Evaluation of Celligent® Biomimetic Water Gradient Contact Lens Effects on Ocular Surface and Subjective Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Materials
2.4. Examination Procedure
2.5. Statistical Analysis
3. Results
3.1. Ocular Surface Analyzer
3.2. Subjective Questionnaires
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, J.T. Biocompatibility in the Development of Silicone-Hydrogel Lenses. Eye Contact Lens 2013, 39, 13–19. [Google Scholar] [CrossRef]
- Efron, N.; Brennan, N.A.; Bright, F.V.; Glasgow, B.J.; Jones, L.W.; Sullivan, D.A.; Tomlinson, A.; Zhang, J. 2. Contact Lens Care and Ocular Surface Homeostasis. Contact Lens Anterior Eye 2013, 36 (Suppl. S1), S9–S13. [Google Scholar] [CrossRef]
- Willcox, M.; Sharma, S.; Naduvilath, T.J.; Sankaridurg, P.R.; Gopinathan, U.; Holden, B.A. External Ocular Surface and Lens Microbiota in Contact Lens Wearers with Corneal Infiltrates during Extended Wear of Hydrogel Lenses. Eye Contact Lens 2011, 37, 90–95. [Google Scholar] [CrossRef]
- Sorbara, L.; Maram, J.; Simpson, T.; Hutchings, N. Corneal, Conjunctival Effects and Blood Flow Changes Related to Silicone Hydrogel Lens Wear and Their Correlations with End of Day Comfort. Contact Lens Anterior Eye 2018, 41, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Akileswaran, L.; Cooke Bailey, J.N.; Willcox, M.; Van Gelder, R.; Lakkis, C.; Stapleton, F.; Richdale, K. Potential Role of Ocular Microbiome, Host Genotype, Tear Cytokines, and Environmental Factors in Corneal Infiltrative Events in Contact Lens Wearers. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5752–5761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirazitdinova, E.; Gijs, M.; Bertens, C.J.F.; Berendschot, T.T.J.M.; Nuijts, R.M.M.A.; Deserno, T.M. Validation of Computerized Quantification of Ocular Redness. Transl. Vis. Sci. Technol. 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Golebiowski, B.; Chao, C.; Stapleton, F.; Jalbert, I. Corneal Nerve Morphology, Sensitivity, and Tear Neuropeptides in Contact Lens Wear. Optom. Vis. Sci. 2017, 94, 534–542. [Google Scholar] [CrossRef]
- Jandl, A.; Ruland, T.; Schwarz, D.; Wolffsohn, J.S.; Pult, H.; Bandlitz, S. Clinical Significance of Contact Lens Related Changes of Ocular Surface Tissue Observed on Optical Coherence Images. Contact Lens Anterior Eye 2021, 44, 101388. [Google Scholar] [CrossRef]
- Nichols, J.J.; Willcox, M.D.P.; Bron, A.J.; Belmonte, C.; Ciolino, J.B.; Craig, J.P.; Dogru, M.; Foulks, G.N.; Jones, L.; Nelson, J.D.; et al. The TFOS International Workshop on Contact Lens Discomfort: Executive Summary. Investig. Ophthalmol. Vis. Sci. 2013, 54, TFOS7–TFOS13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Kim, S.R.; Park, M. Influence of Tear Protein Deposition on the Oxygen Permeability of Soft Contact Lenses. J. Ophthalmol. 2017, 2017, 5131764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihara, K.; Fukazawa, K.; Sharma, V.; Liang, S.; Shows, A.; Dunbar, D.C.; Zheng, Y.; Ge, J.; Zhang, S.; Hong, Y.; et al. Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface. ACS Omega 2021, 6, 7058–7067. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Rohr, M.; Wolffsohn, J.S.; Davies, L.N.; Cerviño, A. Effect of Contact Lens Surface Properties on Comfort, Tear Stability and Ocular Physiology. Contact Lens Anterior Eye 2018, 41, 117–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Spadafora, A.; Korogiannaki, M.; Sheardown, H. Antifouling Silicone Hydrogel Contact Lenses via Densely Grafted Phosphorylcholine Polymers. Biointerphases 2020, 15, 41013. [Google Scholar] [CrossRef]
- Dutta, D.; Vijay, A.K.; Kumar, N.; Willcox, M.D.P. Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5616–5624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftimov, P.; Yokoi, N.; Peev, N.; Georgiev, G.A. Impact of Air Exposure Time on the Water Contact Angles of Daily Disposable Silicone Hydrogels. Int. J. Mol. Sci. 2019, 20, 1313. [Google Scholar] [CrossRef] [Green Version]
- Eftimov, P.B.; Yokoi, N.; Peev, N.; Paunski, Y.; Georgiev, G.A. Relationships between the Material Properties of Silicone Hydrogels: Desiccation, Wettability and Lubricity. J. Biomater. Appl. 2021, 35, 933–946. [Google Scholar] [CrossRef]
- Capote-Puente, R.; Sánchez-González, J.-M.; Bautista-Llamas, M.-J. Multipurpose Lens Care Systems and Silicone Hydrogel Contact Lens Wettability: A Systematic Review. Eye Contact Lens 2022, 48, 356–361. [Google Scholar] [CrossRef]
- Fujimoto, H.; Ochi, S.; Yamashita, T.; Inoue, Y.; Kiryu, J. Role of the Water Gradient Structure in Inhibiting Thin Aqueous Layer Break in Silicone Hydrogel-Soft Contact Lens. Transl. Vis. Sci. Technol. 2021, 10, 5. [Google Scholar] [CrossRef]
- Wang, M.T.; Murphy, P.J.; Blades, K.J.; Craig, J.P. Comparison of Non-Invasive Tear Film Stability Measurement Techniques. Clin. Exp. Optom. 2018, 101, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Guillon, M.; Dumbleton, K.; Theodoratos, P.; Patel, K.; Gupta, R.; Patel, T. Pre-Contact Lens and Pre-Corneal Tear Film Kinetics. Contact Lens Anterior Eye 2019, 42, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Richdale, K.; Jalbert, I.; Doung, K.; Gokhale, M. Non-Invasive Objective and Contemporary Methods for Measuring Ocular Surface Inflammation in Soft Contact Lens Wearers—A Review. Contact Lens Anterior Eye 2017, 40, 273–282. [Google Scholar] [CrossRef] [PubMed]
- García-Marqués, J.V.; Talens-Estarelles, C.; García-Lázaro, S.; Cerviño, A. Validation of a New Objective Method to Assess Lipid Layer Thickness without the Need of an Interferometer. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 655–676. [Google Scholar] [CrossRef]
- Robin, M.; Liang, H.; Baudouin, C.; Labbé, A. In Vivo Meibomian Gland Imaging Techniques: A Review of the Literature. J. Français Ophtalmol. 2020, 43, e123–e131. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Del Arroyo, C.; Fernández, I.; López-de la Rosa, A.; Pinto-Fraga, J.; González-García, M.J.; López-Miguel, A. Design of a Questionnaire for Detecting Contact Lens Discomfort: The Contact Lens Discomfort Index. Clin. Exp. Optom. 2022, 105, 268–274. [Google Scholar] [CrossRef] [PubMed]
- López-de la Rosa, A.; Arroyo-Del Arroyo, C.; Enríquez-de-Salamanca, A.; Pinto-Fraga, J.; López-Miguel, A.; González-García, M.J. The Ability of the Contact Lens Dry Eye Questionnaire (CLDEQ)-8 to Detect Ocular Surface Alterations in Contact Lens Wearers. Contact Lens Anterior Eye 2019, 42, 273–277. [Google Scholar] [CrossRef]
- Mlyniuk, P.; Stachura, J.; Jiménez-Villar, A.; Grulkowski, I.; Kaluzny, B.J. Changes in the Geometry of Modern Daily Disposable Soft Contact Lenses during Wear. Sci. Rep. 2021, 11, 12460. [Google Scholar] [CrossRef]
- Markoulli, M.; Kolanu, S. Contact Lens Wear and Dry Eyes: Challenges and Solutions. Clin. Optom. 2017, 9, 41–48. [Google Scholar] [CrossRef]
- Chalmers, R.L.; Keay, L.; Hickson-Curran, S.B.; Gleason, W.J. Cutoff Score and Responsiveness of the 8-Item Contact Lens Dry Eye Questionnaire (CLDEQ-8) in a Large Daily Disposable Contact Lens Registry. Contact Lens Anterior Eye 2016, 39, 342–352. [Google Scholar] [CrossRef]
- Sánchez-González, M.C.; Capote-Puente, R.; García-Romera, M.-C.; De-Hita-Cantalejo, C.; Bautista-Llamas, M.-J.; Silva-Viguera, C.; Sánchez-González, J.-M. Dry Eye Disease and Tear Film Assessment through a Novel Non-Invasive Ocular Surface Analyzer: The OSA Protocol. Front. Med. 2022, 9, 938484. [Google Scholar] [CrossRef]
- Pult, H.; Nichols, J.J. A Review of Meibography. Optom. Vis. Sci. 2012, 89, E760–E769. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, C.; Aragona, P.; Van Setten, G.; Rolando, M.; Irkeç, M.; Del Castillo, J.B.; Geerling, G.; Labetoulle, M.; Bonini, S. Diagnosing the Severity of Dry Eye: A Clear and Practical Algorithm. Br. J. Ophthalmol. 2014, 98, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Soft Lens Design and Fitting. In Contact Lens Practice; Efron, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 86–94.e1. ISBN 978-0-7020-6660-3. [Google Scholar]
- Marx, S.; Eckstein, J.; Sickenberger, W. Objective Analysis of Pre-Lens Tear Film Stability of Daily Disposable Contact Lenses Using Ring Mire Projection. Clin. Optom. 2020, 12, 203–211. [Google Scholar] [CrossRef] [PubMed]
- García-Montero, M.; Rico-Del-Viejo, L.; Llorens-Quintana, C.; Lorente-Velázquez, A.; Hernández-Verdejo, J.L.; Madrid-Costa, D. Randomized Crossover Trial of Silicone Hydrogel Contact Lenses. Contact Lens Anterior Eye 2019, 42, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesalingam, K.; Ismail, S.; Sherwin, T.; Craig, J.P. Molecular Evidence for the Role of Inflammation in Dry Eye Disease. Clin. Exp. Optom. 2019, 102, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Pflugfelder, S.C.; Stern, M.E. The Cornea in Keratoconjunctivitis Sicca. Exp. Eye Res. 2020, 201, 108295. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hamrah, P.; Shimazaki, J. Bilateral Alterations in Corneal Nerves, Dendritic Cells, and Tear Cytokine Levels in Ocular Surface Disease. Cornea 2016, 35, S65–S70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, V.L.; Stern, M.E.; Pflugfelder, S.C. Inflammatory Basis for Dry Eye Disease Flares. Exp. Eye Res. 2020, 201, 108294. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, Z.; Jiang, H.; Zhou, J.; Wang, L.; Wang, J. Altered Bulbar Conjunctival Microcirculation in Response to Contact Lens Wear. Eye Contact Lens 2017, 43, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhong, J.; DeBuc, D.C.; Tao, A.; Xu, Z.; Lam, B.L.; Liu, C.; Wang, J. Functional Slit Lamp Biomicroscopy for Imaging Bulbar Conjunctival Microvasculature in Contact Lens Wearers. Microvasc. Res. 2014, 92, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Wang, J.; Hu, L. A Review of Functional Slit Lamp Biomicroscopy. Eye Vis. 2019, 6, 15. [Google Scholar] [CrossRef]
- Dumbleton, K.; Keir, N.; Moezzi, A.; Feng, Y.; Jones, L.; Fonn, D. Objective and Subjective Responses in Patients Refitted to Daily-Wear Silicone Hydrogel Contact Lenses. Optom. Vis. Sci. 2006, 83, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Riley, C.; Young, G.; Chalmers, R. Prevalence of Ocular Surface Symptoms, Signs, and Uncomfortable Hours of Wear in Contact Lens Wearers: The Effect of Refitting with Daily-Wear Silicone Hydrogel Lenses (Senofilcon a). Eye Contact Lens 2006, 32, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesley, G.; Giedd, B.; Hines, B.; Bickle, K.; Pearson, C.; Lorentz, H. Safety and Efficacy of a New Water Gradient Biomimetic Monthly Replacement Spherical Contact Lens Material (Lehfilcon A). Clin. Ophthalmol. 2022, 16, 2873–2884. [Google Scholar] [CrossRef]
- Pucker, A.D.; Dougherty, B.E.; Jones-Jordan, L.A.; Kwan, J.T.; Kunnen, C.M.E.; Srinivasan, S. Psychometric Analysis of the SPEED Questionnaire and CLDEQ-8. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3307–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, A.; Tighe, B. Contact Lens Interactions with the Tear Film. Exp. Eye Res. 2013, 117, 88–98. [Google Scholar] [CrossRef]
- Guillon, M.; Maissa, C. Contact Lens Wear Affects Tear Film Evaporation. Eye Contact Lens 2008, 34, 326–330. [Google Scholar] [CrossRef]
- Ruiz-Alcocer, J.; Monsálvez-Romín, D.; García-Lázaro, S.; Albarrán-Diego, C.; Hernández-Verdejo, J.L.; Madrid-Costa, D. Impact of Contact Lens Material and Design on the Ocular Surface. Clin. Exp. Optom. 2018, 101, 188–192. [Google Scholar] [CrossRef]
- Guillon, M.; Dumbleton, K.A.; Theodoratos, P.; Wong, S.; Patel, K.; Banks, G.; Patel, T. Association between Contact Lens Discomfort and Pre-Lens Tear Film Kinetics. Optom. Vision Sci. 2016, 93, 881–891. [Google Scholar] [CrossRef]
- Müller, C.; Marx, S.; Wittekind, J.; Sickenberger, W. Subjective Comparison of Pre-Lens Tear Film Stability of Daily Disposable Contact Lenses Using Ring Mire Projection. Clin. Optom. 2020, 12, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II Pathophysiology Report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.L.; Begley, C.G.; Moody, K.; Hickson-Curran, S.B. Contact Lens Dry Eye Questionnaire-8 (CLDEQ-8) and Opinion of Contact Lens Performance. Optom. Vis. Sci. 2012, 89, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Gender (%) | |
Male | 7 (22.6) |
Female | 24 (77.4) |
Nationality (%) | |
Italian | 21 (67.75) |
Spanish | 4 (12.90) |
Mexican | 2 (6.46) |
Slovak | 1 (3.22) |
Polish | 1 (3.22) |
Germany | 1 (3.22) |
Austrian | 1 (3.22) |
Age (years) | 22.23 ± 1.39 (19 to 25) |
Sphere (Diopters) | −2.64 ± 1.15 (−5.50 to −0.50) |
Cylinder (Diopters) | −0.44 ± 0.37 (−1.50 to 0.00) |
Axis (Degrees, °) | 111.44 ± 70.08 (5.00 to 180.00) |
Visual Acuity (Log MAR) | −0.03 ± 0.05 (−0.10 to 0,10) |
Visual Acuity (Decimal) | 1.07 ± 0.10 (0.80 to 1.20) |
Flat Corneal Meridian (mm) | 7.87 ± 0.31 (7.40 to 8.74) |
Steep Corneal Meridian (mm) | 7.73 ± 0.29 (7.25 to 8.61) |
Mean Corneal Meridian (mm) | 7.80 ± 0.30 (7.37 to 8.67) |
Contact Lens Power (Diopters) | −2.56 ± 1.12 (−5.00 to −0.75) |
Superior Eyelid MGD (%) | 28.87 ± 15.11 (10.30 to 96.20) |
Inferior Eyelid MGD (%) | 49.69 ± 17.86 (17.00 to 87.30) |
Variable | Baseline | One-Month | p-Value |
---|---|---|---|
Conjunctival Redness Classification (Efron Scale) | 1.08 ± 0.63(0.00 to 2.00) | 1.22 ± 0.64(0.00 to 2.00) | 0.14 |
Lipid Layer Thickness Interferometry (Guillon Pattern) | 2.05 ± 1.53(0.00 to 5.00) | 0.92 ± 1.09(0.00 to 5.00) | <0.01 * |
Tear Meniscus Height (mm) | 0.21 ± 0.04(0.11 to 0.32) | 0.14 ± 0.03(0.09 to 0.25) | <0.01 * |
First NIBUT (s) | 5.03 ± 1.04(3.60 to 7.80) | 4.71 ± 1.10(3.60 to 9.56) | 0.09 |
Mean NIBUT (s) | 15.19 ± 9.54(4.50 to 49.76) | 25.31 ± 15.81(5.50 to 91.14) | <0.01 * |
Lid Opening Time (s) | 26.36 ± 19.72(5.04 to 93.60) | 46.10 ± 27.45(7.52 to 106.40) | <0.01 * |
Schirmer Test (mm) | 30.21 ± 8.43(6.00 to 35.00) | 20.88 ± 12.72(0.00 to 36.00) | <0.01 * |
CLDEQ8 (Score Points) | 11.32 ± 5.56(1.00 to 29.00) | 10.53 ± 8.23(2.00 to 29.00) | 0.49 |
SPEED Test (Score Points) | 7.39 ± 4.39(0.00 to 15.00) | 5.53 ± 4.83(0.00 to 19.00) | <0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capote-Puente, R.; Sánchez-González, J.-M.; Sánchez-González, M.C.; Bautista-Llamas, M.-J. Evaluation of Celligent® Biomimetic Water Gradient Contact Lens Effects on Ocular Surface and Subjective Symptoms. Diagnostics 2023, 13, 1258. https://doi.org/10.3390/diagnostics13071258
Capote-Puente R, Sánchez-González J-M, Sánchez-González MC, Bautista-Llamas M-J. Evaluation of Celligent® Biomimetic Water Gradient Contact Lens Effects on Ocular Surface and Subjective Symptoms. Diagnostics. 2023; 13(7):1258. https://doi.org/10.3390/diagnostics13071258
Chicago/Turabian StyleCapote-Puente, Raúl, José-María Sánchez-González, María Carmen Sánchez-González, and María-José Bautista-Llamas. 2023. "Evaluation of Celligent® Biomimetic Water Gradient Contact Lens Effects on Ocular Surface and Subjective Symptoms" Diagnostics 13, no. 7: 1258. https://doi.org/10.3390/diagnostics13071258
APA StyleCapote-Puente, R., Sánchez-González, J. -M., Sánchez-González, M. C., & Bautista-Llamas, M. -J. (2023). Evaluation of Celligent® Biomimetic Water Gradient Contact Lens Effects on Ocular Surface and Subjective Symptoms. Diagnostics, 13(7), 1258. https://doi.org/10.3390/diagnostics13071258