Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview
Abstract
:1. Background
2. Basics of Myocardial Deformation and Biomechanics
3. CMR Methods for Assessing Myocardial Strain and Biomechanics
4. Clinical Utility of CMR in Assessing LV Myocardial Strain
4.1. LV Myocardial Strain by CMR in Normal Individuals
4.2. LV Myocardial Strain by CMR in Various Cardiovascular Diseases
5. Clinical Utility of CMR in Evaluating LV Biomechanics
5.1. LV Wringing Parameters
5.2. LV Functional Dynamic Geometry Measurements
5.3. Cardiac Pressure-Volume Loops by CMR
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amzulescu, M.S.; de Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.; Addetia, K. An introduction to left ventricular strain. Curr. Opin. Cardiol. 2018, 33, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Ibrahim, E.-S.H.; Parwani, P.; Bhave, N.; Stojanovska, J. Practical Guide to Evaluating Myocardial Disease by Cardiac MRI. Am. J. Roentgenol. 2020, 214, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, G.; Cafarelli, F.P.; Ferrara, M.; Di Fazio, N.; Guglielmi, G.; Cipolloni, L.; Manetti, F.; La Russa, R.; Fineschi, V. Sudden Cardiac Death and Ex-Situ Post-Mortem Cardiac Magnetic Resonance Imaging: A Morphological Study Based on Diagnostic Correlation Methodology. Diagnostics 2022, 12, 218. [Google Scholar] [CrossRef]
- Rutz, A.K.; Ryf, S.; Plein, S.; Boesiger, P.; Kozerke, S. Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 2008, 59, 755–763. [Google Scholar] [CrossRef]
- Scatteia, A.; Baritussio, A.; Bucciarelli-Ducci, C. Strain imaging using cardiac magnetic resonance. Heart Fail. Rev. 2017, 22, 465–476. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Claus, P.; Kilner, P.J.; Nagel, E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 2016, 18, 51. [Google Scholar] [CrossRef]
- Xu, J.; Yang, W.; Zhao, S.; Lu, M. State-of-the-art myocardial strain by CMR feature tracking: Clinical applications and future perspectives. Eur. Radiol. 2022, 32, 5424–5435. [Google Scholar] [CrossRef]
- Streeter, D.D.; Spotnitz, H.M.; Patel, D.P.; Ross, J.; Sonnenblick, E.H. Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circ. Res. 1969, 24, 339–347. [Google Scholar] [CrossRef]
- Hoshino, T.; Fujiwara, H.; Kawai, C.; Hamashima, Y. Myocardial fiber diameter and regional distribution in the ventricular wall of normal adult hearts, hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation 1983, 67, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Jeung, M.-Y.; Germain, P.; Croisille, P.; el Ghannudi, S.; Roy, C.; Gangi, A. Myocardial Tagging with MR Imaging: Overview of Normal and Pathologic Findings. Radiographics 2012, 32, 1381–1398. [Google Scholar] [CrossRef]
- Voorhees, A.P.; Han, H.-C. Biomechanics of Cardiac Function. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 1623–1644. [Google Scholar]
- Seemann, F.; Arvidsson, P.; Nordlund, D.; Kopic, S.; Carlsson, M.; Arheden, H.; Heiberg, E. Noninvasive Quantification of Pressure-Volume Loops from Brachial Pressure and Cardiovascular Magnetic Resonance. Circ. Cardiovasc. Imaging 2019, 12, e008493. [Google Scholar] [CrossRef]
- Avazmohammadi, R.; Soares, J.S.; Li, D.S.; Raut, S.S.; Gorman, R.C.; Sacks, M.S. A Contemporary Look at Biomechanical Models of Myocardium. Ann. Rev. Biomed. Eng. 2019, 21, 417–442. [Google Scholar] [CrossRef]
- Rothermel, T.M.; Win, Z.; Alford, P.W. Large-Deformation Strain Energy Density Function for Vascular Smooth Muscle Cells. J. Biomech. 2020, 111, 110005. [Google Scholar] [CrossRef]
- Buckberg, G.; Hoffman, J.I.E.; Nanda, N.C.; Coghlan, C.; Saleh, S.; Athanasuleas, C. Ventricular Torsion and Untwisting: Further Insights into Mechanics and Timing Interdependence: A Viewpoint. Echocardiography 2011, 28, 782–804. [Google Scholar] [CrossRef]
- Hein, S.; Gaasch, W.H.; Schaper, J. Giant Molecule Titin and Myocardial Stiffness. Circulation 2002, 106, 1302–1304. [Google Scholar] [CrossRef]
- De Tombe, P.P.; ter Keurs, H.E.D.J. The velocity of cardiac sarcomere shortening: Mechanisms and implications. J. Muscle Res. Cell Motil. 2012, 33, 431–437. [Google Scholar] [CrossRef]
- Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 2008, 20, 495–501. [Google Scholar] [CrossRef]
- Demer, L.L.; Yin, F.C. Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 1983, 339, 615–630. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. Constitutive modelling of passive myocardium: A structurally based framework for material characterization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3445–3475. [Google Scholar] [CrossRef]
- Hunter, P.J.; McCulloch, A.D.; ter Keurs, H.E.D.J. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 1998, 69, 289–331. [Google Scholar] [CrossRef] [PubMed]
- Casha, A.R.; Camilleri, L.; Manché, A.; Gatt, R.; Gauci, M.; Camilleri-Podesta, M.-T.; Grima, J.N.; Scarci, M.; Chetcuti, S. Physiological rules for the heart, lungs and other pressure-based organs. J. Thorac. Dis. 2017, 9, 3793–3801. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Kronzon, I.; Burkhoff, D. Ventricular Pump Function in Heart Failure with Normal Ejection Fraction: Insights from Pressure-Volume Measurements. Prog. Cardiovasc. Dis. 2006, 49, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, O.H.; Kass, D.A. Pressure-volume relation analysis of mouse ventricular function. Am. J. Physiol. -Heart Circ. Physiol. 2011, 301, H2198–H2206. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, V.; van der Velden, J. Historical perspective on heart function: The Frank–Starling Law. Biophys. Rev. 2015, 7, 421–447. [Google Scholar] [CrossRef]
- Metra, M.; Bettari, L.; Carubelli, V.; Bugatti, S.; Cas, A.D.; Del Magro, F.; Lazzarini, V.; Lombardi, C.; Cas, L.D. Use of Inotropic Agents in Patients with Advanced Heart Failure. Drugs 2011, 71, 515–525. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef]
- Janwanishstaporn, S.; Cho, J.Y.; Feng, S.; Brann, A.; Seo, J.-S.; Narezkina, A.; Greenberg, B. Prognostic Value of Global Longitudinal Strain in Patients with Heart Failure with Improved Ejection Fraction. JACC Heart Fail. 2022, 10, 27–37. [Google Scholar] [CrossRef]
- Thellier, N.; Altes, A.; Appert, L.; Binda, C.; Leman, B.; Marsou, W.; Debry, N.; Joly, C.; Ennezat, P.-V.; Tribouilloy, C.; et al. Prognostic Importance of Left Ventricular Global Longitudinal Strain in Patients with Severe Aortic Stenosis and Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2020, 33, 1454–1464. [Google Scholar] [CrossRef]
- Goedemans, L.; Abou, R.; Hoogslag, G.E.; Ajmone Marsan, N.; Delgado, V.; Bax, J.J. Left ventricular global longitudinal strain and long-term prognosis in patients with chronic obstructive pulmonary disease after acute myocardial infarction. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 56–65. [Google Scholar] [CrossRef]
- Iacoviello, M.; Puzzovivo, A.; Guida, P.; Forleo, C.; Monitillo, F.; Catanzaro, R.; Lattarulo, M.S.; Antoncecchi, V.; Favale, S. Independent Role of Left Ventricular Global Longitudinal Strain in Predicting Prognosis of Chronic Heart Failure Patients. Echocardiography 2013, 30, 803–811. [Google Scholar] [CrossRef]
- Ersbøll, M.; Valeur, N.; Mogensen, U.M.; Andersen, M.J.; Møller, J.E.; Velazquez, E.J.; Hassager, C.; Søgaard, P.; Køber, L. Prediction of All-Cause Mortality and Heart Failure Admissions from Global Left Ventricular Longitudinal Strain in Patients With Acute Myocardial Infarction and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2013, 61, 2365–2373. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Gibby, C.; Rodriguez, L.L.; Grimm, R.A.; Marwick, T.H. Association of Myocardial Deformation with Outcome in Asymptomatic Aortic Stenosis With Normal Ejection Fraction. Circ. Cardiovasc. Imaging 2012, 5, 719–725. [Google Scholar] [CrossRef]
- Munk, K.; Andersen, N.H.; Terkelsen, C.J.; Bibby, B.M.; Johnsen, S.P.; Bøtker, H.E.; Nielsen, T.T.; Poulsen, S.H. Global Left Ventricular Longitudinal Systolic Strain for Early Risk Assessment in Patients with Acute Myocardial Infarction Treated with Primary Percutaneous Intervention. J. Am. Soc. Echocardiogr. 2012, 25, 644–651. [Google Scholar] [CrossRef]
- Kearney, L.G.; Lu, K.; Ord, M.; Patel, S.; Profitis, K.; Matalanis, G.; Burrell, L.M.; Srivastava, P. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 827–833. [Google Scholar] [CrossRef]
- Dahl, J.S.; Videbæk, L.; Poulsen, M.K.; Rudbæk, T.R.; Pellikka, P.A.; Møller, J.E. Global Strain in Severe Aortic Valve Stenosis. Circ. Cardiovasc. Imaging 2012, 5, 613–620. [Google Scholar] [CrossRef]
- Buss, S.J.; Emami, M.; Mereles, D.; Korosoglou, G.; Kristen, A.V.; Voss, A.; Schellberg, D.; Zugck, C.; Galuschky, C.; Giannitsis, E.; et al. Longitudinal Left Ventricular Function for Prediction of Survival in Systemic Light-Chain Amyloidosis. J. Am. Coll. Cardiol. 2012, 60, 1067–1076. [Google Scholar] [CrossRef]
- Bertini, M.; Ng, A.C.T.; Antoni, M.L.; Nucifora, G.; Ewe, S.H.; Auger, D.; Marsan, N.A.; Schalij, M.J.; Bax, J.J.; Delgado, V. Global Longitudinal Strain Predicts Long-Term Survival in Patients with Chronic Ischemic Cardiomyopathy. Circ. Cardiovasc. Imaging 2012, 5, 383–391. [Google Scholar] [CrossRef]
- Woo, J.S.; Kim, W.-S.; Yu, T.-K.; Ha, S.J.; Kim, S.Y.; Bae, J.-H.; Kim, K.S. Prognostic Value of Serial Global Longitudinal Strain Measured by Two-Dimensional Speckle Tracking Echocardiography in Patients with ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2011, 108, 340–347. [Google Scholar] [CrossRef]
- Nahum, J.; Bensaid, A.; Dussault, C.; Macron, L.; Clémence, D.; Bouhemad, B.; Monin, J.-L.; Rande, J.-L.D.; Gueret, P.; Lim, P. Impact of Longitudinal Myocardial Deformation on the Prognosis of Chronic Heart Failure Patients. Circ. Cardiovasc. Imaging 2010, 3, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Antoni, M.L.; Mollema, S.A.; Delgado, V.; Atary, J.Z.; Borleffs, C.J.W.; Boersma, E.; Holman, E.R.; van der Wall, E.E.; Schalij, M.J.; Bax, J.J. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur. Heart J. 2010, 31, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Stanton, T.; Leano, R.; Marwick, T.H. Prediction of All-Cause Mortality from Global Longitudinal Speckle Strain. Circ. Cardiovasc. Imaging 2009, 2, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.-Y.; Marwick, T.H.; Kim, H.-S.; Kim, M.-K.; Hong, K.-S.; Oh, D.-J. Global 2-Dimensional Strain as a New Prognosticator in Patients with Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Cosyns, B.; Zacharakis, D.; Attena, E.; Van Camp, G.; Gach, O.; Radermecker, M.; Piérard, L.A. Importance of Left Ventricular Longitudinal Function and Functional Reserve in Patients with Degenerative Mitral Regurgitation: Assessment by Two-Dimensional Speckle Tracking. J. Am. Soc. Echocardiogr. 2008, 21, 1331–1336. [Google Scholar] [CrossRef]
- Rajiah, P.S.; Kalisz, K.; Broncano, J.; Goerne, H.; Collins, J.D.; François, C.J.; Ibrahim, E.-S.; Agarwal, P.P. Myocardial Strain Evaluation with Cardiovascular MRI: Physics, Principles, and Clinical Applications. RadioGraphics 2022, 42, 968–990. [Google Scholar] [CrossRef]
- Moore, C.C.; Reeder, S.B.; McVeigh, E.R. Tagged MR imaging in a deforming phantom: Photographic validation. Radiology 1994, 190, 765–769. [Google Scholar] [CrossRef]
- Pan, L.; Prince, J.L.; Lima, J.A.C.; Osman, N.F. Fast Tracking of Cardiac Motion Using 3D-HARP. IEEE Trans. Biomed. Eng. 2005, 52, 1425–1435. [Google Scholar] [CrossRef]
- Föll, D.; Jung, B.; Germann, E.; Hennig, J.; Bode, C.; Markl, M. Magnetic Resonance Tissue Phase Mapping: Analysis of Age-Related and Pathologically Altered Left Ventricular Radial and Long-Axis Dyssynchrony. J. Magn. Reson. Imaging 2011, 34, 518–525. [Google Scholar] [CrossRef]
- Wen, H.; Bennett, E.; Epstein, N.; Plehn, J. Magnetic resonance imaging assessment of myocardial elastic modulus and viscosity using displacement imaging and phase-contrast velocity mapping. Magn. Reson. Med. 2005, 54, 538–548. [Google Scholar] [CrossRef]
- Korosoglou, G.; Giusca, S.; Hofmann, N.P.; Patel, A.R.; Lapinskas, T.; Pieske, B.; Steen, H.; Katus, H.A.; Kelle, S. Strain-encoded magnetic resonance: A method for the assessment of myocardial deformation. ESC Heart Fail. 2019, 6, 584–602. [Google Scholar] [CrossRef]
- Taylor, R.J.; Moody, W.E.; Umar, F.; Edwards, N.C.; Taylor, T.J.; Stegemann, B.; Townend, J.; Hor, K.N.; Steeds, R.; Mazur, W.; et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: Normal values. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 871–881. [Google Scholar] [CrossRef]
- Morton, G.; Schuster, A.; Jogiya, R.; Kutty, S.; Beerbaum, P.; Nagel, E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J. Cardiovasc. Magn. Reson. 2012, 14, 43. [Google Scholar] [CrossRef]
- Lamata, P.; Hussain, S.T.; Kutty, S.; Steinmetz, M.; Sohns, J.M.; Fasshauer, M.; Staab, W.; Unterberg-Buchwald, C.; Lotz, J.; Schuster, A. Cardiovascular magnetic resonance myocardial feature tracking for the measurement of myocardial twist and untwist at rest and during dobutamine stress in healthy volunteers. J. Cardiovasc. Magn. Reson. 2014, 16, P14. [Google Scholar] [CrossRef]
- Erley, J.; Genovese, D.; Tapaskar, N.; Alvi, N.; Rashedi, N.; Besser, S.A.; Kawaji, K.; Goyal, N.; Kelle, S.; Lang, R.M.; et al. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J. Cardiovasc. Magn. Reson. 2019, 21, 46. [Google Scholar] [CrossRef]
- Weise Valdés, E.; Barth, P.; Piran, M.; Laser, K.T.; Burchert, W.; Körperich, H. Left-Ventricular Reference Myocardial Strain Assessed by Cardiovascular Magnetic Resonance Feature Tracking and fSENC—Impact of Temporal Resolution and Cardiac Muscle Mass. Front. Cardiovasc. Med. 2021, 8, 764496. [Google Scholar] [CrossRef]
- Pierpaolo, P.; Rolf, S.; Manuel, B.-P.; Davide, C.; Dresselaers, T.; Claus, P.; Bogaert, J. Left ventricular global myocardial strain assessment: Are CMR feature-tracking algorithms useful in the clinical setting? Radiol. Med. 2020, 125, 444–450. [Google Scholar] [CrossRef]
- Mangion, K.; Burke, N.M.M.; McComb, C.; Carrick, D.; Woodward, R.; Berry, C. Feature-tracking myocardial strain in healthy adults- a magnetic resonance study at 3.0 tesla. Sci. Rep. 2019, 9, 3239. [Google Scholar] [CrossRef]
- Andre, F.; Steen, H.; Matheis, P.; Westkott, M.; Breuninger, K.; Sander, Y.; Kammerer, R.; Galuschky, C.; Giannitsis, E.; Korosoglou, G.; et al. Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J. Cardiovasc. Magn. Reson. 2015, 17, 25. [Google Scholar] [CrossRef]
- Aurich, M.; Keller, M.; Greiner, S.; Steen, H.; Siepen, F.A.D.; Riffel, J.; Katus, H.A.; Buss, S.J.; Mereles, D. Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: Comparison of high-resolution speckle tracking and feature tracking. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1370–1378. [Google Scholar] [CrossRef]
- Bucius, P.; Erley, J.; Tanacli, R.; Zieschang, V.; Giusca, S.; Korosoglou, G.; Steen, H.; Stehning, C.; Pieske, B.; Pieske-Kraigher, E.; et al. Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain. ESC Heart Fail. 2020, 7, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Lapinskas, T.; Zieschang, V.; Erley, J.; Stoiber, L.; Schnackenburg, B.; Stehning, C.; Gebker, R.; Patel, A.R.; Kawaji, K.; Steen, H.; et al. Strain-encoded cardiac magnetic resonance imaging: A new approach for fast estimation of left ventricular function. BMC Cardiovasc. Disord. 2019, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Giusca, S.; Korosoglou, G.; Zieschang, V.; Stoiber, L.; Schnackenburg, B.; Stehning, C.; Gebker, R.; Pieske, B.; Schuster, A.; Backhaus, S.; et al. Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci. Rep. 2018, 8, 14100. [Google Scholar] [CrossRef] [PubMed]
- Mangion, K.; McComb, C.; Auger, D.A.; Epstein, F.H.; Berry, C. Magnetic Resonance Imaging of Myocardial Strain After Acute ST-Segment–Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2017, 10, e006498. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Tiller, C.; Holzknecht, M.; Lechner, I.; Eisner, D.; Riepl, L.; Pamminger, M.; Henninger, B.; Mayr, A.; Schwaiger, J.P.; et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clin. Res. Cardiol. 2021, 110, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.J.; Lee, J.H.; Jung, H.N.; Kim, Y.; Choe, Y.H.; Kim, S.M. Cardiac magnetic resonance-tissue tracking for the early prediction of adverse left ventricular remodeling after ST-segment elevation myocardial infarction. Int. J. Cardiovasc. Imaging 2019, 35, 2095–2102. [Google Scholar] [CrossRef]
- Holmes, A.A.; Romero, J.; Levsky, J.M.; Haramati, L.B.; Phuong, N.; Rezai-Gharai, L.; Cohen, S.; Restrepo, L.; Ruiz-Guerrero, L.; Fisher, J.D.; et al. Circumferential strain acquired by CMR early after acute myocardial infarction adds incremental predictive value to late gadolinium enhancement imaging to predict late myocardial remodeling and subsequent risk of sudden cardiac death. J. Interv. Card. Electrophysiol. 2017, 50, 211–218. [Google Scholar] [CrossRef]
- El-Saadi, W.; Engvall, J.E.; Alfredsson, J.; Karlsson, J.-E.; Martins, M.; Sederholm, S.; Zaman, S.F.; Ebbers, T.; Kihlberg, J. A head-to-head comparison of myocardial strain by fast-strain encoding and feature tracking imaging in acute myocardial infarction. Front. Cardiovasc. Med. 2022, 9, 949440. [Google Scholar] [CrossRef]
- Fong, L.C.W.; Lee, N.H.C.; Poon, J.W.L.; Chin, C.W.L.; He, B.; Luo, L.; Chen, C.; Wan, E.Y.F.; Pennell, D.J.; Mohiaddin, R.; et al. Prognostic value of cardiac magnetic resonance derived global longitudinal strain analysis in patients with ischaemic and non-ischaemic dilated cardiomyopathy: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2022, 38, 2707–2721. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, S.; Tang, X.; Ren, H.; Li, S.; Zou, Q.; Xiong, F.; Zheng, T.; Gong, L. Evaluation of left ventricular strain in patients with dilated cardiomyopathy. J. Int. Med. Res. 2017, 45, 2092–2100. [Google Scholar] [CrossRef]
- Pozo Osinalde, E.; Urmeneta Ulloa, J.; Rodriguez Hernandez, J.L.; De Isla, L.P.; Fernandez, H.M.; Islas, F.; Marcos-Alberca, P.; Mahia, P.; A Cobos, M.; Hernandez, P.; et al. Correlation between cardiac magnetic resonance feature tracking derived left ventricular strain and morphological characteristics of non-ischemic dilated cardiomyopathy at baseline and follow-up. Eur. Heart J. 2021, 42, ehab724. [Google Scholar] [CrossRef]
- Buss, S.J.; Breuninger, K.; Lehrke, S.; Voss, A.; Galuschky, C.; Lossnitzer, D.; Andre, F.; Ehlermann, P.; Franke, J.; Taeger, T.; et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 307–315. [Google Scholar] [CrossRef]
- Korosoglou, G.; Giusca, S.; Montenbruck, M.; Patel, A.R.; Lapinskas, T.; Götze, C.; Zieschang, V.; Al-Tabatabaee, S.; Pieske, B.; Florian, A.; et al. Fast Strain-Encoded Cardiac Magnetic Resonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC Cardiovasc. Imaging 2021, 14, 1177–1188. [Google Scholar] [CrossRef]
- Fischer, K.; Obrist, S.J.; Erne, S.A.; Stark, A.W.; Marggraf, M.; Kaneko, K.; Guensch, D.P.; Huber, A.T.; Greulich, S.; Aghayev, A.; et al. Feature Tracking Myocardial Strain Incrementally Improves Prognostication in Myocarditis Beyond Traditional CMR Imaging Features. JACC Cardiovasc. Imaging 2020, 13, 1891–1901. [Google Scholar] [CrossRef]
- Pu, C.; Fei, J.; Lv, S.; Wu, Y.; He, C.; Guo, D.; Mabombo, P.U.; Chooah, O.; Hu, H. Global Circumferential Strain by Cardiac Magnetic Resonance Tissue Tracking Associated with Ventricular Arrhythmias in Hypertrophic Cardiomyopathy Patients. Front. Cardiovasc. Med. 2021, 8, 670361. [Google Scholar] [CrossRef]
- Neisius, U.; Myerson, L.; Fahmy, A.S.; Nakamori, S.; El-Rewaidy, H.; Joshi, G.; Duan, C.; Manning, W.J.; Nezafat, R. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS ONE 2019, 14, e0221061. [Google Scholar] [CrossRef]
- Giusca, S.; Steen, H.; Montenbruck, M.; Patel, A.R.; Pieske, B.; Erley, J.; Kelle, S.; Korosoglou, G. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2021, 23, 92. [Google Scholar] [CrossRef]
- Sobh, D.M.; Batouty, N.M.; Tawfik, A.M.; Gadelhak, B.; Elmokadem, A.H.; Hammad, A.; Eid, R.; Hamdy, N. Left Ventricular Strain Analysis by Tissue Tracking–Cardiac Magnetic Resonance for early detection of Cardiac Dysfunction in children with End-Stage Renal Disease. J. Magn. Reson. Imaging 2021, 54, 1476–1485. [Google Scholar] [CrossRef]
- Gong, I.Y.; Al-Amro, B.; Prasad, G.V.R.; Connelly, P.W.; Wald, R.M.; Wald, R.; Deva, D.P.; Leong-Poi, H.; Nash, M.M.; Yuan, W.; et al. Cardiovascular magnetic resonance left ventricular strain in end-stage renal disease patients after kidney transplantation. J. Cardiovasc. Magn. Reson. 2018, 20, 83. [Google Scholar] [CrossRef]
- Singh, A.; Steadman, C.D.; Khan, J.N.; Horsfield, M.A.; Bekele, S.; Nazir, S.A.; Kanagala, P.; Masca, N.G.; Clarysse, P.; McCann, G.P. Intertechnique agreement and interstudy reproducibility of strain and diastolic strain rate at 1.5 and 3 tesla: A comparison of feature-tracking and tagging in patients with aortic stenosis. J. Magn. Reson. Imaging 2015, 41, 1129–1137. [Google Scholar] [CrossRef]
- Moody, W.E.; Taylor, R.J.; Edwards, N.C.; Chue, C.D.; Umar, F.; Taylor, T.J.; Ferro, C.J.; Young, A.A.; Townend, J.N.; Leyva, F.; et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J. Magn. Reson. Imaging 2015, 41, 1000–1012. [Google Scholar] [CrossRef] [Green Version]
- Hor, K.N.; Gottliebson, W.M.; Carson, C.; Wash, E.; Cnota, J.; Fleck, R.; Wansapura, J.; Klimeczek, P.; Al-Khalidi, H.R.; Chung, E.S.; et al. Comparison of Magnetic Resonance Feature Tracking for Strain Calculation with Harmonic Phase Imaging Analysis. JACC Cardiovasc. Imaging 2010, 3, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Harrild, D.M.; Han, Y.; Geva, T.; Zhou, J.; Marcus, E.; Powell, A.J. Comparison of cardiac MRI tissue tracking and myocardial tagging for assessment of regional ventricular strain. Int. J. Cardiovasc. Imaging 2012, 28, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.J.; Umar, F.; Lin, E.L.S.; Ahmed, A.; Moody, W.E.; Mazur, W.; Stegemann, B.; Townend, J.N.; Steeds, R.P.; Leyva, F. Mechanical effects of left ventricular midwall fibrosis in non-ischemic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2015, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Germans, T.; Güçlü, A.; Heymans, M.W.; Allaart, C.P.; van Rossum, A.C. Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2014, 16, 10. [Google Scholar] [CrossRef]
- Augustine, D.; Lewandowski, A.J.; Lazdam, M.; Rai, A.; Francis, J.; Myerson, S.; Noble, A.; Becher, H.; Neubauer, S.; Petersen, S.E.; et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: Comparison with tagging and relevance of gender. J. Cardiovasc. Magn. Reson. 2013, 15, 8. [Google Scholar] [CrossRef]
- Rüssel, I.K.; Götte, M.J.W.; Bronzwaer, J.G.; Knaapen, P.; Paulus, W.J.; van Rossum, A.C. Left Ventricular Torsion. JACC Cardiovasc. Imaging 2009, 2, 648–655. [Google Scholar] [CrossRef]
- Peteiro, J.; Bouzas-Mosquera, A.; Barge-Caballero, G.; Martinez, D.; Yañez, J.C.; Lopez-Perez, M.; Gargallo, P.; Castro-Beiras, A. Left Ventricular Torsion During Exercise in Patients with and Without Ischemic Response to Exercise Echocardiography. Rev. Española Cardiol. (Engl. Ed.) 2014, 67, 706–716. [Google Scholar] [CrossRef]
- Peteiro, J.; Bouzas-Mosquera, A.; Broullon, J.; Sanchez-Fernandez, G.; Barbeito, C.; Perez-Cebey, L.; Martinez, D.; Rodriguez, J.M.V. Left ventricular torsion and circumferential strain responses to exercise in patients with ischemic coronary artery disease. Int. J. Cardiovasc. Imaging 2017, 33, 57–67. [Google Scholar] [CrossRef]
- Popescu, B.A.; Calin, A.; Beladan, C.C.; Muraru, D.; Rosca, M.; Deleanu, D.; Lancellotti, P.; Antonini-Canterin, F.; Nicolosi, G.L.; Ginghina, C. Left ventricular torsional dynamics in aortic stenosis: Relationship between left ventricular untwisting and filling pressures. A two-dimensional speckle tracking study. Eur. J. Echocardiogr. 2010, 11, 406–413. [Google Scholar] [CrossRef]
- Rosen, B.D.; Gerber, B.L.; Edvardsen, T.; Castillo, E.; Amado, L.C.; Nasir, K.; Kraitchman, D.L.; Osman, N.F.; Bluemke, D.A.; Lima, J.A.C. Late systolic onset of regional LV relaxation demonstrated in three-dimensional space by MRI tissue tagging. Am. J. Physiol.-Heart Circ. Physiol. 2004, 287, H1740–H1746. [Google Scholar] [CrossRef] [Green Version]
- Kowallick, J.T.; Lamata, P.; Hussain, S.T.; Kutty, S.; Steinmetz, M.; Sohns, J.S.; Fasshauer, M.; Staab, W.; Unterberg-Buchwald, C.; Bigalke, B.; et al. Quantification of Left Ventricular Torsion and Diastolic Recoil Using Cardiovascular Magnetic Resonance Myocardial Feature Tracking. PLoS ONE 2014, 9, e109164. [Google Scholar] [CrossRef]
- Lehmonen, L.; Jalanko, M.; Tarkiainen, M.; Kaasalainen, T.; Kuusisto, J.; Lauerma, K.; Savolainen, S. Rotation and torsion of the left ventricle with cardiovascular magnetic resonance tagging: Comparison of two analysis methods. BMC Med. Imaging 2020, 20, 73. [Google Scholar] [CrossRef]
- Yoneyama, K.; Gjesdal, O.; Choi, E.-Y.; Wu, C.O.; Hundley, W.G.; Gomes, A.S.; Liu, C.-Y.; McClelland, R.L.; Bluemke, D.; Lima, J.A. Age, Sex, and Hypertension-Related Remodeling Influences Left Ventricular Torsion Assessed by Tagged Cardiac Magnetic Resonance in Asymptomatic Individuals. Circulation 2012, 126, 2481–2490. [Google Scholar] [CrossRef]
- Yoneyama, K.; Venkatesh, B.A.; Wu, C.O.; Mewton, N.; Gjesdal, O.; Kishi, S.; McClelland, R.L.; Bluemke, D.A.; Lima, J.A.C. Diabetes mellitus and insulin resistance associate with left ventricular shape and torsion by cardiovascular magnetic resonance imaging in asymptomatic individuals from the multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 2018, 20, 53. [Google Scholar] [CrossRef]
- Wei, L.; Ge, H.; Pu, J. Prognostic implications of left ventricular torsion by feature-tracking cardiac magnetic resonance in patients with ST-elevation myocardial infarction. Eur. Heart J. Cardiovasc. Imaging 2021, 22, jeab090. [Google Scholar] [CrossRef]
- Sharifov, O.F.; Schiros, C.G.; Aban, I.; Perry, G.J.; Dell’Italia, L.J.; Lloyd, S.G.; Denney, T.S., Jr.; Gupta, H. Left Ventricular Torsion Shear Angle Volume Approach for Noninvasive Evaluation of Diastolic Dysfunction in Preserved Ejection Fraction. J. Am. Heart Assoc. 2018, 7, jeab090. [Google Scholar] [CrossRef]
- Young, A.A.; Cowan, B.R. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012, 14, 49. [Google Scholar] [CrossRef]
- van der Toorn, A.; Barenbrug, P.; Snoep, G.; Van der Veen, F.H.; Delhaas, T.; Prinzen, F.W.; Maessen, J.; Arts, T. Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am. J. Physiol.-Heart Circ. Physiol. 2002, 283, H1609–H1615. [Google Scholar] [CrossRef]
- Delhaas, T.; Kotte, J.; van der Toorn, A.; Snoep, G.; Prinzen, F.W.; Arts, T. Increase in left ventricular torsion-to-shortening ratio in children with valvular aortic stenosis. Magn. Reson. Med. 2004, 51, 135–139. [Google Scholar] [CrossRef]
- Rüssel, I.K.; Brouwer, W.P.; Germans, T.; Knaapen, P.; Marcus, T.J.; Van Der Velden, J.; Götte, M.J.; Van Rossum, A.C. Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J. Cardiovasc. Magn. Reson. 2011, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Cameli, M.; Mondillo, S.; Righini, F.M.; Lisi, M.; Dokollari, A.; Lindqvist, P.; Maccherini, M.; Henein, M. Left Ventricular Deformation and Myocardial Fibrosis in Patients with Advanced Heart Failure Requiring Transplantation. J. Card. Fail. 2016, 22, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A.C. Assessment of Myocardial Fibrosis with Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Karaahmet, T.; Gürel, E.; Tigen, K.; Güler, A.; Dündar, C.; Fotbolcu, H.; Basaran, Y. The effect of myocardial fibrosis on left ventricular torsion and twist in patients with non-ischemic dilated cardiomyopathy. Cardiol. J. 2013, 20, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Csecs, I.; Pashakhanloo, F.; Paskavitz, A.; Jang, J.; Al-Otaibi, T.; Neisius, U.; Manning, W.J.; Nezafat, R. Association Between Left Ventricular Mechanical Deformation and Myocardial Fibrosis in Nonischemic Cardiomyopathy. J. Am. Heart Assoc. 2020, 9, e016797. [Google Scholar] [CrossRef]
- Badano, L.P.; Muraru, D. Twist Mechanics of the Left Ventricle. Circ. Cardiovasc. Imaging 2019, 12, e009085. [Google Scholar] [CrossRef]
- Menting, M.E.; Eindhoven, J.A.; van den Bosch, A.E.; Cuypers, J.A.A.E.; Ruys, T.P.E.; Van Dalen, B.M.; McGhie, J.S.; Witsenburg, M.; Helbing, W.A.; Geleijnse, M.L.; et al. Abnormal left ventricular rotation and twist in adult patients with corrected tetralogy of Fallot. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 566–574. [Google Scholar] [CrossRef]
- Bojer, A.S.; Soerensen, M.H.; Gaede, P.; Myerson, S.; Madsen, P.L. Left Ventricular Diastolic Function Studied with Magnetic Resonance Imaging: A Systematic Review of Techniques and Relation to Established Measures of Diastolic Function. Diagnostics 2021, 11, 1282. [Google Scholar] [CrossRef]
- Paetsch, I.; Föll, D.; Kaluza, A.; Luechinger, R.; Stuber, M.; Bornstedt, A.; Wahl, A.; Fleck, E.; Nagel, E. Magnetic resonance stress tagging in ischemic heart disease. Am. J. Physiol.-Heart Circ. Physiol. 2005, 288, H2708–H2714. [Google Scholar] [CrossRef]
- Marchal, P.; Lairez, O.; Cognet, T.; Chabbert, V.; Barrier, P.; Berry, M.; Méjean, S.; Roncalli, J.; Rousseau, H.; Carrié, D.; et al. Relationship between left ventricular sphericity and trabeculation indexes in patients with dilated cardiomyopathy: A cardiac magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 914–920. [Google Scholar] [CrossRef]
- ben Halima, A.; Zidi, A. The cardiac magnetic resonance sphericity index in the dilated cardiomyopathy: New diagnostic and prognostic marker. Arch. Cardiovasc. Dis. Suppl. 2018, 10, 42. [Google Scholar] [CrossRef]
- Krittayaphong, R.; Boonyasirinant, T.; Saiviroonporn, P.; Thanapiboonpol, P.; Nakyen, S.; Udompunturak, S. Correlation Between NT-Pro BNP Levels and Left Ventricular Wall Stress, Sphericity Index and Extent of Myocardial Damage: A Magnetic Resonance Imaging Study. J. Card. Fail. 2008, 14, 687–694. [Google Scholar] [CrossRef]
- Cojan-Minzat, B.O.; Zlibut, A.; Muresan, I.D.; Cionca, C.; Horvat, D.; Kiss, E.; Revnic, R.; Florea, M.; Ciortea, R.; Agoston-Coldea, L. Left Ventricular Geometry and Replacement Fibrosis Detected by cMRI Are Associated with Major Adverse Cardiovascular Events in Nonischemic Dilated Cardiomyopathy. J. Clin. Med. 2020, 9, 1997. [Google Scholar] [CrossRef]
- Yazaki, M.; Nabeta, T.; Inomata, T.; Maemura, K.; Oki, T.; Fujita, T.; Ikeda, Y.; Ishii, S.; Naruke, T.; Ako, J. Clinical significance of left atrial geometry in patients with dilated cardiomyopathy: A cardiovascular magnetic resonance study. Eur. Heart J. 2020, 41, ehaa946. [Google Scholar] [CrossRef]
- Nakamori, S.; Ismail, H.; Ngo, L.H.; Manning, W.J.; Nezafat, R. Left ventricular geometry predicts ventricular tachyarrhythmia in patients with left ventricular systolic dysfunction: A comprehensive cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2017, 19, 79. [Google Scholar] [CrossRef]
- Ambale-Venkatesh, B.; Yoneyama, K.; Sharma, R.K.; Ohyama, Y.; O Wu, C.; Burke, G.L.; Shea, S.; Gomes, A.S.; A Young, A.; A Bluemke, D.; et al. Left ventricular shape predicts different types of cardiovascular events in the general population. Heart 2017, 103, 499–507. [Google Scholar] [CrossRef]
- Arenja, N.; Andre, F.; Riffel, J.H.; Siepen, F.A.D.; Hegenbart, U.; Schönland, S.; Kristen, A.V.; Katus, H.A.; Buss, S.J. Prognostic value of novel imaging parameters derived from standard cardiovascular magnetic resonance in high risk patients with systemic light chain amyloidosis. J. Cardiovasc. Magn. Reson. 2019, 21, 53. [Google Scholar] [CrossRef]
- Leng, S.; Tan, R.-S.; Zhao, X.; Allen, J.C.; Koh, A.S.; Zhong, L. Fast long-axis strain: A simple, automatic approach for assessing left ventricular longitudinal function with cine cardiovascular magnetic resonance. Eur. Radiol. 2020, 30, 3672–3683. [Google Scholar] [CrossRef]
- Riffel, J.H.; Andre, F.; Maertens, M.; Rost, F.; Keller, M.G.P.; Giusca, S.; Seitz, S.; Kristen, A.V.; Müller, M.; Giannitsis, E.; et al. Fast assessment of long axis strain with standard cardiovascular magnetic resonance: A validation study of a novel parameter with reference values. J. Cardiovasc. Magn. Reson. 2015, 17, 69. [Google Scholar] [CrossRef]
- Gjesdal, O.; Yoneyama, K.; Mewton, N.; Wu, C.; Gomes, A.S.; Hundley, G.; Prince, M.; Shea, S.; Liu, K.; Bluemke, D.A.; et al. Reduced long axis strain is associated with heart failure and cardiovascular events in the multi-ethnic study of Atherosclerosis. J. Magn. Reson. Imaging 2016, 44, 178–185. [Google Scholar] [CrossRef]
- Agoston-Coldea, L.; Bheecarry, K.; Cionca, C.; Petra, C.; Strimbu, L.; Ober, C.; Lupu, S.; Fodor, D.; Mocan, T. Incremental Predictive Value of Longitudinal Axis Strain and Late Gadolinium Enhancement Using Standard CMR Imaging in Patients with Aortic Stenosis. J. Clin. Med. 2019, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Riffel, J.H.; Keller, M.G.P.; Rost, F.; Arenja, N.; Andre, F.; aus dem Siepen, F.; Fritz, T.; Ehlermann, P.; Taeger, T.; Frankenstein, L.; et al. Left ventricular long axis strain: A new prognosticator in non-ischemic dilated cardiomyopathy? J. Cardiovasc. Magn. Reson. 2016, 18, 36. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.B.; Burkhoff, D.; Maly, J.; Daemen, J.; Uil, C.A.D.; Ameloot, K.; Lenzen, M.; Mahfoud, F.; Zijlstra, F.; Schreuder, J.J.; et al. Invasive left ventricle pressure–volume analysis: Overview and practical clinical implications. Eur. Heart J. 2020, 41, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Brimioulle, S.; Wauthy, P.; Ewalenko, P.; Rondelet, B.; Vermeulen, F.; Kerbaul, F.; Naeije, R. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, H1625–H1630. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, T.; Yilmaz, S.; Steendijk, P.; Moore, P.; Groenink, M.; Saaed, M.; Weber, O.; Higgins, C.B.; Ewert, P.; Fleck, E.; et al. Magnetic Resonance Imaging Analysis of Right Ventricular Pressure-Volume Loops. Circulation 2004, 110, 2010–2016. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, B.; Steendijk, P.; Lunze, K.; Ovroutski, S.; Falkenberg, J.; Rahmanzadeh, P.; Maarouf, N.; Ewert, P.; Berger, F.; Kuehne, T. Integrated Assessment of Diastolic and Systolic Ventricular Function Using Diagnostic Cardiac Magnetic Resonance Catheterization. JACC Cardiovasc. Imaging 2009, 2, 1271–1281. [Google Scholar] [CrossRef]
- Witschey, W.R.T.; Contijoch, F.; McGarvey, J.R.; Ferrari, V.A.; Hansen, M.; Lee, M.E.; Takebayashi, S.; Aoki, C.; Chirinos, J.A.; Yushkevich, P.A.; et al. Real-Time Magnetic Resonance Imaging Technique for Determining Left Ventricle Pressure-Volume Loops. Ann. Thorac. Surg. 2014, 97, 1597–1603. [Google Scholar] [CrossRef]
- Giao, D.M.; Wang, Y.; Rojas, R.; Takaba, K.; Badathala, A.; Spaulding, K.A.; Soon, G.; Zhang, Y.; Wang, V.Y.; Haraldsson, H.; et al. Left ventricular geometry during unloading and the end-systolic pressure volume relationship: Measurement with a modified real-time MRI-based method in normal sheep. PLoS ONE 2020, 15, e0234896. [Google Scholar] [CrossRef]
- Faragli, A.; Tanacli, R.; Kolp, C.; Abawi, D.; Lapinskas, T.; Stehning, C.; Schnackenburg, B.; Muzio, F.P.L.; Fassina, L.; Pieske, B.; et al. Cardiovascular magnetic resonance-derived left ventricular mechanics—Strain, cardiac power and end-systolic elastance under various inotropic states in swine. J. Cardiovasc. Magn. Reson. 2020, 22, 79. [Google Scholar] [CrossRef]
Authors | Year | Ref | n | Illness | Endpoint | GLS | LVEF |
---|---|---|---|---|---|---|---|
Janwanishstaporn et al. | 2022 | [32] | 289 | HFimprEF | CVD, HFH | −12.7% | 53% |
Thellier et al. | 2020 | [33] | 332 | AS | ACM | −15% | 55% |
Goedemans et al. | 2018 | [34] | 143 | AMI | ACM, HFH | −14.4% | N/A |
Iacoviello et al. | 2013 | [35] | 308 | HF | ACM, HFH, CVD, VT | −10.2% | 33% |
Ersboll et al. | 2013 | [36] | 849 | AMI | ACM, CVD, HFH | −14.6% | 53.5% |
Yingchoncharoen et al. | 2012 | [37] | 79 | AS | CVD | −15.2% | 63.4% |
Munk et al. | 2012 | [38] | 576 | AMI | ACM, CVD, HFH, AMI | −14.3% | 49.2% |
Kearney et al. | 2012 | [39] | 146 | AS | ACM, AMI, CVD, HFH, VT | −15% | 59% |
Dahl et al. | 2012 | [40] | 125 | HT | ACM, CVD, HFH | −15.5% | 34.1% |
Buss et al. | 2012 | [41] | 206 | AL | ACM, CVD | −13.1% | 51.7% |
Bertini et al. | 2012 | [42] | 1060 | IHD | CVD, HFH | −11.5% | 34% |
Woo et al. | 2011 | [43] | 98 | AMI | CVD, HFH | −15.8% | 56% |
Nahum et al. | 2010 | [44] | 125 | HF | ACM, CVD, HFH | −8% | 31% |
Antoni et al. | 2010 | [45] | 659 | AMI | ACM, AMI, HFH | −15.3% | 46% |
Stanton et al. | 2009 | [46] | 546 | Various | ACM | −16.6% | 58% |
Cho et al. | 2009 | [47] | 201 | HF | CVD, HFH | −10.5% | 34.1% |
Lancellotti et al. | 2008 | [48] | 163 | AS | CVD, HF | −15.7% | 66% |
Authors | Year | n | Method | Findings |
---|---|---|---|---|
Mangion et al. | 2019 | 88 healthy individuals | FT-CMR with 3 T MR | GLS different significantly between genders: −18.48 ± 3.65% (m) vs. −21.91 ± 3.01% (f) GCS did not differ considerably Aging did not influence GLS or GCS |
Andre et al. | 2015 | 150 healthy individuals | FT-CMR with 1.5 T MR | All the following varied significantly: GLS endocardial: −22.2 ± 3.4% (m) vs. −24.6 ± 2.9% (f) GLS myocardial: −20.4 ± 3.1% (m) vs. −22.9 ± 2.7% (f) GRS: 37.9 ± 8.2% (m) vs. 34.8 ± 8.9% (f) GCS endocardial: −26.5 ± 4.2% (m) vs. −27.9 ± 3.7% (f) GCS myocardial: −22.2 ± 3.4% (m) vs. −24.6 ± 2.9% (f) |
Aurich et al. | 2016 | 47 healthy individuals | FT-CMR vs. FT-Echo vs. STE | STE: GLS: −15.7 ± 5.0% GCS: −14.6 ± 4.5% GRS: 21.6 ± 13.3% FT-Echo GLS: −13.1 ± 4.0, GCS: −13.6 ± 4.0, GRS: 20.3 ± 9.5, FT-CMR GLS: −15.0 ± 4.0, GCS: −16.9 ± 5.4 GRS: 35.0 ± 10.8 Best agreement was between FT-Echo and FT-CMR for GLS |
Bucius et al. | 2019 | 11 healthy individuals + 7 with heart failure | FT-CMRvs. TT-CMRvs. fast-SENC | FT-CMR GLS: −23.5% (−22.0–−25.9) GCS: −26.1% (−21.8–−27.8) TT-CMR GLS: −14.9% (−11.8–−16.9) GCS: −17.8% (−16.4–−19.5) Fast-SENC GLS: −19.4% (17.1–20.7) GCS: −20.3% (16.5–22.3) |
Authors | Ref | Year | n | Method | Diagnose | Strain | Findings |
---|---|---|---|---|---|---|---|
El-Saadi et al. | [13] | 2022 | 30 | Fast-SENC vs. FT-CMR | AMI | GLS, GCS | Fast-SENC was superior to FT-CMR |
Reindl et al. | [60] | 2021 | 232 | FT-CMR | AMI | GLS, GCS, GRS | GLS > −14%—independent predictor LV remodeling |
Cha et al. | [61] | 2019 | 82 | FT-CMR | AMI | GLS | Independent predictor for LV remodeling |
Holmes et al. | [62] | 2017 | 141 | FT-CMR | AMI | GCS | Independent predictor for LV remodeling |
Singh et al. | [73] | 2015 | 18 | FT-CMR | AS | GLS, GCS | Higher values |
Pozo Osinalde et al. | [64] | 2021 | N/A | FT-CMR | DCM | GCS | Predictor for LV systolic function recovery |
Yu et al. | [63] | 2017 | 48 | TT-CMR | DCM | GLS, GCS | Impaired parameters |
Moody et al. | [74] | 2015 | 45 | FT-CMR | DCM | GLS, GCS | Good agreement |
Buss et al. | [65] | 2015 | 210 | FT-CMR | DCM | GLS | Independent predictor for outcome |
Hor et al. | [78] | 2010 | 233 | FT-CMR | DMD | GLS | −13.3% |
Pu et al. | [68] | 2021 | 93 | FT-CMR | HCM | GCS | Independent predictor for VT |
Harrild et al. | [77] | 2012 | 24 | FT-CMR | HCM | GLS | Good agreement |
Giusca et al. | [70] | 2021 | 214 | Fast-SENC | HCM, Athletes’ hearts, AHT | GLS | Disease discrimination |
Weise Valdes et al. | [57] | 2021 | 181 | fast-SENC | Healthy | GLS, GCS | −20.3%, −19.2% |
Erley et al. | [79] | 2019 | 50 | fast-SENC | Healthy | GLS, GCS | Good agreement |
Taylor et al. | [53] | 2015 | 100 | FT-CMR | Healthy | GLS, GCS, GRS | −21.3%, −26.1%, 39.8% |
Korosoglu et al. | [66] | 2021 | 1169 | Fast-SENC | Heart failure | GLS, GCS | Independent prognostic predictors for outcome |
Wu et al. | [75] | 2014 | 30 | FT-CMR | LBBB, HCM | GCS | Good agreement |
Augustine et al. | [76] | 2013 | 145 | FT-CMR | normal | GLS, GCS, GRS | Good agreement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlibut, A.; Cojocaru, C.; Onciul, S.; Agoston-Coldea, L. Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview. Diagnostics 2023, 13, 553. https://doi.org/10.3390/diagnostics13030553
Zlibut A, Cojocaru C, Onciul S, Agoston-Coldea L. Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview. Diagnostics. 2023; 13(3):553. https://doi.org/10.3390/diagnostics13030553
Chicago/Turabian StyleZlibut, Alexandru, Cosmin Cojocaru, Sebastian Onciul, and Lucia Agoston-Coldea. 2023. "Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview" Diagnostics 13, no. 3: 553. https://doi.org/10.3390/diagnostics13030553
APA StyleZlibut, A., Cojocaru, C., Onciul, S., & Agoston-Coldea, L. (2023). Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview. Diagnostics, 13(3), 553. https://doi.org/10.3390/diagnostics13030553