A Cross-Sectional Study on the Prevalence and Risk Stratification of Chronic Kidney Disease in Cardiological Patients in São Paulo, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Reference Population
2.2. Data Source, Variables, and Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barreto, S.M.; Ladeira, R.M.; Duncan, B.B.; Schmidt, M.I.; Lopes, A.A.; Benseñor, I.M.; Chor, D.; Griep, R.H.; Vidigal, P.G.; Ribeiro, A.L.; et al. Chronic kidney disease among adult participants of the ELSA-Brasil cohort: Association with race and socioeconomic position. J. Epidemiol. Commun. Health 2016, 70, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 2018, 96, 414–422D. [Google Scholar] [CrossRef] [PubMed]
- Ene-Iordache, B.; Perico, N.; Bikbov, B.; Carminati, S.; Remuzzi, A.; Perna, A.; Islam, N.; Bravo, R.F.; Aleckovic-Halilovic, M.; Zou, H.; et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. Lancet Glob. Health 2016, 4, e307–e319. [Google Scholar] [CrossRef] [Green Version]
- Brazilian Ministry of Health. Secretary for Specialized and Thematic Care. Clinical Guidelines for the Care of Patients with Chronic Kidney Disease—CKD in the Unified Health System, Brazil. 2014. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_clinicas_cuidado_paciente_renal.pdf (accessed on 10 September 2022).
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaan, F.; Fernandes, D.E.; Kirsztajn, G.M.; Sesso, R. The first appointment with a nephrologist: Brazilian patients’ demographic and kidney function characteristics. A retrospective study. Sao Paulo Med. J. 2022, 140, 366–371. [Google Scholar] [CrossRef]
- Lhotta, K.; Zoebl, M.; Mayer, G.; Kronenberg, F. Late referral defined by renal function: Association with morbidity and mortality. J. Nephrol. 2003, 16, 855–861. [Google Scholar]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1823–1838. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Małyszko, J.; Bachórzewska-Gajewska, H.; Niwińska, M.M.; Kurasz, A.; Zalewska-Adamiec, M.; Kożuch, M.; Dobrzycki, S. Impact of chronic kidney disease on long-term outcome of patients with valvular heart defects. Int. Urol. Nephrol. 2020, 52, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, K.; Park, J.B.; Hwang, I.C.; Yoon, Y.E.; Park, H.E.; Choi, S.Y.; Kim, Y.J.; Cho, G.Y.; Kim, H.K.; et al. Risk of end-stage renal disease in patients with hypertrophic cardiomyopathy: A nationwide population-based cohort study. Sci. Rep. 2019, 9, 14565. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Liu, Q.; Wang, Q.Y.; Yu, H.; Yu, J. Albuminuria and Dipstick Proteinuria for Predicting Mortality in Heart Failure: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 665831. [Google Scholar] [CrossRef]
- Galbraith, L.E.; Ronksley, P.E.; Barnieh, L.J.; Kappel, J.; Manns, B.J.; Samuel, S.M.; Jun, M.; Weaver, R.; Valk, N.; Hemmelgarn, B.R. The See Kidney Disease Targeted Screening Program for CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Ji, E.; Kim, Y.S. Prevalence of chronic kidney disease defined by using CKD-EPI equation and albumin-to-creatinine ratio in the Korean adult population. Korean J. Intern. Med. 2016, 31, 1120. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.F.; Coresh, J. CKD Surveillance Using Laboratory Data From the Population-Based National Health and Nutrition Examination Survey (NHANES). Am. J. Kidney Dis. 2009, 53, S46–S55. [Google Scholar] [CrossRef] [Green Version]
- Fundação Adib Jatene Activity Reports. Available online: https://www.fundacaoadibjatene.com.br/portal-da-transparencia/ (accessed on 22 July 2022).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Zanocco, J.A.; Nishida, S.K.; Passos, M.T.; Pereira, A.R.; Silva, M.S.; Pereira, A.B.; Kirsztajn, G.M. Race Adjustment for Estimating Glomerular Filtration Rate Is Not Always Necessary. Nephron Extra 2012, 2, 293–302. [Google Scholar] [CrossRef] [PubMed]
- United States Renal Data System. Chapter 2: Identification and Care of Patients with Chronic Kidney Disease. Available online: https://www.usrds.org/%20media/1510/vl_ch_02_care-and-id-of-ckd-patients.pdf (accessed on 16 August 2022).
- Tu, K.; Bevan, L.; Hunter, K.; Rogers, J.; Young, J.; Nesrallah, G. Quality indicators for the detection and management of chronic kidney disease in primary care in Canada derived from a modified Delphi panel approach. CMAJ Open 2017, 5, E74–E81. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.J. Gender Differences in Chronic Kidney Disease: Underpinnings and Therapeutic Implications. Kidney Blood Press. Res. 2010, 33, 383–392. [Google Scholar] [CrossRef]
- Chala, G.; Sisay, T.; Teshome, Y. Chronic Kidney Disease And Associated Risk Factors Among Cardiovascular Patients. Int. J. Nephrol. Renov. Dis. 2019, 12, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krittayaphong, R.; Rangsin, R.; Thinkhamrop, B.; Hurst, C.; Rattanamongkolgul, S.; Sripaiboonkij, N.; Wangworatrakul, W. Prevalence of chronic kidney disease associated with cardiac and vascular complications in hypertensive patients: A multicenter, nation-wide study in Thailand. BMC Nephrol. 2017, 18, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Wanner, C.; Kotseva, K.; Wood, D.; De Bacquer, D.; Rydén, L.; Störk, S.; Heuschmann, P.U.; EUROASPIRE IV Investigators. Prevalence of chronic kidney disease and its determinants in coronary heart disease patients in 24 European countries: Insights from the EUROASPIRE IV survey of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2017, 24, 1168–1180. [Google Scholar] [CrossRef]
- Cases Amenós, A.; González-Juanatey, J.R.; Conthe Gutiérrez, P.; Matali Gilarranz, A.; Garrido Costa, C. Prevalence of chronic kidney disease in patients with or at a high risk of cardiovascular disease. Rev. Esp. Cardiol. 2010, 63, 225–228. [Google Scholar] [CrossRef]
- McClellan, W.M.; Newsome, B.B.; McClure, L.A.; Cushman, M.; Howard, G.; Audhya, P.; Abramson, J.L.; Warnock, D.G. Chronic Kidney Disease Is Often Unrecognized among Patients with Coronary Heart Disease: The REGARDS Cohort Study. Am. J. Nephrol. 2009, 29, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, J.; Chen, F.; Li, J.; Hu, D. Inpatients with coronary heart disease have a high prevalence of chronic kidney disease based on estimated glomerular filtration rate (eGFR) in China. Heart Vessel. 2007, 22, 223–228. [Google Scholar] [CrossRef]
- Glynn, L.G.; Reddan, D.; Newell, J.; Hinde, J.; Buckley, B.; Murphy, A. Chronic kidney disease and mortality and morbidity among patients with established cardiovascular disease: A West of Ireland community-based cohort study. Nephrol. Dial. Transplant. 2007, 22, 2586–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, P.; Ruilope, L.M.; Barrios, V.; Navarro, J.; Prieto, M.A.; Gonzalez, O.; Guerrero, L.; Zamorano, M.A.S.; Filozof, C.; FATH Study Group. Prevalence of Renal Insufficiency in Individuals with Hypertension and Obesity/Overweight: The FATH Study. J. Am. Soc. Nephrol. 2006, 17 (Suppl. 3), S194–S200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, H.; Luke, A.; Bidani, A.; Cao, G.; Cooper, R.; McGee, D. Obesity and Prevalent and Incident CKD: The Hypertension Detection and Follow-Up Program. Am. J. Kidney Dis. 2005, 46, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Reddan, D.N.; Szczech, L.A.; Tuttle, R.H.; Shaw, L.K.; Jones, R.H.; Schwab, S.J.; Smith, M.S.; Califf, R.M.; Mark, D.B.; Owen, W.F. Chronic Kidney Disease, Mortality, and Treatment Strategies among Patients with Clinically Significant Coronary Artery Disease. J. Am. Soc. Nephrol. 2003, 14, 2373–2380. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, V.A.; Brenner, B.M. Low birth weight, nephron number, and kidney disease. Kidney Int Suppl. 2005, 68, S68–S77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaan, F.; Fernandes, D.E.; Kirsztajn, G.M.; Sesso, R.D.C.C.; Malik, A.M. Quality indicators for primary health care in chronic kidney disease in the public service of a city in the State of São Paulo, Brazil. Cad. Saúde Pública 2022, 38, e00090821. [Google Scholar] [CrossRef]
- Samaan, F.; Gutierrez, M.; Kirsztajn, G.M.; Sesso, R.C. Supply/demand ratio for medical consultations, diagnostic tests and chronic kidney disease monitoring in the Brazilian National Health System: A descriptive study, State of São Paulo, Brazil, 2019. Epidemiol. Serv. Saude. 2022, 31, e20211050. [Google Scholar] [CrossRef] [PubMed]
- Cebrian, A.; Escobar, C.; Aranda, U.; Palacios, B.; Capel, M.; Sicras, A.; Sicras, A.; Hormigo, A.; Manito, N.; Botana, M.; et al. The 2021 European Society of Cardiology Cardiovascular Disease Prevention Guidelines: Adding albuminuria to the SCORE scale increases the prevalence of very high/high cardiovascular risk among patients with chronic kidney disease. Clin. Kidney J. 2022, 15, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Smart, N.A.; Titus, T.T. Outcomes of Early versus Late Nephrology Referral in Chronic Kidney Disease: A Systematic Review. Am. J. Med. 2011, 124, 1073–1080.e2. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modifi-cation to reduce cardiovascular risk. Eur Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
Variable | n = 36,651 |
---|---|
Age (years) | 72.4 (51.0–73.6) |
18–29, n (%) | 243 (0.7) |
30–44, n (%) | 910 (2.5) |
45–59, n (%) | 10,735 (29.3) |
60–74, n (%) | 21,367 (58.3) |
>75, n (%) | 3396 (9.3) |
Males, n (%) | 18,806 (51.3) |
Main outpatient clinic | |
Coronary artery disease, n (%) | 11,599 (31.6) |
Valvular heart disease, n (%) | 5202 (14.2) |
Arrhythmias, n (%) | 3711 (10.1) |
Cardiomyopathies, n (%) | 3462 (9.4) |
Hypertension, n (%) | 3340 (9.1) |
Dyslipidemias, n (%) | 2140 (5.8) |
Other, n (%) | 7197 (19.6) |
Serum creatinine (mg/dL) | 0.95 (0.80–1.56) |
eGFR (mL/min/1.73 m2) | 74.3 (54.4–75.6) |
>60, n (%) | 25,337 (69.1) |
45–59, n (%) | 5615 (15.3) |
30–44, n (%) | 3746 (10.2) |
15–29, n (%) | 1332 (3.6) |
<15, n (%) | 621 (1.7) |
Albuminuria/creatinine 1 (mg/g) | 12.6 (6.2–36.6) |
<30, n (%) | 13,598 (71.5) |
30–300, n (%) | 4304 (22.6) |
>300, n (%) | 1129 (5.9) |
Risk category of CKD 1 | |
Low, n (%) | 9905 (52.0) |
Moderate, n (%) | 4529 (23.8) |
High, n (%) | 2474 (13.0) |
Very high, n (%) | 2123 (11.2) |
Dosage of Albuminuria/Creatininuria, n (%) | ||||
---|---|---|---|---|
Yes | No | p-Value | ||
Gender | Male | 9543 (50.7) | 9263 (49.3) | <0.001 |
Female | 9488 (53.2) | 8357 (46.8) | ||
Age group (years) | 18–29 | 60 (24.7) | 183 (75.3) | <0.001 |
30–44 | 335 (36.8) | 575 (63.2) | ||
45–59 | 5422 (50.5) | 5313 (49.5) | ||
60–74 | 11,328 (53.0) | 10,039 (47.0) | ||
≥75 | 1886 (55.5) | 1510 (44.5) | ||
Main outpatient clinic | Coronary artery disease | 5734 (49.4) | 5865 (50.6) | <0.001 |
Valvular heart disease | 1998 (38.4) | 3204 (61.6) | ||
Arrhythmias | 1738 (46.8) | 1973 (53.2) | ||
Cardiomyopathies | 2144 (61.9) | 1318 (38.1) | ||
Hypertension | 2716 (81.3) | 624 (18.7) | ||
Dyslipidemias | 1634 (76.4) | 506 (23.6) | ||
Others | 3067 (42.6) | 4130 (57.4) | ||
Total | 19,031 (51.9) | 17,620 (48.1) |
Variable | eGFR (mL/min/1.73 m2) | UACR (mg/g) | Risk Category of CKD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≥60 | 45–59 | 30–44 | 15–29 | <15 | <30 | 30–300 | >300 | Low | Moderate | High | Very High | |
Gender | ||||||||||||
Male | 13,150 (69.9) | 2911 (15.5) | 1788 (9.5) | 611 (3.2) | 346 (1.8) | 6679 (69.9) | 2225 (23.3) | 651 (6.8) | 4981 (52.2) | 2265 (23.7) | 1219 (12.8) | 1078 (11.3) |
Female | 12,187 (68.3) | 2704 (15.2) | 1958 (11.0) | 721 (4.0) | 275 (1.5) | 6934 (73.0) | 2084 (21.9) | 478 (5.0) | 4924 (51.9) | 2264 (23.9) | 1255 (13.2) | 1045 (11.0) |
Age group (years) | ||||||||||||
18–29 | 237 (97.5) | 1 (0.4) | 1 (0.4) | 1 (0.4) | 3 (1.2) | 46 (76.7) | 11 (18.3) | 3 (5.0) | 46 (76.7) | 10 (16.7) | 2 (3.3) | 2 (3.3) |
30–44 | 834 (91.6) | 22 (2.4) | 12 (1.3) | 10 (1.1) | 32 (3.5) | 260 (77.6) | 56 (16.7) | 19 (5.7) | 248 (74.0) | 61 (18.2) | 16 (4.8) | 10 (3.0) |
45–59 | 7999 (74.5) | 1361 (12.7) | 866 (8.1) | 310 (2.9) | 199 (1.9) | 4011 (74.0) | 1100 (20.3) | 311 (5.7) | 3155 (58.2) | 1173 (21.6) | 597 (11.0) | 497 (9.2) |
60–74 | 14,801 (69.3) | 3315 (15.5) | 2.164 (10.1) | 744 (3.5) | 343 (1.6) | 8091 (71.4) | 2553 (22.5) | 684 (6.0) | 5904 (52.1) | 2742 (24.2) | 1441 (12.7) | 1241 (11.0) |
≥75 | 1466 (43.2) | 916 (27.0) | 703 (20.7) | 267 (7.9) | 44 (1.3) | 1190 (63.1) | 584 (31.0) | 112 (5.9) | 552 (29.3) | 543 (28.8) | 418 (22.2) | 373 (19.8) |
Main clinic | ||||||||||||
CAD | 8170 (70.4) | 1913 (16.5) | 1083 (9.3) | 329 (2.8) | 104 (0.9) | 4090 (71.3) | 1290 (22.5) | 354 (6.2) | 3068 (53.5) | 1423 (24.8) | 682 (11.9) | 561 (9.8) |
VHD | 3783 (72.7) | 813 (15.6) | 442 (8.5) | 143 (2.7) | 21 (0.4) | 1361 (68.1) | 521 (26.1) | 116 (5.8) | 1014 (50.8) | 519 (26.0) | 271 (13.6) | 194 (9.7) |
Arrhythmias | 2547 (68.6) | 605 (16.3) | 401 (10.8) | 137 (3.7) | 21 (0.6) | 1319 (75.9) | 352 (20.3) | 67 (3.9) | 909 (52.3) | 403 (23.2) | 233 (13.4) | 193 (11.1) |
Cardiomyopathies | 2339 (67.6) | 437 (12.6) | 413 (11.9) | 206 (6.0) | 67 (1.9) | 1655 (77.2) | 375 (17.5) | 114 (5.3) | 1211 (56.5) | 417 (19.4) | 271 (12.6) | 245 (11.4) |
Hypertension | 2297 (68.8) | 540 (16.2) | 325 (9.7) | 138 (4.1) | 40 (1.2) | 1955 (72.0) | 597 (22.0) | 164 (6.0) | 1447 (53.3) | 658 (24.2) | 329 (12.1) | 282 (10.4) |
Dyslipidemias | 1516 (70.8) | 311 (14.5) | 230 (10.7) | 62 (2.9) | 21 (1.0) | 1099 (67.3) | 415 (25.4) | 120 (7.3) | 842 (51.5) | 410 (25.1) | 210 (12.9) | 172 (10.5) |
Others | 4685 (65.1) | 996 (13.8) | 852 (11.8) | 317 (4.4) | 347 (4.8) | 2119 (69.1) | 754 (24.6) | 194 (6.3) | 1414 (46.1) | 699 (15.4) | 478 (15.6) | 476 (15.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samaan, F.; Damiani, B.B.; Kirsztajn, G.M.; Sesso, R. A Cross-Sectional Study on the Prevalence and Risk Stratification of Chronic Kidney Disease in Cardiological Patients in São Paulo, Brazil. Diagnostics 2023, 13, 1146. https://doi.org/10.3390/diagnostics13061146
Samaan F, Damiani BB, Kirsztajn GM, Sesso R. A Cross-Sectional Study on the Prevalence and Risk Stratification of Chronic Kidney Disease in Cardiological Patients in São Paulo, Brazil. Diagnostics. 2023; 13(6):1146. https://doi.org/10.3390/diagnostics13061146
Chicago/Turabian StyleSamaan, Farid, Bruna Bronhara Damiani, Gianna Mastroianni Kirsztajn, and Ricardo Sesso. 2023. "A Cross-Sectional Study on the Prevalence and Risk Stratification of Chronic Kidney Disease in Cardiological Patients in São Paulo, Brazil" Diagnostics 13, no. 6: 1146. https://doi.org/10.3390/diagnostics13061146
APA StyleSamaan, F., Damiani, B. B., Kirsztajn, G. M., & Sesso, R. (2023). A Cross-Sectional Study on the Prevalence and Risk Stratification of Chronic Kidney Disease in Cardiological Patients in São Paulo, Brazil. Diagnostics, 13(6), 1146. https://doi.org/10.3390/diagnostics13061146