0.010 | 1000.0 | 0.841 | TM1, TM4, PAM1, TM2, PAM2, PAM5, PAM7, TM7, PAM4, TM5 |
2 | SAM, PAM | 0.001 | 1000.0 | 0.879 | PAM5, PAM2, SAM5, PAM4, SAM4, PAM1, SAM7, PAM7, SAM1, SAM2 |
3 | SAM, AAM | 0.010 | 1000.0 | 0.641 | AAM1, AAM4, SAM4, SAM1, AAM2, SAM2, SAM7, AAM7, SAM5, AAM5 |
4 | SAM, PAM | 0.100 | 100.0 | 0.931 | SAM4, SAM2, PAM2, SAM5, PAM4, PAM1, SAM7, PAM7, SAM1, PAM5 |
5 | SAM, PAM | 0.100 | 1.0 | 0.985 | SAM5, SAM1, SAM7, SAM2, PAM2, PAM4, SAM4, PAM7, PAM1, PAM5 |
6 | SAM, TM | 0.100 | 10.0 | 0.736 | SAM4, SAM2, TM2, SAM5, TM4, TM1, SAM7, TM7, SAM1, TM5 |
7 | TM, AAM | 1.000 | 100.0 | 0.723 | TM1, TM4, TM2, AAM2, TM5, AAM4, TM7, AAM7, AAM1, AAM5 |
8 | SAM, AAM | 0.001 | 1000.0 | 0.817 | AAM1, AAM2, AAM4, SAM2, SAM5, SAM4, SAM7, AAM7, SAM1, AAM5 |
9 | SAM, PAM | 0.001 | 1000.0 | 0.863 | SAM1, SAM2, PAM2, SAM5, PAM4, SAM4, SAM7, PAM7, PAM1, PAM5 |
10 | SAM, AAM | 0.100 | 10.0 | 0.658 | AAM6, AAM7, SAM4, AAM1, AAM4, SAM2, SAM7, SAM5, SAM1, AAM2 |
11 | SAM, AAM | 0.100 | 10.0 | 0.496 | AAM1, SAM1, AAM2, AAM4, SAM2, SAM5, SAM7, AAM7, SAM4, AAM5 |
12 | SAM, TM | 10.00 | 1000.0 | 0.860 | TM1, TM4, TM2, SAM5, SAM7, TM5, SAM4, TM7, SAM1, SAM2 |
13 | PAM, TM | 0.010 | 1000.0 | 0.770 | PAM4, PAM2, TM2, PAM5, TM4, TM1, PAM7, TM7, PAM1, TM5 |
14 | PAM, AAM | 0.001 | 1000.0 | 0.884 | AAM4, AAM2, AAM7, PAM1, AAM1, AAM5, PAM7, PAM5, PAM4, PAM2 |
15 | SAM, PAM | 0.100 | 10.0 | 0.893 | SAM7, SAM2, PAM2, SAM5, PAM4, PAM6, PAM1, PAM7, PAM3, PAM5 |
16 | SAM, PAM | 0.001 | 1000.0 | 0.934 | SAM1, SAM2, PAM2, SAM5, PAM4, SAM4, SAM7, PAM7, PAM1, PAM5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochreiter, J.; Hoche, E.; Janik, L.; Volk, G.F.; Leistritz, L.; Anders, C.; Guntinas-Lichius, O. Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study. Diagnostics 2023, 13, 554. https://doi.org/10.3390/diagnostics13030554
Hochreiter J, Hoche E, Janik L, Volk GF, Leistritz L, Anders C, Guntinas-Lichius O. Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study. Diagnostics. 2023; 13(3):554. https://doi.org/10.3390/diagnostics13030554
Chicago/Turabian StyleHochreiter, Jakob, Eric Hoche, Luisa Janik, Gerd Fabian Volk, Lutz Leistritz, Christoph Anders, and Orlando Guntinas-Lichius. 2023. "Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study" Diagnostics 13, no. 3: 554. https://doi.org/10.3390/diagnostics13030554
APA StyleHochreiter, J., Hoche, E., Janik, L., Volk, G. F., Leistritz, L., Anders, C., & Guntinas-Lichius, O. (2023). Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study. Diagnostics, 13(3), 554. https://doi.org/10.3390/diagnostics13030554