Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intraocular Lenses
2.2. Simulated Optical Performance with VIS and NIR Metrics
2.3. Experimental Setup for Optical Performance Assessment with Visible and NIR Light
3. Results
3.1. Through-Focus Energy Efficiency (TF-EE)
3.2. Halo Assessment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDOF | Extended depth of focus |
EE | Energy efficiency |
EP | Entrance pupil |
IOL | Intraocular lens |
LED | Light emitting diode |
LIB | Light in the bucket |
DMIOL | Diffractive multifocal intraocular lens |
MTF | Modulation transfer function |
OPD | Optical path difference |
PSF | Point spread function |
NIR | Near infrared |
SA | Spherical aberration |
VIS | Visible |
TF | Through focus |
TF-EE | Through-focus energy efficiency |
References
- Breyer, D.R.H.; Kaymak, H.; Ax, T.; Kretz, F.T.A.; Auffarth, G.U.; Hagen, P.R. Multifocal Intraocular Lenses and Extended Depth of Focus Intraocular Lenses. Asia-Pacific J. Ophthalmol. 2017, 6, 339–349. [Google Scholar] [CrossRef]
- Rampat, R.; Gatinel, D. Multifocal and Extended Depth-of-Focus Intraocular Lenses in 2020. Ophthalmology 2021, 128, e164–e185. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J. Functional Classification of Multifocal IOLs. Cataract & Refractive Surgery Today Europe. Available online: https://crstodayeurope.com/articles/feb-2021/functional-classification-of-multifocal-iols/ (accessed on 30 January 2023).
- Ota, Y.; Minami, K.; Oki, S.; Bissen-Miyajima, H.; Okamoto, K.; Nakashima, M.; Tsubota, K. Subjective and Objective Refractions in Eyes with Extended-Depth-of-Focus Intraocular Lenses Using Echelette Optics: Clinical and Experimental Study. Acta Ophthalmol. 2021, 99, e837–e843. [Google Scholar] [CrossRef] [PubMed]
- Vinas, M.; Dorronsoro, C.; Cortes, D.; Pascual, D.; Marcos, S. Longitudinal Chromatic Aberration of the Human Eye in the Visible and near Infrared from Wavefront Sensing, Double-Pass and Psychophysics. Biomed. Opt. Express 2015, 23, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Burguera, N.; Piñero, D.P. Agreement between Subjective and Predicted High and Low Contrast Visual Acuities with a Double-Pass System. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1651–1657. [Google Scholar] [CrossRef]
- López-Gil, N.; Artal, P. Comparison of Double-Pass Estimates of the Retinal-Image Quality Obtained with Green and near-Infrared Light. J. Opt. Soc. Am. A 1997, 14, 961. [Google Scholar] [CrossRef]
- Pérez-Merino, P.; Dorronsoro, C.; Llorente, L.; Durán, S.; Jiménez-Alfaro, I.; Marcos, S. In Vivo Chromatic Aberration in Eyes Implanted With Intraocular Lenses. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2654. [Google Scholar] [CrossRef] [Green Version]
- Gatinel, D. Double Pass–Technique Limitations for Evaluation of Optical Performance after Diffractive IOL Implantation. J. Cataract Refract. Surg. 2011, 37, 621–622. [Google Scholar] [CrossRef]
- Charman, W.N.; Radhakrishnan, H.; Montés-Micó, R. Problems in the Measurement of Wavefront Aberration for Eyes Implanted With Diffractive Bifocal and Multifocal Intraocular Lenses. J. Refract. Surg. 2008, 24, 280–286. [Google Scholar] [CrossRef]
- Schwiegerling, J.; DeHoog, E. Problems Testing Diffractive Intraocular Lenses with Shack-Hartmann Sensors. Appl. Opt. 2010, 49, D62. [Google Scholar] [CrossRef]
- Castignoles, F.; Lepine, T.; Chavel, P.; Cohen, G. Shack–Hartmann Multiple Spots with Diffractive Lenses. Opt. Lett. 2011, 36, 1422. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, S.; Bradley, A.; Thibos, L.N. Chromatic Aberration and Polychromatic Image Quality with Diffractive Multifocal Intraocular Lenses. J. Cataract Refract. Surg. 2014, 40, 1192–1204. [Google Scholar] [CrossRef]
- Vega, F.; Millàn, M.S.; Vila-Terricabras, N.; Alba-Bueno, F. Visible versus Near-Infrared Optical Performance of Diffractive Multifocal Intraocular Lenses. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7345–7351. [Google Scholar] [CrossRef] [Green Version]
- Pedrotti, E.; Mastropasqua, R.; Passilongo, M.; Parisi, G.; Marchesoni, I.; Marchini, G. Comparison of Two Multifocal Intraocular Lens Designs That Differ Only in Near Add. J. Refract. Surg. 2014, 30, 754–760. [Google Scholar] [CrossRef]
- Wang, M.; Corpuz, C.C.C.; Fujiwara, M.; Tomita, M. Visual and Optical Performances of Multifocal Intraocular Lenses with Three Different Near Additions: 6-Month Follow-Up. Open Ophthalmol. J. 2015, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.J.; Piñero, D.P.; Alió, J.L.; Fimia, A.; Plaza, A.B. Double-Pass System Analysis of the Visual Outcomes and Optical Performance of an Apodized Diffractive Multifocal Intraocular Lens. J. Cataract Refract. Surg. 2010, 36, 2048–2055. [Google Scholar] [CrossRef]
- Hwang, H.S.; Shin, H.Y.; Joo, C.K. Double-Pass System (Optical Quality Analysis System) for Analysis of the Multifocal Function of a Diffractive Multifocal Intraocular Lens (Acrysof ReSTOR®) Compared to a Monofocal Intraocular Lens (Acrysof IQ®). J. Opt. Soc. Korea 2014, 18, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, K.; Ahn, J.M.; Kim, E.K.; Sgrignoli, B.; Kim, T.I. Evaluation of Optical Quality Parameters and Ocular Aberrations in Multifocal Intraocular Lens Implanted Eyes. Yonsei Med. J. 2014, 55, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.F.; Vargas, V.; Plaza-Puche, A.B.; Alió, J.L. Long-Term Results of a Diffractive Trifocal Intraocular Lens: Visual, Aberrometric and Patient Satisfaction Results. Eur. J. Ophthalmol. 2020, 30, 201–208. [Google Scholar] [CrossRef]
- Alio, J.L.; D’Oria, F.; Toto, F.; Balgos, J.; Palazon, A.; Versaci, F.; Alio del Barrio, J.L. Retinal Image Quality with Multifocal, EDoF, and Accommodative Intraocular Lenses as Studied by Pyramidal Aberrometry. Eye Vis. 2021, 8, 37. [Google Scholar] [CrossRef]
- Ribeiro, M.F. Letter to the Editor. Eye Vis. 2021, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Yoon, Y.; Kim, T.I.; Koh, K. Comparison Between an Intraocular Lens With Extended Depth of Focus (Tecnis Symfony ZXR00) and a New Monofocal Intraocular Lens With Enhanced Intermediate Vision (Tecnis Eyhance ICB00). Asia-Pacific J. Ophthalmol. 2021, 10, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Rocha-de-Lossada, C.; Rodríguez-Vallejo, M. Objective Optical Quality With Multifocal Intraocular Lenses Should Stop to Be Used or Cautiously Interpreted. Asia-Pacific J. Ophthalmol. 2022, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Millán, M.S.; Vega, F. Extended Depth of Focus Intraocular Lens Chromatic Performance. Biomed. Opt. Express 2017, 8, 4294. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.; Valentino, M.; Rigato, F.; Millán, M.S. Optical Design and Performance of a Trifocal Sinusoidal Diffractive Intraocular Lens. Biomed. Opt. Express 2021, 12, 3338. [Google Scholar] [CrossRef]
- Alio, J.L.; Versaci, F.; D’Oria, F. Reply to the Letter to the Editor. Eye Vis. 2021, 8, 46. [Google Scholar] [CrossRef]
- Son, H.S.; Tandogan, T.; Liebing, S.; Merz, P.; Choi, C.Y.; Khoramnia, R.; Auffarth, G.U. In Vitro Optical Quality Measurements of Three Intraocular Lens Models Having Identical Platform. BMC Ophthalmol. 2017, 17, 108. [Google Scholar] [CrossRef] [Green Version]
- Carson, D.; Hill, W.E.; Hong, X.; Karakelle, M. Optical Bench Performance of AcrySof® IQ ReSTOR®, AT LISA® Tri, And FineVision® Intraocular Lenses. Clin. Ophthalmol. 2014, 8, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.; Hage, H.; Gerlach, M.; Brunner, R. Topography Profiling. Opt. Photonik 2015, 10, 27–30. [Google Scholar] [CrossRef]
- Loicq, J.; Willet, N.; Gatinel, D. Topography and Longitudinal Chromatic Aberration Characterizations of Refractive–Diffractive Multifocal Intraocular Lenses. J. Cataract Refract. Surg. 2019, 45, 1650–1659. [Google Scholar] [CrossRef]
- Johnson & Johnson Vision. Available online: https://www.jnjvisionpro.com (accessed on 30 January 2023).
- Weeber, H.A.; Piers, P.A. Theoretical Performance of Intraocular Lenses Correcting Both Spherical and Chromatic Aberration. J. Refract. Surg. 2012, 28, 48–52. [Google Scholar] [CrossRef]
- Weeber, H.A.; Meijer, S.T.; Piers, P.A. Extending the Range of Vision Using Diffractive Intraocular Lens Technology. J. Cataract Refract. Surg. 2015, 41, 2746–2754. [Google Scholar] [CrossRef]
- Esteve-Taboada, J.J.; Domínguez-Vicent, A.; Del Águila-Carrasco, A.J.; Ferrer-Blasco, T.; Montés-Micó, R. Effect of Large Apertures on the Optical Quality of Three Multifocal Lenses. J. Refract. Surg. 2015, 31, 666–676. [Google Scholar] [CrossRef]
- Gatinel, D.; Loicq, J. Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses. J. Refract. Surg. 2016, 32, 273–280. [Google Scholar] [CrossRef] [Green Version]
- V.S.Y. Biotechnology. Available online: http://www.vsybiotechnology.com/ (accessed on 30 January 2023).
- Ceran, B.; Arifoglu, H.; Ozates, S.; Tasindi, E. Refractive Results, Visual Quality and Patient Satisfaction with a New Trifocal Intraocular Lens Design. Ann. Med. Res. 2020, 27, 3018. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M.; Vicalvi, S.; Borghi, R.; Cincotti, G.; Di Fabrizio, E.; Gentili, M. Analytical Derivation of the Optimum Triplicator. Opt. Commun. 1998, 157, 13–16. [Google Scholar] [CrossRef]
- Valle, P.J.; Oti, J.E.; Canales, V.F.; Cagigal, M.P. Visual Axial PSF of Diffractive Trifocal Lenses. Opt. Express 2005, 13, 2782. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Gutiérrez-Vega, J.C. Computation of Quasi-Discrete Hankel Transforms of Integer Order for Propagating Optical Wave Fields. J. Opt. Soc. Am. A 2004, 21, 53. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Introduction to Fourier Optics, 3rd ed.; Roberts & Co.: Englewood, CO, USA, 2005; ISBN 0974707724. [Google Scholar]
- Thibos, L.N.; Hong, X.; Bradley, A.; Applegate, R.A. Accuracy and Precision of Objective Refraction from Wavefront Aberrations. J. Vis. 2004, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.; Alba-Bueno, F.; Millán, M.S. Energy Distribution between Distance and Near Images in Apodized Diffractive Multifocal Intraocular Lenses. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5695. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.; Millán, M.S.; Garzón, N.; Altemir, I.; Poyales, F.; Larrosa, J.M. Visual Acuity of Pseudophakic Patients Predicted from In-Vitro Measurements of Intraocular Lenses with Different Design. Biomed. Opt. Express 2018, 9, 4893. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Millán, M.S.; Gil, M.A.; Garzón, N. Optical Performance of a Monofocal Intraocular Lens Designed to Extend Depth of Focus. J. Refract. Surg. 2020, 36, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Alba-Bueno, F.; Millán, M.S.; Varón, C.; Gil, M.A.; Buil, J.A. Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- Norrby, S.; Piers, P.; Campbell, C.; Van Der Mooren, M. Model Eyes for Evaluation of Intraocular Lenses. Appl. Opt. 2007, 46, 6595–6605. [Google Scholar] [CrossRef] [PubMed]
- ISO 11979–2:2014; Ophthalmic Implants—Intraocular Lenses-Part 2: Optical Properties and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2014.
- Eom, Y.; Yoo, E.; Kang, S.-Y.; Kim, H.-M.; Song, J.-S. Change in Efficiency of Aspheric Intraocular Lenses Based on Pupil Diameter. Am. J. Ophthalmol. 2013, 155, 492–498.e2. [Google Scholar] [CrossRef]
- Millán, M.S.; Vega, F.; Ríos-López, I. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
- Toto, L.; Falconio, G.; Vecchiarino, L.; Scorcia, V.; Di Nicola, M.; Ballone, E.; Mastropasqua, L. Visual Performance and Biocompatibility of 2 Multifocal Diffractive IOLs. J. Cataract Refract. Surg. 2007, 33, 1419–1425. [Google Scholar] [CrossRef]
- Haddad, J.S.; Gouvea, L.; Ferreira, J.L.; Ambrósio, R.; Waring, G.O.; Rocha, K.M. Impact of a Chromatic Aberration-Correcting Intraocular Lens on Automated Refraction. J. Refract. Surg. 2020, 36, 334–339. [Google Scholar] [CrossRef]
- Moreno, V.; Román, J.F.; Salgueiro, J.R. High Efficiency Diffractive Lenses: Deduction of Kinoform Profile. Am. J. Phys. 1997, 65, 556–562. [Google Scholar] [CrossRef]
- Weeber, H.A. Multi-Ring Lens, Systems and Methods for Extended Depth of Focus. U.S. Patent US2014/0168602 A1, 19 June 2014. [Google Scholar]
- Faklis, D.; Morris, G.M. Spectral Properties of Multiorder Diffractive Lenses. Appl. Opt. 1995, 34, 2462. [Google Scholar] [CrossRef] [Green Version]
- Atchison, D.A.; Smith, G. Chromatic Dispersions of the Ocular Media of Human Eyes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 29–37. [Google Scholar] [CrossRef]
- Faria-Ribeiro, M.; Gonzalez-Meijome, J.M. Method for Correction from Infrared to Visible Light of Wavefront Measurements Obtained in Pseudophakic Eyes Implanted with Diffractive Intraocular Lenses. In Proceedings of the Visual and Physiological Optics Conference, Cambridge, UK, 29–31 August 2022; pp. 48–50. [Google Scholar]
IOL Name | Refractive Index (550 nm) | Abbe Number | SA (µm) | Focus & Diffraction Order |
---|---|---|---|---|
Acriva Trinova | 1.46 | 58 | −0.165 | Far: m = −1; Interm: m = 0; Near m = +1 |
AT Lisa Tri | 1.46 | 56.5 | −0.18 | (1) Far: m = 0; Interm: m = +1 (2) Far: m’ = 0; Near: m’ = +1 |
Tecnis Symfony | 1.47 | 55 | −0.27 | Far: m = +1; Interm: m = +2 |
Acriva Trinova (m = −1) ⱡ | AT Lisa Tri (m = 0) ⱡ | Tecnis Symfony (m = +1) ⱡ | ||||
---|---|---|---|---|---|---|
EEgreen | EENIR | EEgreen | EENIR | EEgreen | EENIR | |
Exper./Simul. | Exper./Simul. | Exper./Simul. | Exper./Simul. | Exper./Simul. | Exper./Simul. | |
Far focus | 0.32/0.36 | 0.21/0.21 | 0.46/0.44 | 0.75/0.62 | 0.30/0.36 | 0.79/0.78 |
Intermediate focus | 0.33/0.28 | 0.50/0.51 | 0.17/0.15 | 0.09/0.08 | 0.55/0.48 | 0.07 */0.08 * |
Near focus | 0.27/0.34 | 0.15/0.18 | 0.26/0.25 | 0.16/0.11 | NA | NA |
Power Difference (D) | 2.9 a/2.9 a | 4.1 a/4.3 a | 3.3 a/3.3 a | 4.8 a/4.8 a | 1.7 b,*/1.8 b,* | 2.3 b,*/2.0 b,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, F.; Faria-Ribeiro, M.; Armengol, J.; Millán, M.S. Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses. Diagnostics 2023, 13, 1259. https://doi.org/10.3390/diagnostics13071259
Vega F, Faria-Ribeiro M, Armengol J, Millán MS. Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses. Diagnostics. 2023; 13(7):1259. https://doi.org/10.3390/diagnostics13071259
Chicago/Turabian StyleVega, Fidel, Miguel Faria-Ribeiro, Jesús Armengol, and María S. Millán. 2023. "Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses" Diagnostics 13, no. 7: 1259. https://doi.org/10.3390/diagnostics13071259
APA StyleVega, F., Faria-Ribeiro, M., Armengol, J., & Millán, M. S. (2023). Pitfalls of Using NIR-Based Clinical Instruments to Test Eyes Implanted with Diffractive Intraocular Lenses. Diagnostics, 13(7), 1259. https://doi.org/10.3390/diagnostics13071259