AI-Based Decision Support System for Traumatic Brain Injury: A Survey
Abstract
:1. Introduction
2. Hematoma Detection and Quantification
3. Intracranial Pressure
4. Midline Shift
5. Electroencephalogram (EEG)-Based Methods
6. TBI Prognostication
7. TBI Datasets
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Table’s Abbreviations
References
- Rusnak, M. Giving voice to a silent epidemic. Nat. Rev. Neurol. 2013, 9, 186–187. [Google Scholar] [CrossRef]
- Vaishnavi, S.; Rao, V.; Fann, J.R. Neuropsychiatric problems after traumatic brain injury: Unraveling the silent epidemic. Psychosomatics 2009, 50, 198–205. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef]
- GBD 2019 Dementia Collaborators. The burden of dementia due to Down syndrome, Parkinson’s disease, stroke, and traumatic brain injury: A systematic analysis for the Global Burden of Disease Study 2019. Neuroepidemiology 2021, 55, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, J.; Waltzman, D.; Sarmiento, K.; Xu, L. Traumatic Brain Injury-Related Deaths by Race/Ethnicity, Sex, Intent, and Mechanism of Injury - United States, 2000-2017. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 1050–1056. [Google Scholar] [CrossRef]
- Miller, G.F.; Kegler, S.R.; Stone, D.M. Traumatic Brain Injury–Related Deaths From Firearm Suicide: United States, 2008–2017. Am. J. Public Health 2020, 110, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Hallock, H.; Mantwill, M.; Vajkoczy, P.; Wolfarth, B.; Reinsberger, C.; Lampit, A.; Finke, C. Sport-Related Concussion: A Cognitive Perspective. Neurol. Clin. Pract. 2023, 13, e200123. [Google Scholar] [CrossRef] [PubMed]
- Multiple Cause of Death Data on CDC WONDER. Available online: https://wonder.cdc.gov/mcd.html. (accessed on 11 March 2023).
- Stubbs, J.L.; Thornton, A.E.; Sevick, J.M.; Silverberg, N.D.; Barr, A.M.; Honer, W.G.; Panenka, W.J. Traumatic brain injury in homeless and marginally housed individuals: A systematic review and meta-analysis. Lancet Public Health 2020, 5, e19–e32. [Google Scholar] [CrossRef]
- Ray, B.; Sapp, D.; Kincaid, A. Traumatic brain injury among Indiana state prisoners. J. Forensic Sci. 2014, 59, 1248–1253. [Google Scholar] [CrossRef]
- de Geus, E.Q.J.; Milders, M.V.; van Horn, J.E.; Jonker, F.A.; Fassaert, T.; Hutten, J.C.; Kuipers, F.; Grimbergen, C.; Noordermeer, S.D.S. Acquired Brain Injury and Interventions in the Offender Population: A Systematic Review. Front. Psychiatry 2021, 12, 658328. [Google Scholar] [CrossRef] [PubMed]
- Fleminger, S.; Ponsford, J. Long term outcome after traumatic brain injury. BMJ 2005, 331, 1419–1420. [Google Scholar] [CrossRef]
- Tonks, J.; Slater, A.; Frampton, I.; Wall, S.E.; Yates, P.; Williams, W.H. The development of emotion and empathy skills after childhood brain injury. Dev. Med. Child Neurol. 2009, 51, 8–16. [Google Scholar] [CrossRef]
- DeLuca, J.; Chiaravalloti, N.D.; Weber, E. Cognitive Rehabilitation and Neuroimaging: Examining the Evidence from Brain to Behavior; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Williams, W.H.; Evans, J.J. Brain injury and emotion: An overview to a special issue on biopsychosocial approaches in neurorehabilitation. Neuropsychol. Rehabil. 2003, 13, 1–11. [Google Scholar]
- Mckee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar]
- Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007, 99, 4–9. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr. Neuropharmacol. 2018, 16, 1224–1238. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.; Long, J. Traumatic Brain Injury: Pathobiology, Advanced Diagnostics and Acute Management; BoD – Books on Demand; IntechOpen: London, UK, 2018. [Google Scholar]
- Kobeissy, F.H. (Ed.) Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; CRC Press/Taylor&Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Bouzat, P.; Sala, N.; Payen, J.-F.; Oddo, M. Beyond intracranial pressure: Optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann. Intensive Care. 2013, 3, 23. [Google Scholar] [CrossRef]
- Fartoumi, S.; Emeriaud, G.; Roumeliotis, N.; Brossier, D.; Sawan, M. Computerized Decision Support System for Traumatic Brain Injury Management. Pediatr Crit Care Med. 2016, 5, 101–107. [Google Scholar] [CrossRef]
- Wintermark, M.; Sanelli, P.C.; Anzai, Y.; John Tsiouris, A.; Whitlow, C.T.; Jason Druzgal, T.; Gean, A.D.; Lui, Y.W.; Norbash, A.M.; Raji, C.; et al. Imaging Evidence and Recommendations for Traumatic Brain Injury: Conventional Neuroimaging Techniques. J. Am. Coll. Radiol. 2015, 12, e1–e14. [Google Scholar] [CrossRef] [PubMed]
- Najarian, K.; Splinter, R. Biomedical Signal and Image Processing; Taylor&Francis: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Brossard, C.; Lemasson, B.; Attyé, A.; de Busschère, J.-A.; Payen, J.-F.; Barbier, E.L.; Grèze, J.; Bouzat, P. Contribution of CT-Scan Analysis by Artificial Intelligence to the Clinical Care of TBI Patients. Front. Neurol. 2021, 12, 666875. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.B.; Kheng, M.; Carney, N.A.; Rubiano, A.M.; Puyana, J.C. Geographical Disparity and Traumatic Brain Injury in America: Rural Areas Suffer Poorer Outcomes. J. Neurosci. Rural Pract. 2019, 10, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, J.; Zhou, H.; Sarmiento, K.; Waltzman, D. Differences in State Traumatic Brain Injury-Related Deaths, by Principal Mechanism of Injury, Intent, and Percentage of Population Living in Rural Areas - United States, 2016-2018. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, H.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Ben Dor, B. Early Diagnosis of Traumatic Intracranial Hematomas. J. Biomed. Opt. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Mutch, C.A.; Talbott, J.F.; Gean, A. Imaging Evaluation of Acute Traumatic Brain Injury. Neurosurg. Clin. N. Am. 2016, 27, 409–439. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.; Beems, T.; van der Vliet, T.M.; Diaz-Arrastia, R.R.; Borm, G.F.; Vos, P.E. Computed Tomography and Outcome in Moderate and Severe Traumatic Brain Injury: Hematoma Volume and Midline Shift Revisited. J. Neurotrauma 2011, 28, 203–215. [Google Scholar] [CrossRef]
- Wang, C.-W.; Liu, Y.-J.; Lee, Y.-H.; Hueng, D.-Y.; Fan, H.-C.; Yang, F.-C.; Hsueh, C.-J.; Kao, H.-W.; Juan, C.-J.; Hsu, H.-H. Hematoma Shape, Hematoma Size, Glasgow Coma Scale Score and ICH Score: Which Predicts the 30-Day Mortality Better for Intracerebral Hematoma? PLoS ONE 2014, 9, e102326. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Maldjian, J.A.; Brun, N.C.; Horvath, B.; Skolnick, B.E. Radiologic Estimation of Hematoma Volume in Intracerebral Hemorrhage Trial by CT Scan. AJNR Am. J. Neuroradiol. 2006, 27, 666–670. [Google Scholar]
- Huttner, H.B.; Steiner, T.; Hartmann, M.; Köhrmann, M.; Juettler, E.; Mueller, S.; Wikner, J.; Meyding-Lamade, U.; Schramm, P.; Schwab, S.; et al. Comparison of ABC/2 Estimation Technique to Computer-Assisted Planimetric Analysis in Warfarin-Related Intracerebral Parenchymal Hemorrhage. Stroke 2006, 37, 404–408. [Google Scholar] [CrossRef]
- Shahangian, B.; Pourghassem, H. Automatic Brain Hemorrhage Segmentation and Classification in CT Scan Images. In Proceedings of the 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), Zanjan, Iran, 10–12 September 2013; pp. 467–471. [Google Scholar]
- Bardera, A.; Boada, I.; Feixas, M.; Remollo, S.; Blasco, G.; Silva, Y.; Pedraza, S. Semi-Automated Method for Brain Hematoma and Edema Quantification Using Computed Tomography. Comput. Med. Imaging Graph. 2009, 33, 304–311. [Google Scholar] [CrossRef]
- Liao, C.-C.; Xiao, F.; Wong, J.-M.; Chiang, I.-J. Computer-Aided Diagnosis of Intracranial Hematoma with Brain Deformation on Computed Tomography. Comput. Med. Imaging Graph. 2010, 34, 563–571. [Google Scholar] [CrossRef]
- Farzaneh, N.; Reza Soroushmehr, S.M.; Williamson, C.A.; Jiang, C.; Srinivasan, A.; Bapuraj, J.R.; Ward, K.R.; Korley, F.K.; Najarian, K. Automated Subdural Hematoma Segmentation for Traumatic Brain Injured (TBI) Patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2017, 3069–3072. [Google Scholar]
- Shahangian, B.; Pourghassem, H. Automatic Brain Hemorrhage Segmentation and Classification Algorithm Based on Weighted Grayscale Histogram Feature in a Hierarchical Classification Structure. Biocybern. Biomed Eng. 2016, 36, 217–232. [Google Scholar] [CrossRef]
- Bhadauria, H.S.; Dewal, M.L. Intracranial Hemorrhage Detection Using Spatial Fuzzy c-Mean and Region-Based Active Contour on Brain CT Imaging. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2014, 8, 357–364. [Google Scholar] [CrossRef]
- Soroushmehr, S.M.R.; Bafna, A.; Schlosser, S.; Ward, K.; Derksen, H.; Najarian, K. CT Image Segmentation in Traumatic Brain Injury. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 2973–2976. [Google Scholar]
- Nag, M.K.; Chatterjee, S.; Sadhu, A.K.; Chatterjee, J.; Ghosh, N. Computer-Assisted Delineation of Hematoma from CT Volume Using Autoencoder and Chan Vese Model. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 259–269. [Google Scholar] [CrossRef]
- Jain, S.; Vyvere, T.V.; Terzopoulos, V.; Sima, D.M.; Roura, E.; Maas, A.; Wilms, G.; Verheyden, J. Automatic Quantification of Computed Tomography Features in Acute Traumatic Brain Injury. J. Neurotrauma 2019, 36, 1794–1803. [Google Scholar] [CrossRef]
- Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.G.; Venugopal, V.K.; Mahajan, V.; Rao, P.; Warier, P. Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans: A Retrospective Study. Lancet 2018, 392, 2388–2396. [Google Scholar] [CrossRef]
- Patel, A.; van de Leemput, S.C.; Prokop, M.; Van Ginneken, B.; Manniesing, R. Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT. IEEE Access 2019, 7, 92355–92364. [Google Scholar] [CrossRef]
- Grewal, M.; Srivastava, M.M.; Kumar, P.; Varadarajan, S. RADnet: Radiologist Level Accuracy Using Deep Learning for Hemorrhage Detection in CT Scans. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 281–284. [Google Scholar]
- Chang, P.D.; Kuoy, E.; Grinband, J.; Weinberg, B.D.; Thompson, M.; Homo, R.; Chen, J.; Abcede, H.; Shafie, M.; Sugrue, L.; et al. Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT. AJNR Am. J. Neuroradiol. 2018, 39, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, N.; Williamson, C.A.; Jiang, C.; Srinivasan, A.; Bapuraj, J.R.; Gryak, J.; Najarian, K.; Soroushmehr, S.M.R. Automated Segmentation and Severity Analysis of Subdural Hematoma for Patients with Traumatic Brain Injuries. Diagnostics 2020, 10, 773. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Yao, H.; Williamson, C.; Soroushmehr, R.; Gryak, J.; Najarian, K. Hematoma Segmentation Using Dilated Convolutional Neural Network. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 2018, 5902–5905. [Google Scholar]
- Nijiati, M.; Tuersun, A.; Zhang, Y.; Yuan, Q.; Gong, P.; Abulizi, A.; Tuoheti, A.; Abulaiti, A.; Zou, X. A Symmetric Prior Knowledge Based Deep Learning Model for Intracerebral Hemorrhage Lesion Segmentation. Front. Physiol. 2022, 13, 977427. [Google Scholar] [CrossRef]
- Inkeaw, P.; Angkurawaranon, S.; Khumrin, P.; Inmutto, N.; Traisathit, P.; Chaijaruwanich, J.; Angkurawaranon, C.; Chitapanarux, I. Automatic Hemorrhage Segmentation on Head CT Scan for Traumatic Brain Injury Using 3D Deep Learning Model. Comput. Biol. Med. 2022, 146, 105530. [Google Scholar] [CrossRef] [PubMed]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Newcombe, V.F.J.; Mathieu, F.; Adatia, K.; Kamnitsas, K.; Ferrante, E.; Das, T.; Whitehouse, D.; Rueckert, D.; Menon, D.K.; et al. Multiclass Semantic Segmentation and Quantification of Traumatic Brain Injury Lesions on Head CT Using Deep Learning: An Algorithm Development and Multicentre Validation Study. Lancet Digit. Health 2020, 2, e314–e322. [Google Scholar] [CrossRef]
- Mansour, R.F.; Aljehane, N.O. An Optimal Segmentation with Deep Learning Based Inception Network Model for Intracranial Hemorrhage Diagnosis. Neural Comput. Appl. 2021, 33, 13831–13843. [Google Scholar] [CrossRef]
- Yao, H.; Williamson, C.; Gryak, J.; Najarian, K. Brain Hematoma Segmentation Using Active Learning and an Active Contour Model. In Bioinformatics and Biomedical Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 385–396. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Maas, A.I.R.; Menon, D.K.; Steyerberg, E.W.; Citerio, G.; Lecky, F.; Manley, G.T.; Hill, S.; Legrand, V.; Sorgner, A. CENTER-TBI Participants and Investigators Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study. Neurosurgery 2015, 76, 67–80. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Wiegers, E.; Sewalt, C.; Buki, A.; Citerio, G.; De Keyser, V.; Ercole, A.; Kunzmann, K.; Lanyon, L.; Lecky, F.; et al. Case-Mix, Care Pathways, and Outcomes in Patients with Traumatic Brain Injury in CENTER-TBI: A European Prospective, Multicentre, Longitudinal, Cohort Study. Lancet Neurol. 2019, 18, 923–934. [Google Scholar] [CrossRef]
- Yao, H.; Williamson, C.; Gryak, J.; Najarian, K. Automated Hematoma Segmentation and Outcome Prediction for Patients with Traumatic Brain Injury. Artif. Intell. Med. 2020, 107, 101910. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427–434. [Google Scholar] [CrossRef]
- Tsitsipanis, C.; Miliaraki, M.; Ntotsikas, K.; Baldounis, D.; Kokkinakis, E.; Briassoulis, G.; Venihaki, M.; Vakis, A.; Ilia, S. Impact of Intracranial Hypertension on Outcome of Severe Traumatic Brain Injury Pediatric Patients: A 15-Year Single Center Experience. Pediatr. Rep. 2022, 14, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Tran, A.; Cheng, W.; Rochwerg, B.; Taljaard, M.; Kyeremanteng, K.; English, S.W.; Sekhon, M.S.; Griesdale, D.E.G.; Dowlatshahi, D.; et al. Diagnosis of Elevated Intracranial Pressure in Critically Ill Adults: Systematic Review and Meta-Analysis. BMJ 2019, 366, l4225. [Google Scholar] [CrossRef] [PubMed]
- Picetti, E.; Iaccarino, C.; Servadei, F. Letter: Guidelines for the Management of Severe Traumatic Brain Injury Fourth Edition. Neurosurgery 2017, 81, E2. [Google Scholar] [CrossRef]
- Zhang, X.; Medow, J.E.; Iskandar, B.J.; Wang, F.; Shokoueinejad, M.; Koueik, J.; Webster, J.G. Invasive and Noninvasive Means of Measuring Intracranial Pressure: A Review. Physiol. Meas. 2017, 38, R143–R182. [Google Scholar] [CrossRef] [PubMed]
- Siddique, H.H.; Elkambergy, H.; Bayrlee, A.; Abulhasan, Y.B.; Roser, F.; Dibu, J.R. Management of External Ventricular Drains and Related Complications: A Narrative Review. Curr. Treat. Options Neurol. 2022, 24, 347–363. [Google Scholar] [CrossRef]
- Muralidharan, R. External Ventricular Drains: Management and Complications. Surg. Neurol. Int. 2015, 6, S271–S274. [Google Scholar] [CrossRef] [PubMed]
- Changa, A.R.; Czeisler, B.M.; Lord, A.S. Management of Elevated Intracranial Pressure: A Review. Curr. Neurol. Neurosci. Rep. 2019, 19, 99. [Google Scholar] [CrossRef]
- Schmidt, B.; Klingelhöfer, J.; Schwarze, J.J.; Sander, D.; Wittich, I. Noninvasive Prediction of Intracranial Pressure Curves Using Transcranial Doppler Ultrasonography and Blood Pressure Curves. Stroke 1997, 28, 2465–2472. [Google Scholar] [CrossRef]
- Xu, P.; Kasprowicz, M.; Bergsneider, M.; Hu, X. Improved Noninvasive Intracranial Pressure Assessment with Nonlinear Kernel Regression. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 971–978. [Google Scholar] [PubMed]
- Geeraerts, T.; Newcombe, V.F.J.; Coles, J.P.; Abate, M.G.; Perkes, I.E.; Hutchinson, P.J.A.; Outtrim, J.G.; Chatfield, D.A.; Menon, D.K. Use of T2-Weighted Magnetic Resonance Imaging of the Optic Nerve Sheath to Detect Raised Intracranial Pressure. Crit. Care 2008, 12, R114. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, M.S.; McBeth, P.; Zou, J.; Qiao, L.; Kolmodin, L.; Henderson, W.R.; Reynolds, S.; Griesdale, D.E.G. Association between Optic Nerve Sheath Diameter and Mortality in Patients with Severe Traumatic Brain Injury. Neurocrit. Care 2014, 21, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, J.; Schuchardt, F.; Schroeder, L.; Egger, K.; Weigel, M.; Harloff, A. Reproducibility and Accuracy of Optic Nerve Sheath Diameter Assessment Using Ultrasound Compared to Magnetic Resonance Imaging. BMC Neurol. 2013, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Legrand, A.; Jeanjean, P.; Delanghe, F.; Peltier, J.; Lecat, B.; Dupont, H. Estimation of Optic Nerve Sheath Diameter on an Initial Brain Computed Tomography Scan Can Contribute Prognostic Information in Traumatic Brain Injury Patients. Crit. Care 2013, 17, R61. [Google Scholar] [CrossRef]
- Kalantari, H.; Jaiswal, R.; Bruck, I.; Matari, H.; Ghobadi, F.; Weedon, J.; Hassen, G.W. Correlation of Optic Nerve Sheath Diameter Measurements by Computed Tomography and Magnetic Resonance Imaging. Am. J. Emerg. Med. 2013, 31, 1595–1597. [Google Scholar] [CrossRef]
- Pappu, S.; Lerma, J.; Khraishi, T. Brain CT to Assess Intracranial Pressure in Patients with Traumatic Brain Injury. J. Neuroimaging 2016, 26, 37–40. [Google Scholar] [CrossRef]
- Chen, W.; Smith, R.; Nabizadeh, N.; Ward, K.; Cockrell, C.; Ha, J.; Najarian, K. Texture Analysis of Brain CT Scans for ICP Prediction. In Image and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 568–575. [Google Scholar]
- Chen, W.; Cockrell, C.; Ward, K.R.; Najarian, K. Intracranial Pressure Level Prediction in Traumatic Brain Injury by Extracting Features from Multiple Sources and Using Machine Learning Methods. In Proceedings of the 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Hong Kong, China, 18–21 December 2010. [Google Scholar]
- Chen, W.; Belle, A.; Cockrell, C.; Ward, K.R.; Najarian, K. Automated Midline Shift and Intracranial Pressure Estimation Based on Brain CT Images. J. Vis. Exp. 2013, e3871. [Google Scholar] [CrossRef]
- Chen, W.; Cockrell, C.H.; Ward, K.; Najarian, K. Predictability of Intracranial Pressure Level in Traumatic Brain Injury: Features Extraction, Statistical Analysis and Machine Learning-Based Evaluation. Int. J. Data Min. Bioinform. 2013, 8, 480–494. [Google Scholar] [CrossRef]
- Qi, X.; Belle, A.; Shandilya, S.; Najarian, K.; Chen, W.; Hargraves, R.S.H.; Cockrell, C. Automated Intracranial Pressure Prediction Using Multiple Features Sources. In Proceedings of the 2013 International Conference on Information Science and Applications (ICISA), Macau, China, 17–19 June 2013; pp. 1–4. [Google Scholar]
- Aghazadeh, B.S.; Ansari, S.; Pidaparti, R.; Najarian, K. Non-Invasive Estimation of Intracranial Pressure in Traumatic Brain Injury (TBI) Using Fully-Anisotropic Morlet Wavelet Transform and Support Vector Regression. Biomed. Eng. Lett. 2013, 3, 190–197. [Google Scholar] [CrossRef]
- Aghazadeh, B.S.; Khaleghi, M.; Pidaparti, R.; Najarian, K. Intracranial Pressure (ICP) Level Estimation Using Textural Features of Brain CT Images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2013, 1, 130–137. [Google Scholar] [CrossRef]
- Liao, C.-C.; Chen, Y.-F.; Xiao, F. Brain Midline Shift Measurement and Its Automation: A Review of Techniques and Algorithms. Int. J. Biomed. Imaging 2018, 2018, 4303161. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Nelson, D.W.; Vehviläinen, J.; Nyström, H.; Kivisaari, R.; Siironen, J.; Svensson, M.; Skrifvars, M.B.; Bellander, B.-M.; Raj, R. Evaluation of Novel Computerized Tomography Scoring Systems in Human Traumatic Brain Injury: An Observational, Multicenter Study. PLoS Med. 2017, 14, e1002368. [Google Scholar] [CrossRef] [PubMed]
- Pargaonkar, R.; Kumar, V.; Menon, G.; Hegde, A. Comparative Study of Computed Tomographic Scoring Systems and Predictors of Early Mortality in Severe Traumatic Brain Injury. J. Clin. Neurosci. 2019, 66, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-C.; Xiao, F.; Wong, J.-M.; Chiang, I.-J. A Simple Genetic Algorithm for Tracing the Deformed Midline on a Single Slice of Brain CT Using Quadratic Bezier Curves. In Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops (ICDMW’06), Washington, DC, USA, 18–22 December 2006; pp. 463–467. [Google Scholar]
- Liu, R.; Li, S.; Tan, C.L.; Pang, B.C.; Lim, C.C.T.; Lee, C.K.; Tian, Q.; Zhang, Z. From Hemorrhage to Midline Shift: A New Method of Tracing the Deformed Midline in Traumatic Brain Injury Ct Images. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 2637–2640. [Google Scholar]
- Wang, H.-C.; Ho, S.-H.; Xiao, F.; Chou, J.-H. A Simple, Fast and Fully Automated Approach for Midline Shift Measurement on Brain Computed Tomography. arXiv [physics.med-ph]. 2017. Available online: http://arxiv.org/abs/1703.00797 (accessed on 20 February 2023).
- Hooshmand, M.; Soroushmehr, S.M.R.; Williamson, C.; Gryak, J.; Najarian, K. Automatic Midline Shift Detection in Traumatic Brain Injury. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 2018, 131–134. [Google Scholar]
- Jiang, C.; Cao, J.; Williamson, C.; Farzaneh, N.; Rajajee, V.; Gryak, J.; Najarian, K.; Soroushmehr, S.M.R. Midline Shift vs. Mid-Surface Shift: Correlation with Outcome of Traumatic Brain Injuries. Proceedings (IEEE Int. Conf. Bioinform. Biomed.) 2019, 2019, 1083–1086. [Google Scholar]
- Wei, H.; Tang, X.; Zhang, M.; Li, Q.; Xing, X.; Sean Zhou, X.; Xue, Z.; Zhu, W.; Chen, Z.; Shi, F. The Delineation of Largely Deformed Brain Midline Using Regression-Based Line Detection Network. Med. Phys. 2020, 47, 5531–5542. [Google Scholar] [CrossRef]
- Nag, M.K.; Gupta, A.; Hariharasudhan, A.S.; Sadhu, A.K.; Das, A.; Ghosh, N. Quantitative Analysis of Brain Herniation from Non-Contrast CT Images Using Deep Learning. J. Neurosci. Methods 2021, 349, 109033. [Google Scholar] [CrossRef]
- Yuh, E.L.; Gean, A.D.; Manley, G.T.; Callen, A.L.; Wintermark, M. Computer-Aided Assessment of Head Computed Tomography (CT) Studies in Patients with Suspected Traumatic Brain Injury. J. Neurotrauma 2008, 25, 1163–1172. [Google Scholar] [CrossRef]
- Yang, F.; Li, X.; Cheng, H.; Guo, Y.; Chen, L.; Li, J. Multi-Scale Bidirectional FCN for Object Skeleton Extraction. AAAI 2018, 32, 7461–7468. [Google Scholar] [CrossRef]
- Alouani, A.T.; Elfouly, T. Traumatic Brain Injury (TBI) Detection: Past, Present, and Future. Biomedicines 2022, 10, 2472. [Google Scholar] [CrossRef] [PubMed]
- Rapp, P.E.; Keyser, D.O.; Albano, A.; Hernandez, R.; Gibson, D.B.; Zambon, R.A.; Hairston, W.D.; Hughes, J.D.; Krystal, A.; Nichols, A.S. Traumatic Brain Injury Detection Using Electrophysiological Methods. Front. Hum. Neurosci. 2015, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Ianof, J.N.; Anghinah, R. Traumatic Brain Injury: An EEG Point of View. Dement Neuropsychol. 2017, 11, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.S.E.M.; Ibrahim, H. Machine Learning Algorithms and Quantitative Electroencephalography Predictors for Outcome Prediction in Traumatic Brain Injury: A Systematic Review. IEEE Access 2020, 8, 102075–102092. [Google Scholar] [CrossRef]
- Geurts, M.; Macleod, M.R.; van Thiel, G.J.M.W.; van Gijn, J.; Kappelle, L.J.; van der Worp, H.B. End-of-Life Decisions in Patients with Severe Acute Brain Injury. Lancet Neurol. 2014, 13, 515–524. [Google Scholar] [CrossRef]
- Pratt, A.K.; Chang, J.J.; Sederstrom, N.O. A Fate Worse Than Death: Prognostication of Devastating Brain Injury. Crit. Care Med. 2019, 47, 591–598. [Google Scholar] [CrossRef]
- Abujaber, A.; Fadlalla, A.; Gammoh, D.; Abdelrahman, H.; Mollazehi, M.; El-Menyar, A. Prediction of in-Hospital Mortality in Patients on Mechanical Ventilation Post Traumatic Brain Injury: Machine Learning Approach. BMC Med. Inform. Decis. Mak. 2020, 20, 336. [Google Scholar] [CrossRef]
- Voormolen, D.C.; Zeldovich, M.; Haagsma, J.A.; Polinder, S.; Friedrich, S.; Maas, A.I.R.; Wilson, L.; Steyerberg, E.W.; Covic, A.; Andelic, N.; et al. Outcomes after Complicated and Uncomplicated Mild Traumatic Brain Injury at Three-and Six-Months Post-Injury: Results from the CENTER-TBI Study. J. Clin. Med. Res. 2020, 9, 1525. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Zhang, J.; He, M.; Xu, J. XGBoost Machine Learning Algorism Performed Better Than Regression Models in Predicting Mortality of Moderate-to-Severe Traumatic Brain Injury. World Neurosurg. 2022, 163, e617–e622. [Google Scholar] [CrossRef]
- Adil, S.M.; Elahi, C.; Patel, D.N.; Seas, A.; Warman, P.I.; Fuller, A.T.; Haglund, M.M.; Dunn, T.W. Deep Learning to Predict Traumatic Brain Injury Outcomes in the Low-Resource Setting. World Neurosurg. 2022, 164, e8–e16. [Google Scholar] [CrossRef]
- Gravesteijn, B.Y.; Nieboer, D.; Ercole, A.; Lingsma, H.F.; Nelson, D.; van Calster, B.; Steyerberg, E.W. CENTER-TBI collaborators Machine Learning Algorithms Performed No Better than Regression Models for Prognostication in Traumatic Brain Injury. J. Clin. Epidemiol. 2020, 122, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Podell, J.; Yang, S.; Miller, S.; Felix, R.; Tripathi, H.; Parikh, G.; Miller, C.; Chen, H.; Kuo, Y.-M.; Lin, C.Y.; et al. Rapid Prediction of Secondary Neurologic Decline after Traumatic Brain Injury: A Data Analytic Approach. Sci. Rep. 2023, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, N.; Williamson, C.A.; Gryak, J.; Najarian, K. A Hierarchical Expert-Guided Machine Learning Framework for Clinical Decision Support Systems: An Application to Traumatic Brain Injury Prognostication. NPJ Digit. Med. 2021, 4, 78. [Google Scholar] [CrossRef] [PubMed]
- Minoccheri, C.; Williamson, C.A.; Hemmila, M.; Ward, K.; Stein, E.B.; Gryak, J.; Najarian, K. An Interpretable Neural Network for Outcome Prediction in Traumatic Brain Injury. BMC Med. Inform. Decis. Mak. 2022, 22, 203. [Google Scholar] [CrossRef]
- Federal Interagency Traumatic Brain Injury Research Informatics System. Available online: https://fitbir.nih.gov/ (accessed on 27 February 2023).
- Transforming Research and Clinical Knowledge in TBI. Available online: https://tracktbi.ucsf.edu/. (accessed on 28 February 2023).
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.-W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D.; Celi, L.A.; Mark, R.G.; Badawi, O. The eICU Collaborative Research Database, a Freely Available Multi-Center Database for Critical Care Research. Sci. Data 2018, 5, 180178. [Google Scholar] [CrossRef] [PubMed]
Ref. | ML/DL | Algorithm/Method | Dataset Size | TBI-Related Clinical Assessment | Performance | Main contribution |
---|---|---|---|---|---|---|
[36] | ML | Intensity-based, region growing algorithm | 18 | Hematoma segmentation and quantification | Mean matching ratio: 0.80 Mean correspondence ratio: 0.74 | Proposing a semi-automated method for hematoma detection and voxel-wise volume estimation |
[37] | ML | Multiresolution binary level set method | 15 | Hematoma segmentation and quantification | Mean Sen: 0.87 Mean precision: 0.89 | Automated method, Using adaptive threshold as initial values for binary level set method |
[40] | ML | FCM clustering, region based active contour | 20 | ICH segmentation | Dice coefficient:0.87 Jaccard index: 0.78 Sen: 0.79 Spec: 0.99 | The level-set method used by active contour does not need re-initialization and converges faster. |
[35] | ML | Thresholding for segmentation, GA-based feature selection, NN classification | _ | EDH, ICH, SDH detection | Segmentation Acc: EDH: 0.96 ICH: 0.95 SDH: 0.90 ICH detection and classification Acc: 0.90 | Proposing independent hematoma segmentation and classification approach |
[41] | ML | GMM, expansion maximization algorithm | 11 | ICH segmentation | _ | Developing a GMM-based model to remove skull and image’s artifacts and detect hematoma |
[39] | ML | MDRLSE, hierarchical classifier (using pixel intensity and then SVM classifier) | 627 | ICH, SDH, EDH IVH detection | Segmentation Acc First classifier: 0.9 Second classifier: 0.94 | Using a hierarchical classifier to first classify the IVH from the normal class and then SDH, ICH, and EDH |
[38] | ML | DRLSE, Tree bagger classifier | 42 | SDH detection | AUC: 0.87 Sen: 0.85 Spec: 0.73 | Proposing a method for 3D segmentation of SDH considering geometric, textural, and statistical features |
[50] | DL | Dilated CNN | 62 | Hematoma segmentation | Dice: 0.62 Acc: 0.95 | Hematoma detection using an FCN model combined with dilated convolutions |
[44] | DL | NLP | 313,318 (Qure25k dataset); 491 (CQ500 dataset) as validation set | SDH, SAH, IVH, IPH and extradural hematoma detection | AUC ICH: 0.94 Intraparenchymal: 0.95 Intraventricular: 0.93 SDH: 0.95 Extradural: 0.97 Subarachnoid: 0.96 | Developing a DL model to detect five different subtypes of intracranial hematoma, cranial vault fractures, mass effect, and midline shift |
[46] | DL | Original DenseNet, attention mechanism, RNN | 329 | Acute hematoma detection | Acc: 0.818 Recall: 0.886 F1-score: 0.847 | A combination of CNN and LSTM was used to model 3D CT labeling for brain hemorrhage detection that was benchmarked against specialist clinician. |
[47] | DL | Custom 2D/3D mask Region of interest-based CNN | 11,021 | IPH, EDH/SDH, SAH detection andquantification | Dice: EDH/SDH: 0.86 IPH: 0.93 SAH: 0.77 Pearson correlation coefficient for volume estimation: EDH/SDH: 0.98 IPH: 0.99 SAH: 0.95 | A custom model, extracted from the feature pyramid network [57] was implemented for hematoma segmentation, classification, and volume measurement |
[56] | ML | Active learning to train SVM classifier, active contour | 62 | Hematoma segmentation | Dice: 0.55 Acc: 0.97 | The proposed model could achieve a comparable result with 5 times less labeled data compared with established ML models. |
[42] | DL | Fuzzy-based intensifier, Autoencoder, active contour Chan-Vase model | 48 | Hematoma segmentation | Dice similarity score: 0.70±0.12 Jaccard index: 0.55±0.14 | Implementing unsupervised NN-based method for acute hematoma segmentation |
[43] | DL | U-net based CNN | 144 subjects from CENTER -TBI and NCT02210221 datasets [58,59] | Hematoma segmentation, volume estimation | Segmentation Dice: 0.697 Volume estimation correlation coefficient: 0.966 | Proposing a novel Multi-view CNN with a mixed loss forhematoma segmentation and quantification |
[48] | ML/DL | Level set method, U-net, RF | 110 | SDH segmentation and severity estimation by hematoma volume classification (0–25 cc vs. >25 cc) | Sen: 0.78 Precision: 0.76 DSC: 0.75 | Integrating classical image processing methods and DL model to improve the average performance of hematoma detection andquantification |
[54] | DL | CNN | 937 (CENTER -TBI and NCT02210221) [58,59]; Validation: 500 | IPH, EAH, IVH, and perilesional oedema segmentation, detection, and volume quantification | AUC for classification of lesions greater than 0 mL: IPH: 0.87 EAH: 0.89 IVH: 0.89 Perilesional oedema: 0.89 | Proposing a CNN-based algorithm for voxel-wise segmentation, detection, and quantification of various TBI lesions and perilesional oedema |
[60] | DL | Multi-view CNN | 120 | ICH detection and volumetric quantification | Dice coefficient: 0.697 ICC: 0.966 | Developing a multi-view CNN with dilated convolution and mixed loss to reduce the model sensitivity to the noise and minor shape changes. |
[55] | DL | Kapur’s thresholding, EHO algorithm, Inception v4 network, multilayer perception | 82 | ICH detection and classification | Acc: 0.941 Precision: 0.944 Spec: 0.948 Sen: 0.926 | Developing DL-ICH model for image preprocessing, ICH segmentation, feature extraction andclassification |
[51] | DL | Sym-TransNet | 1357 | IPH, IVH, EDH, SDH and, SAH segmentation | Dice coefficient: IPH: 0.78 IVH: 0.68 EDH: 0.359 SDH: 0.534 SAH: 0.337 Five-class: 0.716±0.031 | Proposing a U-net based model to detect five different hematoma subtypes |
[45] | DL | LSTM | Training and testing: 1554, validation: 386 | ICH detection | AUC: 0.96 | Combining CNN and RNN to form a bidirectional LSTM model for intracranial hemorrhage detection |
[52] | DL | 3D CNN, region growing algorithm | 153 | SDH, EDH, IPH segmentation | Median DSC SDH: 0.48 EDH: 0.71 IPH: 0.37 ICH: 0.59 | Developing a hematoma segmentation approach using DL model with 4 different parallel pathways |
Ref. | ML/DL | Algorithm/Method | Dataset Size | TBI-related Clinical Assessment | Performance | Main Contribution |
---|---|---|---|---|---|---|
[77] | ML | ReliefF feature selection, SVM | 17 | ICP > 15 vs. ICP ≤ 15 | Acc: 81.79 ± 2.3 Sen: 82.25 ± 1.7 Spec: 81.20 ± 0.04 | Textural-based ICP estimation using Histogram analysis, GLRLM, DWPT, Fourier Transform, and DT-CWT |
[80] | ML | SVM | 17I | ICP > 12 vs. ICP ≤ 12 | Acc: 70.2 ± 4.5 Sen: 65.2 ± 8.6 Spec: 73.7 ± 4.6 | Textural-based ICP estimation using Histogram analysis, GLRLM, DWPT, Fourier Transform, DT-CWT as well as hematoma volume, manual MLS measurement, age, and ISS |
[81] | ML` | SVM | 17 | ICP > 12 vs. ICP ≤ 12 | Acc: 73.7 Sen: 68.6 Spec: 76.6 | Textural-based; improving previous model [80] by adding intracranial air cavities, ventricle size related feature |
[83] | ML | GA-SVM and GA-KNN based feature selection, SVM classification method | 59 | ICP > 15 vs. ICP < 15 | Acc: 86.5 | Textural-based; using anisotropic complex wavelet as textural feature for ICP classification |
[82] | ML | GA-SVM based feature selection, SVR classification method | 59 | ICP > 15 vs. ICP < 15 | Acc: 0.94 MAE: 4.25 mmHg | Textural-based; comparing anisotropic complex wavelet transform extracted features vs. DT-CWT extracted features in ICP classification. |
[76] | Hounsfield units thresholding | 20 | ICP > 20 vs. ICP < 20 | Acc: 0.67 | Morphological-based; brain parenchyma segmentation, ICP estimation based on csfv/icvv ratio | |
[69] | ML | Black box model | 11 | ICP | MAE: 4.0 ± 1.8 mmHg | Physiological-based; non-invasive prediction of ICP using ABP and FV of major cerebral arteries. |
[70] | ML | SVM | 446 | ICP | Mean ICP error: 6.7 mmHg | Physiological-based; noninvasive measurement of ICP using ABP and FV of major cerebral arteries |
[71] | ML | Linear regression | 74 | ICP > 20 vs. ICP ≤ 20 | AUC: 0.94 | Morphological-based; estimating the probability of increase ICP by measuring MRI-based ONSD |
[80] | ML | Gaussian mixture model | 57 | ICP > 12 vs. ICP ≤ 12 | Acc: 0.70 | Textural-based ICP estimation; using tissue textural features, manual MLS quantification, ISS, and age |
[79] | ML | Information gain ratio, GA feature selection, SVM | 57 | ICP > 12 vs. ICP ≤ 12 | Acc: 0.70 Sen: 0.65 Spec: 0.73 | Textural-based ICP estimation; automated iML detection; using textural features, MLS, and blood amount to estimate ICP |
[87] | Bezier curve, GA | 81 | MLS | Acc: 0.95 | Symmetry-based; detecting dML at the foramen of Monro level; Low performance in case of severe TBI | |
[88] | ML | H-MLS (Linear Regression based), visual symmetry information | 11 | MLS | - | Symmetry-based; tracing dML based on the brain hemorrhage detection |
[89] | Weighted midline, maximum distance | 41 | MLS | Acc: 0.92 | Symmetry-based; estimating MLS based on the maximum distance between WML and iML close to the foramen of Monro | |
[94] | ML | CT density, spatial filtering, cluster analysis | 273 | MLS | Sen:1 Spec: 0.98 | Landmark-based; using spatial filtering, CT density thresholds, and cluster analysis to segment blood and CSF. The symmetry of CSF pixels in the lateral ventricles is used to assess MLS |
[90] | ML | Level-set | 170 | MLS | Acc: 0.68 | Landmark-based; automating CT slice selection, rotation, and segmentation |
[91] | ML | Active contour, Logistic regression | 48 | MSS vs. MLS | AUC: 0.71 Acc: 0.79 | Landmark-based; volumetric measurement of displaced brain mass was significantly correlated with GOS on discharge |
[44] | DL | NPL | 313, 318 (Qure25k dataset); 491 (CQ500 dataset) as validation set | MLS | AUC: 0·969 Sen: 0.938 Spec: 0.907 | Detecting mass effect which consists of MLS, ventricular effacement, herniation, or local mass effect |
[92] | DL | RLDN | 189 (CQ500 dataset [44] and local resources) | MLS | F1-score: 0.78 | Developing a multi-scale bidirectional FCN based method [95] for midline delineation in severe brain deformation |
[93] | DL | U-Net | 45 | MLS | Acc: 0.94 | Deformed right and left hemispheres were automatically segmented. The junction of these two segments was then traced to forms dML. |
[43] | DL | U-Net based FCN | 38 | MLS < 5 mm vs. MLS > 5 mm | Acc: 0.89 | MLS estimation at all levels between the lateral ventricles roof and foramen of Monro was performed. The greatest MLS score was considered the final MLS. |
Ref. | ML/DL | Algorithm/Method | Dataset Size | TBI-Related Clinical Assessment | Performance | Main Contribution |
---|---|---|---|---|---|---|
[32] | ML | Linear Regression, Binary logistic regression | 106 | 30-day mortality | AUC: Hematoma shape: 0.692 Hematoma size: 0.715–0.786 ICH score: 0.877–0.882 GCS: 0.912–0.922 | Hematoma shape and size, ICH score, GCS score, age, IVH, presence of infratentorial location were used to estimate 30-day mortality |
[43] | DL | 2D U-net based CNN, 3D U-net based CNN | 144 | Hematoma segmentation, volume estimation, GOSE prediction | Segmentation Dice: 0.697 Volume estimation correlation coefficient: 0.966 6-month GOSE prediction AUC: 0.85 | Proposing a novel Multi-view CNN with a mixed loss for hematoma segmentation, quantification, and 6 months mortality prediction |
[102] | DL/ML | ANN, LR | 785 | early mortality | LR Accuracy: 0.87 AUROC: 0.905 ANN ACC: 0.809 AUROC: 0.875 | Trauma registry data including Injury, CT findings and demographic characteristics |
[103] | DL/ML | LR, 22 ML models * | 117 | Survival prediction | AUC: LR: 0.83 ML models: 0.30–0.94 | Cubic SVM, Quadratic SVM and Linear SVM outperformed LR |
[60] | ML | RF classifier | 828 | 6 months mortality prediction | AUC: 0.853 AUPRC: 0.559 | Integrating volumetric characteristics and shape features extracted from the proposed model with IMPACT without CT features to predict six-months mortality |
[106] | DL/ML | LR, lasso regression, and ridge regression, SVM, RF, GBM, ANN | 11022 (IMPACT-II), 1554 (CENTER-TBI) | GOS < 3, GOSE < 5 | Mean AUC (external validation) Mortality: 0.82 Unfavorable outcome: 0.77 | Motor GCS score, CT class, SDH, EDH, hypoxia, hypotension, demographic, and some laboratory test data were used to compare various model performance in predicting patient outcome. |
[104] | ML | XGB, LR | 368 TBI patients with GSC<13 | Early mortality | XGB: Acc: 0.955 AUROC: 0.955 LR: Acc: 0.70 AUROC: 0.805 | Data from electronic medical record system Including laboratory test data, injury, and demographic information, CT finding |
[105] | ML | DNN, SNN, LR-net | 2164 | GOS 1–3 vs. GOS 4–5 | AUROC DNN: 0.941 SNN: 0.931 LRnet: 0.919 | Using demographic information, GCS, injury mechanism, heart rate, blood pressure and other clinical data |
[108] | ML | XGB classifier, SHAP values selection | 831 (ProTECT III data set) | GOSE 1–4 vs. GOSE 5–8 | AUC: 0.80 Acc: 0.74 F1-score: 0.70 | Developing an intelligible prognostic model using 2 rounds of variable selection by SHAP values as well as clinical domain knowledge |
[109] | DL | TFNN vs. RF, XGB, SVM | 833 (ProTECT III data set) | GOSE 1–4 vs. GOSE 5–8 | AUC TFNN: 0.79 RF: 0.80 SVM: 0.79 XGB: 0.74 | Developing human interpretable neural network model based on tropical geometry to predict GOSE 6 months after hospitalization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajaei, F.; Cheng, S.; Williamson, C.A.; Wittrup, E.; Najarian, K. AI-Based Decision Support System for Traumatic Brain Injury: A Survey. Diagnostics 2023, 13, 1640. https://doi.org/10.3390/diagnostics13091640
Rajaei F, Cheng S, Williamson CA, Wittrup E, Najarian K. AI-Based Decision Support System for Traumatic Brain Injury: A Survey. Diagnostics. 2023; 13(9):1640. https://doi.org/10.3390/diagnostics13091640
Chicago/Turabian StyleRajaei, Flora, Shuyang Cheng, Craig A. Williamson, Emily Wittrup, and Kayvan Najarian. 2023. "AI-Based Decision Support System for Traumatic Brain Injury: A Survey" Diagnostics 13, no. 9: 1640. https://doi.org/10.3390/diagnostics13091640
APA StyleRajaei, F., Cheng, S., Williamson, C. A., Wittrup, E., & Najarian, K. (2023). AI-Based Decision Support System for Traumatic Brain Injury: A Survey. Diagnostics, 13(9), 1640. https://doi.org/10.3390/diagnostics13091640