Whole-Body Magnetic Resonance Tomography and Whole-Body Computed Tomography in Pediatric Polytrauma Diagnostics—A Retrospective Long-Term Two-Center Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Parameters
3.2. Preclinical Data
3.3. Clinical Data
3.4. Outcome Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatzka, C.; Begemann, P.G.C.; Wolff, A.; Zörb, J.; Rueger, J.M.; Windolf, J. Injury pattern and clinical course of children with multiple injuries in comparison to adults, A 11-year analysis at a clinic of maximum utilization [Verletzungsmuster und klinischer Verlauf polytraumatisierter Kinder im Vergleich mit Erwachsenen. Eine 11-Jahres-Analyse am Klinikum der Maximalversorgung]. Unfallchirurgie 2005, 108, 470–480. [Google Scholar] [CrossRef]
- Bouillon, B.; Pieper, D.; German Association for Trauma Surgery. Guideline Polytrauma—Treatment of the Severely Injured [Polytrauma—Schwerverletzten-Behandlung]; Deutsche Gesellschaft für Unfallchirurgie: Berlin, Germany, 2017; pp. 1–424. [Google Scholar]
- Nau, T.; Schwendenwein, E.; Müllner, T.; Vécsei, V. The multiple injured child—Analysis of 28 cases [Das polytraumatisierte Kind—Eine Analyse von 28 Fällen]. Acta Chir. Austriaca 2000, 32, 285–287. [Google Scholar] [CrossRef]
- Schalamon, J.; Bismarck Sv Schober, P.H.; Höllwarth, M.E. Multiple trauma in pediatric patients. Pediatr. Surg. Int. 2003, 19, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Yeguiayan, J.-M.; Yap, A.; Freysz, M.; Garrigue, D.; Jacquot, C.; Martin, C.; Binquet, C.; Riou, B.; Bonithon-Kopp, C. Impact of whole-body computed tomography on mortality and surgical management of severe blunt trauma. Crit. Care 2012, 16, R101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Ma, Y.; Jiang, S.; Ye, L.; Zheng, Z.; Xu, Y.; Zhang, M. Comparison of whole-body computed tomography vs selective radiological imaging on outcomes in major trauma patients: A meta-analysis. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 54. [Google Scholar] [CrossRef]
- Sierink, J. Total-Body CT Scanning in Trauma Patients: Benefits and Boundaries. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2015; 188p. ISBN 9789491602351. Available online: https://hdl.handle.net/11245/1.468794 (accessed on 1 February 2023).
- Huber-Wagner, S.; Lefering, R.; Qvick, L.M.; Körner, M.; Kay, M.V.; Pfeifer, K.J.; Reiser, M.; Mutschler, W.; Kanz, K.G.; Working Group on Polytrauma of the German Trauma Society. Effect of whole-body CT during trauma resuscitation on survival: A retrospective, multicentre study. Lancet 2009, 373, 1455–1461. [Google Scholar] [CrossRef]
- Hoffmann, F. S2K Guideline—Polytrauma-Care-in-Childhood [S2K Leitlinie—Polytraumaversorgung-im-Kindesalter]; Deutsche Gesellschaft für Kinderchirurgie: Berlin, Germany, 2021. [Google Scholar]
- Auner, B.; Marzi, I. Pediatric Polytrauma [Polytrauma des Kindes]. Chirurg 2014, 85, 451–464. [Google Scholar] [CrossRef]
- Berrington de González, A.; Mahesh, M.; Kim, K.P.; Bhargavan, M.; Lewis, R.; Mettler, F.; Land, C. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 2009, 169, 2071–2077. [Google Scholar] [CrossRef] [Green Version]
- Gordic, S.; Alkadhi, H.; Hodel, S.; Simmen, H.-P.; Brueesch, M.; Frauenfelder, T.; Wanner, G.; Sprengel, K. Whole-body CT-based imaging algorithm for multiple trauma patients: Radiation dose and time to diagnosis. Br. J. Radiol. 2015, 88, 20140616. [Google Scholar] [CrossRef] [Green Version]
- Leidner, B.; Beckman, M.O. Standardized whole-body computed tomography as a screening tool in blunt multitrauma patients. Emerg. Radiol. 2001, 8, 20–28. [Google Scholar] [CrossRef]
- Walz, M.; Kälicke, T.; Muhr, G. The polytraumatized Child [Das polytraumatisierte Kind]. In Tscherne Unfallchirurgie; Springer: Berlin/Heidelberg, Germany, 2006; pp. 919–934. [Google Scholar]
- Chavhan, G.B.; Babyn, P.S. Whole-Body MR Imaging in Children: Principles, Technique, Current Applications, and Future Directions. Radiographics 2011, 31, 1757–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eutsler, E.P.; Khanna, G. Whole-body magnetic resonance imaging in children: Technique and clinical applications. Pediatr. Radiol. 2016, 46, 858–872. [Google Scholar] [CrossRef]
- Ludwig, J.; Heumann, P.; Gümbel, D.; Rechenberg, U.; Goelz, L.; Mutze, S.; Ekkernkamp, A.; Bakir, S. Full-body MR imaging: A retrospective study on a novel diagnostic approach for children sustaining high-energy trauma. Eur. J. Trauma Emerg. Surg. 2021, 48, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Bayer, J.; Reising, K.; Kuminack, K.; Südkamp, N.P.; Strohm, P.C. Is Whole-Body Computed Tomography the Standard Work-up for Severely-Injured Children? Results of a Survey among German Trauma Centers. Acta Chir. Orthop. Traumatol. Cech. 2015, 82, 332–336. [Google Scholar] [PubMed]
- Zwingmann, J.; Schmal, H.; Südkamp, N.P.; Strohm, P.C. Severity and localization of injuries in polytraumatized children compared to adults and their importance for trauma room management [Verletzungsschwere und-lokalisationen polytraumatisierter Kinder im Vergleich zu Erwachsenen und deren Bedeutung für das Schockraummanagement]. Zent. Chir. 2008, 133, 68–75. [Google Scholar]
- Van Veen, M.; Steyerberg, E.W.; Ruige, M.; van Meurs, A.H.J.; Roukema, J.; van der Lei, J.; Moll, H.A. Manchester triage system in paediatric emergency care: Prospective observational study. BMJ 2008, 337, a1501. [Google Scholar] [CrossRef] [Green Version]
- Haasper, C.; Junge, M.; Ernstberger, A.; Brehme, H.; Hannawald, L.; Langer, C.; Nehmzow, J.; Otte, D.; Sander, U.; Krettek, C.; et al. Die Abbreviated Injury Scale (AIS). Potenzial und Probleme bei der Anwendung [The Abbreviated Injury Scale (AIS). Options and problems in application]. Unfallchirurgie 2010, 113, 366–372. [Google Scholar] [CrossRef]
- Huda, W.; Vance, A. Patient radiation doses from adult and pediatric CT. AJR Am. J. Roentgenol. 2007, 188, 540–546. [Google Scholar] [CrossRef]
- Richardson, M.C.; Hollmann, A.S.; Davis, C.F. Comparison of computed tomography and ultrasonographic imaging in the assessment of blunt abdominal trauma in children. Br. J. Surg. 1997, 1997, 1144–1146. [Google Scholar]
- Moore, H.B.; Faulk, L.W.; Moore, E.E.; Pierraci, F.; Cothren Burlew, C.; Holscher, C.M.; Barnett, C.C.; Jurkovich, G.J.; Bensard, D.D. Mechanism of injury alone is not justified as the sole indication for computed tomographic imaging in blunt pediatric trauma. J. Trauma Acute Care Surg. 2013, 75, 995–1001. [Google Scholar] [CrossRef]
- Goo, H.W. Whole-body MRI in children: Current imaging techniques and clinical applications. Korean J. Radiol. 2015, 16, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remmers, D.; Regel, G.; Neumann, C.; Pape, H.C.; Post-Stanke, A.; Tscherne, H. Pediatric polytrauma. A retrospective comparison between pediatric, adolescent and adult polytrauma [Das polytraumatisierte Kind. Ein retrospektiver Vergleich zwischen polytraumatisierten Kindern, Jugendlichen und Erwachsenen]. Unfallchirurgie 1998, 101, 388–394. (In German) [Google Scholar] [CrossRef] [PubMed]
- Hackett, E.P.; Pinho, M.C.; Harrison, C.E.; Reed, G.D.; Liticker, J.; Raza, J.; Hall, R.G.; Malloy, C.R.; Barshikar, S.; Madden, C.J.; et al. Imaging Acute Metabolic Changes in Patients with Mild Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate. iScience 2020, 23, 101885. [Google Scholar] [CrossRef] [PubMed]
- Amano, Y.; Takahama, K.; Kumita, S. Non-contrast-enhanced MR angiography of the thoracic aorta using cardiac and navigator-gated magnetization-prepared three-dimensional steady-state free precession. J. Magn. Reson. Imaging 2008, 27, 504–509. [Google Scholar] [CrossRef]
- Streck, C.J., Jr.; Jewett, B.M.; Wahlquist, A.H.; Gutierrez, P.S.; Russell, W.S. Evaluation for intra-abdominal injury in children after blunt torso trauma: Can we reduce unnecessary abdominal computed tomography by utilizing a clinical prediction model? J. Trauma Acute Care Surg. 2012, 73, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J.F.; Sokolove, P.E.; Brant, W.E.; Palchak, M.J.; Vance, C.W.; Owings, J.T.; Kuppermann, N. Identification of children with intra-abdominal injuries after blunt trauma. Ann. Emerg. Med. 2002, 39, 500–509. [Google Scholar] [CrossRef]
- Kissoon, N.; Dreyer, J.; Walia, M. Pediatric trauma: Differences in pathophysiology, injury patterns and treatment compared with adult trauma. Canad. Med. Assoc. J. 1990, 142, 27–34. Available online: https://pubmed.ncbi.nlm.nih.gov/2403481 (accessed on 1 February 2023).
- Tepas, J.J.; DiScala, C.; Ramenofsky, M.L.; Barlow, B. Mortality and head injury: The pediatric perspective. J. Pediatr. Surg. 1990, 25, 92–96. [Google Scholar] [CrossRef]
- Kuppermann, N.; Holmes, J.F.; Dayan, P.S.; Hoyle, J.D.; Atabaki, S.M.; Holubkov, R.; Nadel, F.M.; Monroe, D.; Stanley, R.M.; Borgialli, D.A.; et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: A prospective cohort study. Lancet 2009, 374, 1160–1170. [Google Scholar] [CrossRef]
- Weber, B.; Lackner, I.; Braun, C.K.; Kalbitz, M.; Huber-Lang, M.; Pressmar, J. Laboratory Markers in the Management of Pediatric Polytrauma: Current Role and Areas of Future Research. Front. Pediatr. 2021, 9, 622753. [Google Scholar] [CrossRef]
- Braun, C.K.; Schaffer, A.; Weber, B.; Huber-Lang, M.; Kalbitz, M.; Preßmar, J. The Prognostic Value of Troponin in Pediatric Polytrauma. Front. Pediatr. 2019, 7, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieler, D.; Trentzsch, H.; Franke, A.; Baacke, M.; Lefering, R.; Paffrath, T.; Becker, L.; Düsing, H.; Heindl, B.; Jensen, K.O.; et al. Evaluation of a standardized instrument for post hoc analysis of trauma-team-activation-criteria in 75,613 injured patients an analysis of the TraumaRegister DGU®. Eur. J. Trauma Emerg. Surg. 2022, 48, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Braken, P.; Amsler, F.; Gross, T. Simple modification of trauma mechanism alarm criteria published for the TraumaNetwork DGU® may significantly improve overtriage—A cross sectional study. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
WBCT | WBMR | p-Value | |
---|---|---|---|
Mean Age | 12.8 (±3.8) | 9.6 (±3.7) | <0.001 * |
0–6 | 9.6% (15) | 22.4% (30) | 0.003 * |
7–12 | 24.4% (38) | 56.7% (76) | <0.001 * |
13–16 | 66.0% (10) | 20.9% (28) | <0.001 * |
Male/Female | 64.7%/35.3% (101)/(55) | 64.2%/35.8% (86)/(48) | 0.920 |
WBCT | WBMR | p-Value | |
---|---|---|---|
Arrival via rescue helicopter | 27.5% (43) | 13.4% (18) | 0.003 * |
Red triage | 33.7% (53) | 4.5% (6) | <0.001 * |
WBCT | WBMR | p-Value | |
---|---|---|---|
Severe trauma mechanism | 80.8% (126) | 61.9% (83) | <0.001 * |
Pedestrian RTA | 19.2% (30) | 29.1% (39) | 0.049 * |
RTA motorized | 32.0% (50) | 12.6% (17) | <0.001 * |
RTA bicycle vs. car | 13.4% (21) | 13.4% (18) | 0.994 |
Fall ≥ 3 m | 16.0% (25) | 6.7% (9) | 0.014 * |
Minor trauma mechanism | 19.2% (30) | 38.1% (51) | <0.001* |
Fall < 3 m | 5.7% (9) | 26.8% (36) | <0.001 * |
Bicycle/Scooter | 3.2% (5) | 4.4% (6) | 0.572 |
Others | 10.2% (16) | 6.7% (9) | 0.284 |
WBCT | WBMR | p-Value | |
---|---|---|---|
All patients with IT/AS in total | 36.5% (57) | 21.6% (29) | 0.006 * |
Preclinical IT/AS related to all Patients | 31.4% (49) | 6.0% (8) | <0.001* |
Preclinical IT/AS related to IT/AS in total of each imaging group | 85.9% (134) | 27.5% (37) | <0.001 * |
IT/AS for diagnostic reasons | 1.2% (2) | 5.9% (8) | 0.048 * |
WBCT | WBMR | p-Value | |
---|---|---|---|
Imaging before WBCT/-MR | 8.3% (13) | 24.6% (33) | <0.001 * |
Imaging after WBCT/-MR | 64.1% (100) | 60.4% (81) | 0.522 |
WBCT | WBMR | p-Value | |
---|---|---|---|
Head | 57.0% (89) | 55.9% (75) | 0.853 |
Face | 28.8% (45) | 11.9% (16) | <0.001 * |
Thorax | 33.3% (52) | 19.4% (26) | 0.008 * |
Abdomen | 17.9% (28) | 35.8% (48) | 0.001 * |
Spine | 18.5% (29) | 29.1% (39) | 0.035 * |
Upper extremity | 30.7% (48) | 26.1% (35) | 0.382 |
Lower extremity | 6.4% (10) | 24.6% (33) | <0.001 * |
Vessels | 3.8% (6) | 0% (0) | - |
Average of affected body regions | 2.4 (±1.2) | 2.2 (±1.1) | 0.146 |
Average of affected body regions in relation to all body regions | 29.4% (46) | 26.9% (36) | 0.146 |
AIS | WBCT | WBMR | p-Value |
---|---|---|---|
Head | 2.2 (±0.9) | 2.0 (±0.6) | 0.061 |
Face | 1.3 (±0.6) | 1.1 (±0.3) | 0.003 * |
Thorax | 2.2 (±1.1) | 1.2 (±0.5) | <0.001 * |
Abdomen | 2.6 (±1.5) | 1.2 (±0.5) | <0.001 * |
Spine | 2.1 (±1.2) | 1.5 (±0.6) | <0.001 * |
Upper extremity | 1.7 (±0.8) | 1.4 (±0.5) | <0.001 * |
Lower extremity | 2.3 (±1.0) | 1.5 (±0.5) | <0.001 * |
Vessels | 2.2 (±1.3) | 0 (±0) | <0.001 * |
AIS ≤ 2 | 54.4% (85) | 84.4% (113) | <0.001 * |
AIS ≥ 3 Related to Groups of Age | WBCT | WBMR | p-Value |
---|---|---|---|
0–6 | 7.0% (11) | 6.7% (9) | 0.911 |
7–12 | 10.2% (16) | 8.9% (12) | 0.708 |
13–16 | 39.1% (61) | 1.4% (2) | <0.001 * |
AIS ≥ 3 Related to Body Regions | |||
Head | 16.0% (25) | 9.7% (13) | 0.112 |
Face | 1.2% (2) | 0% (0) | - |
Thorax | 8.3% (13) | 0.7% (1) | 0.002* |
Abdomen | 9.6% (15) | 0.7% (1) | 0.001 * |
Spine | 3.2% (5) | 2.2% (3) | 0.729 |
Upper extremity | 1.2% (2) | 0% (0) | - |
Lower extremity | 12.8% (20) | 2.9% (4) | 0.002 * |
Vessels | 1.9% (3) | 0.7% (1) | 0.627 |
WBCT | WBMR | p-Value | |
---|---|---|---|
ISS Severe trauma mechanism | 9.5 (±7.7) | 6.4 (±4.7) | 0.001 * |
ISS Slight trauma mechanism | 7.2 (±5.8) | 5.0 (±3.3) | 0.048 * |
WBCT | WBMR | p-Value | |
---|---|---|---|
Hospitalization in ICU in days | 5.5 (±10.2) | 0.6 (±1.6) | <0.001 * |
Total hospitalization in days | 15.0 (±32.8) | 4.4 (±4.9) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimann, M.; Ludwig, J.; Heumann, P.; Rechenberg, U.; Goelz, L.; Mutze, S.; Schellerer, V.; Ekkernkamp, A.; Bakir, M.S. Whole-Body Magnetic Resonance Tomography and Whole-Body Computed Tomography in Pediatric Polytrauma Diagnostics—A Retrospective Long-Term Two-Center Study. Diagnostics 2023, 13, 1218. https://doi.org/10.3390/diagnostics13071218
Raimann M, Ludwig J, Heumann P, Rechenberg U, Goelz L, Mutze S, Schellerer V, Ekkernkamp A, Bakir MS. Whole-Body Magnetic Resonance Tomography and Whole-Body Computed Tomography in Pediatric Polytrauma Diagnostics—A Retrospective Long-Term Two-Center Study. Diagnostics. 2023; 13(7):1218. https://doi.org/10.3390/diagnostics13071218
Chicago/Turabian StyleRaimann, Marnie, Johanna Ludwig, Peter Heumann, Ulrike Rechenberg, Leonie Goelz, Sven Mutze, Vera Schellerer, Axel Ekkernkamp, and Mustafa Sinan Bakir. 2023. "Whole-Body Magnetic Resonance Tomography and Whole-Body Computed Tomography in Pediatric Polytrauma Diagnostics—A Retrospective Long-Term Two-Center Study" Diagnostics 13, no. 7: 1218. https://doi.org/10.3390/diagnostics13071218
APA StyleRaimann, M., Ludwig, J., Heumann, P., Rechenberg, U., Goelz, L., Mutze, S., Schellerer, V., Ekkernkamp, A., & Bakir, M. S. (2023). Whole-Body Magnetic Resonance Tomography and Whole-Body Computed Tomography in Pediatric Polytrauma Diagnostics—A Retrospective Long-Term Two-Center Study. Diagnostics, 13(7), 1218. https://doi.org/10.3390/diagnostics13071218