Validation of an Automated Cardiothoracic Ratio Calculation for Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Dataset
2.2. Neural Network/Deep-Learning Model for Semantic Segmentation
2.3. Experimental Settings
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Performance in Image Segmentation of the Lungs and Heart
3.3. Comparison between Automatic and Manual CTR Calculation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danzer, C.S. The Cardiothoracic Ratio. Am. J. Med. Sci. 1919, 157, 513–554. [Google Scholar] [CrossRef]
- Truszkiewicz, K.; Poręba, R.; Gać, P. Radiological Cardiothoracic Ratio in Evidence-Based Medicine. J. Clin. Med. 2021, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Saiviroonporn, P.; Rodbangyang, K.; Tongdee, T.; Chaisangmongkon, W.; Yodprom, P.; Siriapisith, T.; Wonglaksanapimon, S.; Thiravit, P. Cardiothoracic ratio measurement using artificial intelligence: Observer and method validation studies. BMC Med. Imaging 2021, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.S.; Shah, P.H.; Nijhawan, K.; Aggarwal, S.; Arora, R. Cardiothoracic ratio for prediction of left ventricular dilation: A systematic review and pooled analysis. Future Cardiol. 2015, 11, 171–175. [Google Scholar] [CrossRef]
- Yotsueda, R.; Taniguchi, M.; Tanaka, S.; Eriguchi, M.; Fujisaki, K.; Torisu, K.; Masutani, K.; Hirakata, H.; Kitazono, T.; Tsuruya, K. Cardiothoracic Ratio and All-Cause Mortality and Cardiovascular Disease Events in Hemodialysis Patients: The Q-Cohort Study. Am. J. Kidney Dis. 2017, 70, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ookawara, S.; Ueda, Y.; Miyazawa, H.; Yamada, H.; Goto, S.; Ishii, H.; Shindo, M.; Kitano, T.; Hirai, K.; et al. A Higher Cardiothoracic Ratio Is Associated with 2-Year Mortality after Hemodialysis Initiation. Nephron Extra 2015, 5, 100–110. [Google Scholar] [CrossRef]
- Giamouzis, G.; Sui, X.; Love, T.E.; Butler, J.; Young, J.B.; Ahmed, A. A propensity-matched study of the association of cardiothoracic ratio with morbidity and mortality in chronic heart failure. Am. J. Cardiol. 2008, 101, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, J.J.; Usvyat, L.A.; Sullivan, T.; Segal, J.H.; Zabetakis, P.; Kotanko, P.; Maddux, F.W.; Diaz-Buxo, J.A. Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome. Hemodial. Int. 2014, 18, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Loutradis, C.N.; Tsioufis, C.; Sarafidis, P.A. The Clinical Problems of Hypertension Treatment in Hemodialysis Patients. Curr. Vasc. Pharmacol. 2017, 16, 54–60. [Google Scholar] [CrossRef]
- Agarwal, R. Volume overload in dialysis: The elephant in the room, no one can see. Am. J. Nephrol. 2013, 38, 75–77. [Google Scholar] [CrossRef]
- Kim, M.; Lee, B.-D. Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network. Sensors 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Luo, J.; Yang, Y.; Wang, W.; Deng, J.; Yu, L. Automatic lung segmentation in chest X-ray images using improved U-Net. Sci. Rep. 2022, 12, 8649. [Google Scholar] [CrossRef]
- Ajmera, P.; Kharat, A.; Gupte, T.; Pant, R.; Kulkarni, V.; Duddalwar, V.; Lamghare, P. Observer performance evaluation of the feasibility of a deep learning model to detect cardiomegaly on chest radiographs. Acta Radiol. Open 2022, 11, 20584601221107345. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, Y.S.; Kim, M.; Usman, M.; Byon, S.S.; Kim, S.H.; Lee, B.I.; Lee, B.D. Evaluation of the feasibility of explainable computer-aided detection of cardiomegaly on chest radiographs using deep learning. Sci. Rep. 2021, 11, 16885. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yin, X.; Zhang, T.; Feng, Y.; Zhao, Y.; Jin, M.; Peng, M.; Xing, C.; Li, F.; Wang, Z.; et al. Detection and Semiquantitative Analysis of Cardiomegaly, Pneumothorax, and Pleural Effusion on Chest Radiographs. Radiology Artif. Intell. 2021, 3, e200172. [Google Scholar] [CrossRef]
- van Ginneken, B.; Stegmann, M.B.; Loog, M. Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Med. Image Anal. 2006, 10, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Shaik, L.; Thotamgari, S.R.; Kowtha, P.; Ranjha, S.; Shah, R.N.; Kaur, P.; Subramani, R.; Katta, R.R.; Kalaiger, A.M.; Singh, R. A Spectrum of Pulmonary Complications Occurring in End-Stage Renal Disease Patients on Maintenance Hemodialysis. Cureus 2021, 13, e15426. [Google Scholar] [CrossRef]
- Kabil, A.; Shawky, F.; Nour, M.; Makboul, K. Prevalence of Pulmonary Disorders in Patients with End Stage Renal Disease on Hemodialysis. Egypt. J. Hosp. Med. 2019, 76, 3232–3236. [Google Scholar] [CrossRef]
- Wang, I.K.; Lin, K.H.; Lin, S.Y.; Lin, C.L.; Chang, C.T.; Yen, T.H.; Sung, F.C. Permanent cardiac pacing in patients with end-stage renal disease undergoing dialysis. Nephrol. Dial. Transpl. 2016, 31, 2115–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candemir, S.; Antani, S. A review on lung boundary detection in chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, J.; Katsuragawa, S.; Ikezoe, J.; Matsumoto, T.; Kobayashi, T.; Komatsu, K.-I.; Matsui, M.; Fujita, H.; Kodera, Y.; Doi, K. Development of a Digital Image Database for Chest Radiographs with and without a Lung Nodule. Am. J. Roentgenol. 2000, 174, 71–74. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Shvets, A.A.; Iglovikov, V.I.; Rakhlin, A.; Kalinin, A.A. Angiodysplasia Detection and Localization Using Deep Convolutional Neural Networks. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 612–617. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Candemir, S.; Rajaraman, S.; Thoma, G.; Antani, S. Deep Learning for Grading Cardiomegaly Severity in Chest X-Rays: An Investigation. In Proceedings of the 2018 IEEE Life Sciences Conference (LSC), Montreal, QC, Canada, 28–30 October 2018; pp. 109–113. [Google Scholar]
- Chamveha, I.; Promwiset, T.; Tongdee, T.; Saiviroonporn, P.; Chaisangmongkon, W. Automated Cardiothoracic Ratio Calculation and Cardiomegaly Detection using Deep Learning Approach. arXiv 2020, arXiv:2002.07468. [Google Scholar] [CrossRef]
- Solovyev, R.; Melekhov, I.; Lesonen, T.; Vaattovaara, E.; Tervonen, O.; Tiulpin, A. Bayesian Feature Pyramid Networks for Automatic Multi-Label Segmentation of Chest X-rays and Assessment of Cardio-Thoratic Ratio. arXiv 2019, arXiv:1908.02924. [Google Scholar] [CrossRef]
- Eslami, M.; Tabarestani, S.; Albarqouni, S.; Adeli, E.; Navab, N.; Adjouadi, M. Image to Images Translation for Multi-Task Organ Segmentation and Bone Suppression in Chest X-Ray Radiography. arXiv 2019, arXiv:1906.10089. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Ye, J.-J.; Huang, T.-S.; Lee, C.-C.; Chen, Y.-T.; Hsu, C.-K.; Hsu, H.-J.; Sun, C.-Y.; Pan, H.-C.; Chen, K.-S.; et al. Effective Preventive Strategies to Prevent Secondary Transmission of COVID-19 in Hemodialysis Unit: The First Month of Community Outbreak in Taiwan. Healthcare 2021, 9, 1173. [Google Scholar] [CrossRef] [PubMed]
- Saiviroonporn, P.; Wonglaksanapimon, S.; Chaisangmongkon, W.; Chamveha, I.; Yodprom, P.; Butnian, K.; Siriapisith, T.; Tongdee, T. A clinical evaluation study of cardiothoracic ratio measurement using artificial intelligence. BMC Med. Imaging 2022, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, M.; Boyvat, F.; Bozkurt, B.; Agildere, A.M.; Niron, E.A. Thoracic CT findings in long-term hemodialysis patients. Acta Radiol. 1999, 40, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, T.; Futakami, N.; Kunieda, E.; Yagi, M.; Takeda, A.; Akiba, T.; Mutu, E.; Shigematsu, N. Effects of sample size and data augmentation on U-Net-based automatic segmentation of various organs. Radiol. Phys. Technol. 2021, 14, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cao, H.; Song, E.; Ma, G.; Xu, X.; Jin, R.; Liu, T.; Liu, L.; Liu, D.; Hung, C.C. A new data augmentation method based on local image warping for medical image segmentation. Med. Phys. 2021, 48, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Breur, J.M.; Udink Ten Cate, F.E.; Kapusta, L.; Cohen, M.I.; Crosson, J.E.; Boramanand, N.; Lubbers, L.J.; Friedman, A.H.; Brenner, J.I.; Vetter, V.L.; et al. Pacemaker therapy in isolated congenital complete atrioventricular block. Pacing Clin. Electrophysiol. 2002, 25, 1685–1691. [Google Scholar] [CrossRef]
- Chung, T.L.; Liu, Y.H.; Huang, J.C.; Wu, P.Y.; Tu, H.P.; Chen, S.C.; Chang, J.M. Prognostic Implication of Longitudinal Changes in Cardiothoracic Ratio and Aortic Arch Calcification in Hemodialysis Patients. J. Pers. Med. 2021, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Simkus, P.; Gutierrez Gimeno, M.; Banisauskaite, A.; Noreikaite, J.; McCreavy, D.; Penha, D.; Arzanauskaite, M. Limitations of cardiothoracic ratio derived from chest radiographs to predict real heart size: Comparison with magnetic resonance imaging. Insights Into Imaging 2021, 12, 158. [Google Scholar] [CrossRef] [PubMed]
All Patients | CTR ≤ 50% | CTR > 50% | p Value | |
---|---|---|---|---|
Patient number | 413 | 112 | 301 | |
Age (±SD) | 65.0 ± 11.9 | 57.9 ± 11.2 | 67.6 ± 11.1 | <0.001 |
Sex, male (n, %) | 236 (57.1%) | 82 (73.2%) | 154 (51.2%) | <0.001 |
Dialysis vintage, years (±SD) | 7.43 ± 6.66 | 7.26 ± 6.61 | 7.87 ± 6.81 | 0.414 |
Comorbidities | ||||
History of myocardial infarction (n, %) | 78 (18.9%) | 17 (15.2%) | 61 (20.3%) | 0.24 |
LVH | 264 (63.9%) | 50 (44.6%) | 214 (71.1%) | <0.001 |
CAD | 199 (48.2%) | 45 (41.1%) | 153 (50.8%) | 0.078 |
History of CVA | 82 (19.9%) | 20 (17.9%) | 62 (20.6%) | 0.535 |
Hypertension | 395 (95.6%) | 107 (95.5%) | 288 (95.7%) | 0.949 |
Diabetes mellitus | 243 (58.8%) | 59 (52.7%) | 184 (61.1%) | 0.121 |
Dialysis parameters | ||||
Kt/V (±SD) | 1.64 ± 0.22 | 1.64 ± 0.2 | 1.63 ± 0.23 | 0.757 |
Water removal, kg (±SD) (pre-HD body weight minus post-HD body weight) | 2.29 ± 0.91 | 2.31 ± 0.92 | 2.28 ± 0.91 | 0.758 |
Post-HD body weight, kg (±SD) | 60.1 ± 14.1 | 62.5 ± 12.56 | 59.2 ± 14.59 | 0.035 |
Dataset | Training | Validation | Testing |
---|---|---|---|
Number of images | 460 * | 54 ** | 413 ** |
mIoU | 0.943 | 0.935 | 0.950 |
Average Dice coefficient | 0.970 | 0.966 | 0.974 |
R2 | 0.967 | 0.950 | 0.965 |
Relative change (difference between neural network mask and nephrologist-defined mask) | 1.82% | 2.0% | 1.56% |
Method | Clinical Staff | Neural Network Model | p Value |
---|---|---|---|
Mean difference ± SD | 1.52 ± 1.46% | 0.83 ± 0.87% | <0.001 |
Absolute CTR bias ≥ 2% (n, %) | 128 (31%) | 35 (8%) | <0.001 |
R2 | 0.90 | 0.96 | |
Average time (second) | 85 | 2 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, H.-H.; Lin, J.-Y.; Shen, G.-T.; Huang, C.-Y. Validation of an Automated Cardiothoracic Ratio Calculation for Hemodialysis Patients. Diagnostics 2023, 13, 1376. https://doi.org/10.3390/diagnostics13081376
Chou H-H, Lin J-Y, Shen G-T, Huang C-Y. Validation of an Automated Cardiothoracic Ratio Calculation for Hemodialysis Patients. Diagnostics. 2023; 13(8):1376. https://doi.org/10.3390/diagnostics13081376
Chicago/Turabian StyleChou, Hsin-Hsu, Jin-Yi Lin, Guan-Ting Shen, and Chih-Yuan Huang. 2023. "Validation of an Automated Cardiothoracic Ratio Calculation for Hemodialysis Patients" Diagnostics 13, no. 8: 1376. https://doi.org/10.3390/diagnostics13081376
APA StyleChou, H. -H., Lin, J. -Y., Shen, G. -T., & Huang, C. -Y. (2023). Validation of an Automated Cardiothoracic Ratio Calculation for Hemodialysis Patients. Diagnostics, 13(8), 1376. https://doi.org/10.3390/diagnostics13081376