FRET Based Biosensor: Principle Applications Recent Advances and Challenges
Abstract
:1. Introduction
1.1. What Is the Importance of FRET in Biosensor?
1.2. Importance over Other Conventional Technique
1.3. Importance of FRET in Biosensor
1.4. Detection of Conformational Changes Using FRET
1.5. Determination of Inter and Intramolecular Interactions
1.6. Enzyme Kinetic Studies through FRET
2. FRET Description Details
2.1. Principle of FRET
2.2. Donor and Acceptor Fluorophores
2.3. Necessary Conditions for FRET
2.4. Spectral Overlap
2.5. FRET Measurement
2.6. Förster Radius
2.7. FRET Efficiency
2.8. Classical Methods for FRET Measurement
2.8.1. Organic Dyes as Fluorescent Probes in FRET
2.8.2. Fluorescent Proteins as Probes in FRET
2.8.3. Drawback of Organic Dye and Fluorescent Protein Fluorophore in FRET
2.8.4. Fluorescent QDs Based FRET
2.8.5. Fluorescent QDs as an Efficient Probe in FRET
2.8.6. Merits and Demerits of Fluorescent QDs Probe Used in FRET
2.8.7. Reusability of Quantum Dot-Based FRET Sensors
2.8.8. Limitations of QDs Fluorophore in FRET
2.8.9. AIEgens Based FRET
2.9. Role of FRET in Biosensing
2.10. Designing of FRET Biosensor
3. Applications of FRET Biosensor
3.1. Single Molecule FRET Biosensor
3.2. FRET-Based Biosensor for Point-of-Need Diagnosis
3.3. FRET Immunosensors
3.4. Enzymatic FRET Biosensor
3.5. Aptamer Based FRET Biosensor
3.6. Tissue Based FRET Biosensor
3.7. FRET-Based pH Sensor
3.8. FRET-Based Ion Sensor
3.9. FRET-Based Hard Water Sensor
3.10. FRET-Based Wearable Biosensor
3.11. Other FRET-Based Sensor
4. AI, ML and IOT in FRET-Based Biosensor: Future Prospective
4.1. AI and ML in FRET-Based Biosensor
4.2. IoT for FRET-Based Biosensor
4.3. Recent Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, F.; Yu, Y.; Wang, Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front. Bioeng. Biotechnol. 2020, 8, 595497. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Lamien-Meda, A.; Auer, H.; Wiedermann-Schmidt, U.; Chiodini, P.L.; Walochnik, J. Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites. PLoS ONE 2021, 16, e0252887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Didenko, V. V DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. Biotechniques 2001, 31, 1106–1121. [Google Scholar] [CrossRef] [Green Version]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.I.; Ghasemi, J.B. New FRET primers for quantitative real-time PCR. Anal. Bioanal. Chem. 2007, 387, 2737–2743. [Google Scholar] [CrossRef]
- Nath-Chowdhury, M.; Sangaralingam, M.; Bastien, P.; Ravel, C.; Pratlong, F.; Mendez, J.; Libman, M.; Ndao, M. Real-time PCR using FRET technology for Old World cutaneous leishmaniasis species differentiation. Parasites Vectors 2016, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yin, B.; Hao, J.; Ma, L.; Huang, Y.; Shao, X.; Li, C.; Chu, Z.; Yi, C.; Wong, S.H.D. An AIEgen/graphene oxide nanocomposite (AIEgen@ GO)-based two-stage “turn-on” nucleic acid biosensor for rapid detection of SARS-CoV-2 viral sequence. Aggregate 2022, 4, e195. [Google Scholar] [CrossRef]
- Rudkouskaya, A.; Sinsuebphon, N.; Ochoa, M.; Chen, S.J.; Mazurkiewicz, J.E.; Intes, X.; Barroso, M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020, 10, 10309–10325. [Google Scholar] [CrossRef]
- Szalai, A.M.; Siarry, B.; Lukin, J.; Giusti, S.; Unsain, N.; Cáceres, A.; Steiner, F.; Tinnefeld, P.; Refojo, D.; Jovin, T.M. Super-resolution imaging of energy transfer by intensity-based STED-FRET. Nano Lett. 2021, 21, 2296–2303. [Google Scholar] [CrossRef]
- Verma, A.K.; Ansari, Z.A. Fluorescent ZnO quantum dot probe to study glucose–glucose oxidase interaction via fluorescence resonance energy transfer. Sens. Lett. 2020, 18, 351–365. [Google Scholar] [CrossRef]
- Rasnik, I.; McKinney, S.A.; Ha, T. Surfaces and orientations: Much to FRET about? Acc. Chem. Res. 2005, 38, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Calleja, V.; Ameer-Beg, S.M.; Vojnovic, B.; Woscholski, R.; Downward, J.; Larijani, B. Monitoring Conformational Changes of Proteins in Cells by Fluorescence Lifetime Imaging Microscopy. 2003. Available online: https://pdfs.semanticscholar.org/3283/c250bdfbcaf051d8f3e1c8a26f5a5a2a3fee.pdf (accessed on 2 December 2018).
- Sielaff, H.; Singh, D.; Grüber, G.; Börsch, M. Analyzing Conformational Changes in Single FRET-Labeled A1 Parts of Archaeal A1AO-ATP Synthase. Available online: https://arxiv.org/ftp/arxiv/papers/1801/1801.04692.pdf (accessed on 2 December 2018).
- Truong, K. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 2001, 11, 573–578. [Google Scholar] [CrossRef]
- Miranda, J.G.; Weaver, A.L.; Qin, Y.; Park, J.G.; Stoddard, C.I.; Lin, M.; Palmer, A.E. New Alternately Colored FRET Sensors for Simultaneous Monitoring of Zn2+ in Multiple Cellular Locations. PLoS ONE 2012, 7, e49371. [Google Scholar] [CrossRef]
- Corradi, G.R.; Adamo, H.P. Intra-molecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. J. Biol. Chem. 2007, 282, 35440–35448. [Google Scholar] [CrossRef] [Green Version]
- Baruch, A.; A Jeffery, D.; Bogyo, M. Enzyme activity—It’s all about image. Trends Cell Biol. 2004, 14, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.L.; Bradshaw, D.S.; Dinshaw, R.; Scholes, G.D. Resonance Energy Transfer. Photonics Sci. Found. Technol. Appl. 2015, 4, 101–127. [Google Scholar] [CrossRef]
- Van Der Meer, B.W. Resonance Energy Transfer: Theory and Data; Van Der Meer, B.W., Coker, G., III, Simon Chen, S.Y., Eds.; Wiley: Hoboken, NJ, USA, 1994; Available online: https://www.amazon.com/Resonance-Energy-Transfer-Theory-Data/dp/0471185892 (accessed on 5 December 2017).
- Forster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 1946, 33, 166–175. [Google Scholar] [CrossRef]
- Andrews, D.L.; Bradshaw, D.S. Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach. Eur. J. Phys. 2004, 25, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Van Munster, E.B.; Kremers, G.J.; Adjobo-Hermans, M.J.W.; Gadella, T. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J. Microsc. 2005, 218, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Cano-Raya, C.; Fernández-Ramos, M.D.; Capitán-Vallvey, L.F. Fluorescence resonance energy transfer disposable sensor for copper(II). Anal. Chim. Acta 2006, 555, 299–307. [Google Scholar] [CrossRef]
- Sekar, R.B.; Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 2003, 160, 629–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R. Introduction to Fluorescence. In Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006; pp. 1–26. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006; Available online: http://nathan.instras.com/MyDocsDB/doc-800.pdf (accessed on 27 November 2018).
- Stryer, L. Fluorescence Energy Transfer as a Spectroscopic Ruler. Annu. Rev. Biochem. 1978, 47, 819–846. [Google Scholar] [CrossRef]
- Chirio-Lebrun, M.-C.; Prats, M. Fluorescence resonance energy transfer (FRET): Theory and experiments. Biochem. Educ. 1998, 26, 320–323. [Google Scholar] [CrossRef]
- Selvin, P.R. Fluorescence resonance energy transfer. Methods Enzymol. 1995, 246, 300–334. [Google Scholar] [CrossRef]
- Andrews, D.L. A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 1989, 135, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Schobel, U.; Egelhaaf, H.-J.; Brecht, A.; Oelkrug, D.; Gauglitz, G. New Donor−Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chem. 1999, 10, 1107–1114. [Google Scholar] [CrossRef]
- Rowland, C.E.; Brown, C.W.; Medintz, I.L.; Delehanty, J.B. Intracellular FRET-based probes: A review. Methods Appl. Fluoresc. 2015, 3, 042006. [Google Scholar] [CrossRef]
- Nagai, T.; Ibata, K.; Park, E.S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.T.; Olm, M.R.; Thomas, B.C.; Banfield, J.F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 2016, 34, 1256–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, M.; Ozawa, T.; Inukai, K.; Asano, T.; Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 2002, 20, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Szöllosi, J.; Damjanovich, S.; Mátyus, J. Application of Fluorescence Resonance Energy Transfer in the Clinical Laboratory: Routine and Research. Cytometry 1998, 34, 159–179. [Google Scholar]
- Zhang, Y.; Zhang, H.; Hollins, J.; Webb, M.E.; Zhou, D. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein. Phys. Chem. Chem. Phys. 2011, 13, 19427–19436. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Bajar, B.T.; Wang, E.S.; Zhang, S.; Lin, M.Z.; Chu, J. A guide to fluorescent protein FRET pairs. Sensors 2016, 16, 1488. [Google Scholar] [CrossRef]
- Day, R.N.; Davidson, M.W. Imaging probes for microscopy Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. Bioessays 2012, 34, 341–350. [Google Scholar] [CrossRef]
- Piston, D.W.; Kremers, G.-J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci. 2007, 32, 407–414. [Google Scholar] [CrossRef]
- Bhuckory, S.; Lahtinen, S.; Hoysniemi, N.; Guo, J.; Qiu, X.; Soukka, T.; Hildebrandt, N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. Nano Lett. 2023, 23, 2253–2261. [Google Scholar] [CrossRef]
- Ouyang, N.; Hong, L.; Zhou, Y.; Zhang, J.; Shafi, S.; Pan, J.; Zhao, R.; Yang, Y.; Hou, W. Application of fluorescent nano-biosensor for the detection of cancer bio-macromolecular markers. Polym. Test. 2022, 115, 107746. [Google Scholar] [CrossRef]
- Hutchins, B.M.; Morgan, T.T.; Ucak-Astarlioglu, M.G.; Williams, M.E. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes. J. Chem. Educ. 2007, 84, 1301. [Google Scholar] [CrossRef]
- Dong, H.; Gao, W.; Yan, F.; Ji, H.; Ju, H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 2010, 82, 5511–5517. [Google Scholar] [CrossRef]
- Jensen, E.C. Use of Fluorescent Probes: Their Effect on Cell Biology and Limitations. Anat. Rec. 2012, 295, 2031–2036. [Google Scholar] [CrossRef]
- Li, Z.-H.; Peng, J.; Chen, H.-L. Bioconjugated Quantum Dots as Fluorescent Probes for Biomedical Imaging. J. Nanosci. Nanotechnol. 2011, 11, 7521–7536. [Google Scholar] [CrossRef]
- Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.; Tomlinson, I.D. Biocompatible Quantum Dots for Biological Applications. Chem. Biol. 2011, 18, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Ballou, B.; Lagerholm, B.C.; Ernst, L.A.; Bruchez, M.P.; Waggoner, A.S. Noninvasive Imaging of Quantum Dots in Mice. Bioconjugate Chem. 2004, 15, 79–86. [Google Scholar] [CrossRef]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef]
- Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G. Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. [Google Scholar] [CrossRef]
- Kim, G.B.; Kim, Y.-P. Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2012, 2, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Disadvantages of Quantum Dots. Available online: http://bme240.eng.uci.edu/students/07s/yokabe/disadvantages.htm (accessed on 2 December 2018).
- Zheng, A.-X.; Wang, J.-R.; Li, J.; Song, X.-R.; Chen, G.-N.; Yang, H.-H. Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly. Biosens. Bioelectron. 2012, 36, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.G.; Alseikhan, B.A.; Peterson, B.Z.; Yue, D.T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 2001, 31, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruckh, T.T.; Clark, H.A. Implantable nanosensors: Toward continuous physiologic monitoring. Anal. Chem. 2014, 86, 1314–1323. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tian, X.; Li, Y.; Yang, C.; Huang, Y.; Nie, Y. Rapid and sensitive screening of multiple polycyclic aromatic hydrocarbons by a reusable fluorescent sensor array. J. Hazard. Mater. 2022, 424, 127694. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Kwok, R.T.K.; Wang, J.; Zhang, H.; Lam, J.W.Y.; Li, Y.; Zhang, P.; Zou, H.; Gu, X.; Li, F. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J. Mater. Chem. B 2018, 6, 3894–3903. [Google Scholar] [CrossRef]
- Gong, G.; Wu, H.; Zhang, T.; Wang, Z.; Li, X.; Xie, Y. Aggregation-enhanced emission in tetraphenylpyrazine-based luminogens: Theoretical modulation and experimental validation. Mater. Chem. Front. 2021, 5, 5012–5023. [Google Scholar] [CrossRef]
- Kraynov, V.S. Localized Rac Activation Dynamics Visualized in Living Cells. Science 2000, 290, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinski, O.J.; Birch, D.J. Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005, 20, 2555–2565. [Google Scholar] [CrossRef]
- Zadran, S.; Standley, S.; Wong, K.; Otiniano, E.; Amighi, A.; Baudry, M. Fluorescence resonance energy transfer (FRET)-based biosensors: Visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol. 2012, 96, 895–902. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, T. Developments in FRET- and BRET-Based Biosensors. Micormachines 2022, 13, 1789. [Google Scholar] [CrossRef]
- Kudlacek, O.; Gsandtner, I.; Ibrišimović, E.; Nanoff, C. Fluorescence resonance energy transfer (FRET) sensors. BMC Pharmacol. 2008, 8, A44. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, G.; Velmurugan, K.; David, C.I.; Nandhakumar, R. Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. Appl. Sci. 2022, 12, 6844. [Google Scholar] [CrossRef]
- Pham, H.; Hoseini Soflaee, M.; Karginov, A.V.; Miller, L.W. Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity. Sci. Rep. 2022, 12, 5291. [Google Scholar] [CrossRef]
- Park, D.H.; Choi, M.Y.; Choi, J.H. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors 2022, 12, 1121. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Wang, H.; Yin, B.; Wong, S.H.D.; Zhang, A.P.; Tam, H.-Y. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection. Biosens. Bioelectron. 2022, 218, 114761. [Google Scholar] [CrossRef]
- Lakard, S.; Pavel, I.-A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.S.; Quargnali, G.; Chang, C.J. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS Bio. Med. Chem. Au 2022, 2, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.-P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef] [PubMed]
- LaCroix, A.S.; Rothenberg, K.E.; Berginski, M.E.; Urs, A.N.; Hoffman, B.D. Construction, imaging, and analysis of FRET-based tension sensors in living cells. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 125, pp. 161–186. ISBN 0091-679X. [Google Scholar]
- Rizzo, M.A.; Springer, G.H.; Granada, B.; Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 2004, 22, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Campbell, R.E.; Ting, A.Y.; Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918. [Google Scholar] [CrossRef]
- Chung, C.Y.-S.; Posimo, J.M.; Lee, S.; Tsang, T.; Davis, J.M.; Brady, D.C.; Chang, C.J. Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc. Natl. Acad. Sci. USA 2019, 116, 18285–18294. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Chen, Q.; Yang, Y.; Tang, Y.; Wang, R.; Xu, Y.; Zhu, W.; Qian, X. FRET-based mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: Dyad of Cy3 and Cy5. J. Am. Chem. Soc. 2016, 138, 10778–10781. [Google Scholar] [CrossRef]
- Li, D.-P.; Wang, Z.-Y.; Cao, X.-J.; Cui, J.; Wang, X.; Cui, H.-Z.; Miao, J.-Y.; Zhao, B.-X. A mitochondria-targeted fluorescent probe for ratiometric detection of endogenous sulfur dioxide derivatives in cancer cells. Chem. Commun. 2016, 52, 2760–2763. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Zhang, X.; Yang, S.; Chen, Y.; Guo, J.; Li, X.; Qing, Z.; Yang, R. A TP-FRET-based two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues. Chem. Commun. 2016, 52, 10289–10292. [Google Scholar] [CrossRef]
- Goldsmith, S.J. Radioimmunoassay: Review of basic principles. In Seminars in Nuclear Medicine; Elsevier: Amsterdam, The Netherlands, 1975; Volume 5, pp. 125–152. [Google Scholar]
- Wang, X.; Cohen, L.; Wang, J.; Walt, D.R. Competitive Immunoassays for the Detection of Small Molecules Using Single Molecule Arrays. J. Am. Chem. Soc. 2018, 140, 18132–18139. [Google Scholar] [CrossRef]
- Li, Y.-F.; Sun, Y.-M.; Beier, R.C.; Lei, H.-T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TrAC Trends Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B Chem. 2007, 121, 158–177. [Google Scholar] [CrossRef]
- Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 2012, 6, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, M.; Ippodrino, R.; Marini, B.; Palleschi, G.; Porchetta, A. Antibody-mediated small molecule detection using programmable DNA-switches. Anal. Chem. 2018, 90, 8196–8201. [Google Scholar] [CrossRef]
- Brandhorst, G.; Oellerich, M.; Maine, G.; Taylor, P.; Veen, G.; Wallemacq, P. Liquid chromatography–tandem mass spectrometry or automated immunoassays: What are the future trends in therapeutic drug monitoring? Clin. Chem. 2012, 58, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, S.C. Solutions and challenges in sample preparation for chromatography. J. Chromatogr. Sci. 2004, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Chen, L.; Choo, J. Optical nanoprobes for ultrasensitive immunoassay. Anal. Chem. 2017, 89, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Su, F.; Weber, W.; Nandakumar, V.; Shumway, B.R.; Jin, Y.; Zhou, X.; Holl, M.R.; Johnson, R.H.; Meldrum, D.R. A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials 2010, 31, 7411–7422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, M.; Diwan, H.; Khan, I.; Ahmad, A. Genetically encoded FRET-based nanosensor for in vivo monitoring of zinc concentration in physiological environment of living cell. Biochem. Eng. J. 2015, 102, 62–68. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Qian, X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem. 2008, 120, 8145–8149. [Google Scholar] [CrossRef]
- Aich, K.; Goswami, S.; Das, S.; Mukhopadhyay, C.D.; Quah, C.K.; Fun, H.-K. Cd2+ triggered the FRET “ON”: A new molecular switch for the ratiometric detection of Cd2+ with live-cell imaging and bound X-ray structure. Inorg. Chem. 2015, 54, 7309–7315. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 2019, 138, 111314. [Google Scholar] [CrossRef]
- Aydin, M.; Aydin, E.B.; Sezgintürk, M.K. Advances in immunosensor technology. Adv. Clin. Chem. 2021, 102, 1–62. [Google Scholar]
- Kumar, M.; Guo, Y.; Zhang, P. Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles. Biosens. Bioelectron. 2009, 24, 1522–1526. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Joshi, P.; Alazemi, A.; Zhang, P. Upconversion nanoparticle-based ligase-assisted method for specific and sensitive detection of T790M mutation in epidermal growth factor receptor. Biosens. Bioelectron. 2014, 62, 120–126. [Google Scholar] [CrossRef]
- He, L.; Wu, X.; Meylan, F.; Olson, D.P.; Simone, J.; Hewgill, D.; Siegel, R.; Lipsky, P.E. Monitoring caspase activity in living cells using fluorescent proteins and flow cytometry. Am. J. Pathol. 2004, 164, 1901–1913. [Google Scholar] [CrossRef] [Green Version]
- Haab, B.B. Methods and applications of antibody microarrays in cancer research. Proteomics 2003, 3, 2116–2122. [Google Scholar] [CrossRef]
- Xu, W.; Xiong, Y.; Lai, W.; Xu, Y.; Li, C.; Xie, M. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots. Biosens. Bioelectron. 2014, 56, 144–150. [Google Scholar] [CrossRef]
- Knopp, D. Immunoassay Development for Environmental Analysis; Springer: Cham, Switzerland, 2006. [Google Scholar]
- Kattke, M.D.; Gao, E.J.; Sapsford, K.E.; Stephenson, L.D.; Kumar, A. FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 2011, 11, 6396–6410. [Google Scholar] [CrossRef]
- Pan, Y.; Wei, X. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters. Anal. Chim. Acta 2022, 1224, 340235. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Choudhary, M.; Singh, H. Carbon dots and graphene oxide based FRET immunosensor for sensitive detection of Helicobacter pylori. Anal. Biochem. 2022, 654, 114801. [Google Scholar] [CrossRef] [PubMed]
- Serebrennikova, K.V.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J. Food Compos. Anal. 2022, 114, 104806. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Yang, W.; Han, D.; Yao, N.; Zhao, H.; Chu, X.; Liang, X.; Bi, C.; Wang, C. Fluorescent immunosensor based on fluorescence resonance energy transfer between CdSe/ZnS quantum dots and Au nanorods for PRRSV detection. Prog. Nat. Sci. Mater. Int. 2022, 32, 157–162. [Google Scholar] [CrossRef]
- Huang, J.; Wei, F.; Cui, Y.; Hou, L.; Lin, T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv. 2022, 12, 31369–31379. [Google Scholar] [CrossRef]
- Chopra, A.; Swami, A.; Sharma, R.; Devi, N.; Mittal, S.; Sharma, R.K.; Wangoo, N. Femtomolar detection of staphylococcal enterotoxin ‘B’using a fluorescent quantum dot based hybrid Apta-immunosensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 287, 122036. [Google Scholar] [CrossRef]
- Kumari, P.; Patel, M.K.; Kumar, P.; Nayak, M.K. Carbon Dots Conjugated Antibody as an Effective FRET-Based Biosensor for Progesterone Hormone Screening. Biosensors 2022, 12, 993. [Google Scholar]
- Tade, R.S.; Patil, P.O. Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchem. J. 2022, 183, 107971. [Google Scholar] [CrossRef]
- Yang, A.; Su, Y.; Zhang, Z.; Wang, H.; Qi, C.; Ru, S.; Wang, J. Preparation of graphene quantum dots by visible-fenton reaction and ultrasensitive label-free immunosensor for detecting lipovitellin of paralichthys olivaceus. Biosensors 2022, 12, 246. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, X.; Su, B.; Chen, Q.; Cao, H.; Yun, Y.; Xu, Y.; Hammock, B.D. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. J. Hazard. Mater. 2020, 387, 121678. [Google Scholar] [CrossRef]
- Wang, X.; Niessner, R.; Tang, D.; Knopp, D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal. Chim. Acta 2016, 912, 10–23. [Google Scholar] [CrossRef]
- Lee, O.J.; Ju, H.W.; Kim, J.H.; Lee, J.M.; Ki, C.S.; Kim, J.H.; Moon, B.M.; Park, H.J.; Sheikh, F.A.; Park, C.H. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J. Biomed. Nanotechnol. 2014, 10, 1294–1303. [Google Scholar] [CrossRef]
- Lee, J.; Samson, A.A.S.; Song, J.M. Peptide substrate-based inkjet printing high-throughput MMP-9 anticancer assay using fluorescence resonance energy transfer (FRET). Sens. Actuators B Chem. 2018, 256, 1093–1099. [Google Scholar] [CrossRef]
- Mertens, H.D.T.; Piljić, A.; Schultz, C.; Svergun, D.I. Conformational analysis of a genetically encoded FRET biosensor by SAXS. Biophys. J. 2012, 102, 2866–2875. [Google Scholar] [CrossRef] [Green Version]
- Kikhney, A.G.; Svergun, D.I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015, 589, 2570–2577. [Google Scholar] [CrossRef] [Green Version]
- Faccio, G.; Salentinig, S. Enzyme-triggered dissociation of a FRET-Based protein biosensor monitored by synchrotron SAXS. Biophys. J. 2017, 113, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.S.; Singh, A.; Garg, N.; Singh, N. Carbon dot based, naphthalimide coupled FRET pair for highly selective ratiometric detection of thioredoxin reductase and cancer screening. ACS Appl. Mater. Interfaces 2017, 9, 25847–25856. [Google Scholar] [CrossRef]
- Shi, L.; De Paoli, V.; Rosenzweig, N.; Rosenzweig, Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 2006, 128, 10378–10379. [Google Scholar] [CrossRef]
- Wang, X.; Xia, Y.; Liu, Y.; Qi, W.; Sun, Q.; Zhao, Q.; Tang, B. Dual-Luminophore-Labeled Gold Nanoparticles with Completely Resolved Emission for the Simultaneous Imaging of MMP-2 and MMP-7 in Living Cells under Single Wavelength Excitation. Chem. Eur. J. 2012, 18, 7189–7195. [Google Scholar] [CrossRef]
- Li, S.Y.; Liu, L.H.; Cheng, H.; Li, B.; Qiu, W.X.; Zhang, X.Z. A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem. Commun. 2015, 51, 14520–14523. [Google Scholar] [CrossRef]
- Ghosh, S.; Singharoy, D.; Bhattacharya, S.C. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 195, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Ding, L.; Ju, H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. [Google Scholar] [CrossRef]
- Famulok, M.; Hartig, J.S.; Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 2007, 107, 3715–3743. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, H.; Xu, J.; Zhang, Y.; Wu, Y.; Wang, L. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem. Eur. J. 2014, 20, 2888–2894. [Google Scholar] [CrossRef]
- Auer, A.; Strauss, M.T.; Schlichthaerle, T.; Jungmann, R. Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano Lett. 2017, 17, 6428–6434. [Google Scholar] [CrossRef]
- Wu, B.; Cao, Z.; Zhang, Q.; Wang, G. NIR-responsive DNA hybridization detection by high efficient FRET from 10-nm upconversion nanoparticles to SYBR green I. Sens. Actuators B Chem. 2018, 255, 2853–2860. [Google Scholar] [CrossRef]
- Climent, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M.D.; Soto, J.; Maquieira, A.; Amorós, P. Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7281–7283. [Google Scholar] [CrossRef]
- Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzán, L.M.; Xu, C. MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew. Chem. Int. Ed. 2018, 57, 10544–10548. [Google Scholar] [CrossRef]
- Jeng, S.C.Y.; Trachman, R.J.; Weissenboeck, F.; Truong, L.; Link, K.A.; Jepsen, M.D.E.; Knutson, J.R.; Andersen, E.S.; Ferré-D’Amaré, A.R.; Unrau, P.J. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. Rna 2021, 27, 433–444. [Google Scholar] [CrossRef]
- Jepsen, M.D.E.; Sparvath, S.M.; Nielsen, T.B.; Langvad, A.H.; Grossi, G.; Gothelf, K.V.; Andersen, E.S. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun. 2018, 9, 18. [Google Scholar] [CrossRef]
- Tian, J.; Wei, W.; Wang, J.; Ji, S.; Chen, G.; Lu, J. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Anal. Chim. Acta 2018, 1000, 265–272. [Google Scholar] [CrossRef]
- Bouchaala, R.; Mercier, L.; Andreiuk, B.; Mély, Y.; Vandamme, T.; Anton, N.; Goetz, J.G.; Klymchenko, A.S. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J. Control. Release 2016, 236, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436. [Google Scholar] [CrossRef]
- Dey, D.; Bhattacharjee, D.; Chakraborty, S.; Hussain, S.A. Development of hard water sensor using fluorescence resonance energy transfer. Sens. Actuators B Chem. 2013, 184, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Sahare, P.D.; Sharma, V.K.; Mohan, D.; Rupasov, A.A. Energy transfer studies in binary dye solution mixtures: Acriflavine+ Rhodamine 6G and Acriflavine+ Rhodamine, B. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 1257–1264. [Google Scholar] [CrossRef]
- Hussain, S.A.; Chakraborty, S.; Bhattacharjee, D.; Schoonheydt, R.A. Fluorescence Resonance Energy Transfer between organic dyes adsorbed onto nano-clay and Langmuir–Blodgett (LB) films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Saha, J.; Roy, A.D.; Dey, D.; Nath, J.; Bhattacharjee, D.; Hussain, S.A. Development of arsenic (v) sensor based on fluorescence resonance energy transfer. Sens. Actuators B Chem. 2017, 241, 1014–1023. [Google Scholar] [CrossRef]
- Saha, J.; Suklabaidya, S.; Nath, J.; Datta Roy, A.; Dey, B.; Dey, D.; Bhattacharjee, D.; Hussain, S.A. Fluorescence-and FRET-based mercury (II) sensor. Int. J. Environ. Anal. Chem. 2020, 100, 789–807. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Deng, P.; Li, J.; Xu, L.; Tang, S. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin. Mater. Sci. Eng. B 2017, 218, 31–39. [Google Scholar] [CrossRef]
- Kikuchi, K.; Takakusa, H.; Nagano, T. Recent advances in the design of small molecule-based FRET sensors for cell biology. TrAC Trends Anal. Chem. 2004, 23, 407–415. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, S.; Jiang, Y.; Ma, H.; Shi, M.; Wang, Q.; Zhong, W.; Liao, W.; Xing, M.M.Q. Doxorubicin-loaded single wall nanotube thermo-sensitive hydrogel for gastric cancer chemo-photothermal therapy. Adv. Funct. Mater. 2015, 25, 4730–4739. [Google Scholar] [CrossRef]
- Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater. 2016, 15, 353–363. [Google Scholar] [CrossRef]
- Kearney, C.J.; Mooney, D.J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 2013, 12, 1004–1017. [Google Scholar] [CrossRef]
- Huang, P.; Song, H.; Zhang, Y.; Liu, J.; Cheng, Z.; Liang, X.-J.; Wang, W.; Kong, D.; Liu, J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017, 145, 81–91. [Google Scholar] [CrossRef]
- Zaman, M.A.; Ren, W.; Wu, M.; Padhy, P.; Hesselink, L. Topological visualization of the plasmonic resonance of a nano C-aperture. Appl. Phys. Lett. 2023, 122, 81107. [Google Scholar] [CrossRef]
- Saha, J.; Dey, D.; Roy, A.D.; Bhattacharjee, D.; Hussain, S.A. Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B. J. Lumin. 2016, 172, 168–174. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
Analyte | Causing/Biosensor | Donor | Acceptor | LOD | CR | Year | Ref. |
---|---|---|---|---|---|---|---|
Detection of PRRSV | Immunosensor | CdSe/ZnS | AuNRs | 0.55 TCID50/mL | 101–3.5 × 104 TCID50/mL | 2022 | [113] |
Tumor biomarker | Immunosensor | First antibody labeled Si/NS-CDs | Second antibody labeled Au/AgNPs | NA | NA | 2022 | [114] |
Detection of Staphylococcal enterotoxin B (SEB) | Immunosensor/Food Poisoning | QDs/SEB | SEB/Antibody | <1 ng/mL | 20 ng/kg of body weight | 2022 | [115] |
Progesterone hormone screening | Immunosensor | CDs | GO | 13.8 nM | 10–900 nM | 2022 | [116] |
Detection of MAGE- A11 antigen | Immunosensor | GQD/anti-MAGE-A11 | Graphene nanosheets | 5.6 pg/mL | 0.05–5 µg/mL | 2022 | [117] |
OTA | Immunosensor | Amino methyl fluorescein AMF | AuNps | 0.02 ng/mL | NA | 2022 | [112] |
Dicofol | Immunosensor | Au/Ag NCs in PADs and Au/Ag NCs antigen donor in liquid | Au/NFs antibody | 0.170 ng/mL in PADs and 0.185 ng/mL in liquid | NA | 2022 | [110] |
Detection of helicobacter pylori | Immunosensor | FCDs | Graphene oxide | 10 cells/mL | 5–107 cells/mL | 2022 | [111] |
Detection of Lipovitelline of paralichthys Olivaceous | Immunosensor | afGQDs/anti-lv/mAb | rGO | 0.9 pg/mL | 0.001–1500 ng/mL | 2022 | [118] |
Ochratoxin A (OTA) in agro products | Immunosensor/contamination of food | OTA | Nb (nanobody) | 5 pg/mL in 5 min | NA | 2020 | [119] |
Zn | Impaired immune system | CFP | YFP | 5 µM | 5–2 µM | 2015 | [98] |
Aflatoxin B1 | Immunosensor | Red QDs | Green QDs | 0.13 pM | 0.190.16 pM | 2014 | [120] |
Detection of | Causing/Biosensor | Donor | Acceptor | LOD | CR | Year | Ref. |
---|---|---|---|---|---|---|---|
Sensitive inkjet printing FRET biosensor | Enzymatic | 5-FAM | QXL520 | NA | NA | 2018 | [122] |
Synthesized pyrimidine derivatives | Enzymatic | BSA/HSA | ANHP | NA | NA | 2018 | [130] |
Monitoring of Enzyme activity at living cell surface | Enzymatic | Supramolecular Terbium (Tb) | Zwitterionic ligand coated QDs | 40 pM | NA | 2018 | [131] |
Neutrophil elastase | Enzymatic | CFP | YFP | NA | NA | 2017 | [125] |
Thioredoxin reductase activity monitoring in cancer cells using biotin-CDs-naphthalimide biosensor | Enzymatic | Carbon dots | Naphthalimide | 7.2 × 10−8 M | 0–1 µg/mL | 2017 | [126] |
Detection of paraoxon among organophosphate pesticides | Enzymatic biosensor | Tryptophan | IAEDANS fluorophores | NA | NA | 2017 | [132] |
Cancer drug screening, therapeutic effect, and MMP-2 and caspase-3 evaluation | Enzymatic | FAM | Dabcyl | NA | NA | 2015 | [91] |
Imaging of intracellular telomerase (in situ “on-off”) activity through telomerase-responsive MSN | Enzymatic | Mesoporous silica nanoparticle (MSN) | Black hole fluorescence quencher (BHQ | NA | NA | 2013 | [133] |
MMP-2 and MMP-7 imaging through double-labeled FRET-biosensor | Enzymatic | AuNPs | Dye | NA | NA | 2012 | [15] |
MMP-9, MMP-2 (proteases collagenase) | Enzymatic | QDs | Rhodamine | NA | 5 µg/mL | 2006 | [57] |
RNA junction | RNA aptamer | fluorescent aptamers Broccoli | Mango III | NA | NA | 2021 | [140] |
DNA hybridization detection | DNA aptamer | Upconversion nanoparticles | SYBER green I | 3.2 nM | 7.6 nM | 2018 | [137] |
Tracking RNA molecules in E. coli | Aptamer | Spinach/DFHBI-1T | Mango/YO3 | NA | NA | 2018 | [141] |
Ochratoxin A (OTA) | DNA aptamer | colloidal cerium oxide nanoparticles | graphene quantum dots | 2.5 pg/mL | 0.01–20 ng/mL | 2017 | [142] |
Ochratoxin A (OTA) | DNA aptamer | colloidal cerium oxide nanoparticles | graphene quantum dots | 2.5 pg/mL | 0.01–20 ng/mL | 2017 | [142] |
Acid active tumor targeting nanoplatform | Tissue Based | Camptothesin (CPT) | Maleimide thieoether | NA | 500 µg/mL | 2018 | [86] |
Fluorescent nano emulsion droplets (NEDs) | Tissue Based | 1% of Cy5.5LP | 1% of Cy7.5LP | NA | NA | 2016 | [143] |
Detection of doxorubicin | Other FRET sensor | Carbon dots | Doxorubicin | 13.8 nM | 0.8 mg/mL | 2017 | [150] |
Thermos sensitive nanoscale monitoring | Thermal Biosensor | FITC | Rhodamine B | 10 nM | NA | 2017 | [155] |
Multistep FRET system | Other FRET sensor | Py or pyrene | Acf or acriflaviv | NA | Na | 2016 | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. https://doi.org/10.3390/diagnostics13081375
Verma AK, Noumani A, Yadav AK, Solanki PR. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics. 2023; 13(8):1375. https://doi.org/10.3390/diagnostics13081375
Chicago/Turabian StyleVerma, Awadhesh Kumar, Ashab Noumani, Amit K. Yadav, and Pratima R. Solanki. 2023. "FRET Based Biosensor: Principle Applications Recent Advances and Challenges" Diagnostics 13, no. 8: 1375. https://doi.org/10.3390/diagnostics13081375
APA StyleVerma, A. K., Noumani, A., Yadav, A. K., & Solanki, P. R. (2023). FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics, 13(8), 1375. https://doi.org/10.3390/diagnostics13081375