Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Study Participants
3.2. Pulmonary Function Tests and CT
3.3. 129Xe and 3He MRI Acquisition
3.4. Image Analysis
3.5. Statistics
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mugler, J.P., 3rd; Altes, T.A. Hyperpolarized 129Xe MRI of the human lung. J. Magn. Reson. Imaging 2013, 37, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Driehuys, B.; Martinez-Jimenez, S.; Cleveland, Z.I.; Metz, G.M.; Beaver, D.M.; Nouls, J.C.; Kaushik, S.S.; Firszt, R.; Willis, C.; Kelly, K.T.; et al. Chronic obstructive pulmonary disease: Safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 2012, 262, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Svenningsen, S.; Owrangi, A.; Wheatley, A.; Farag, A.; Ouriadov, A.; Santyr, G.E.; Etemad-Rezai, R.; Coxson, H.O.; McCormack, D.G.; et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 2012, 265, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.S.; Cleveland, Z.I.; Cofer, G.P.; Metz, G.; Beaver, D.; Nouls, J.; Kraft, M.; Auffermann, W.; Wolber, J.; McAdams, H.P.; et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn. Reson. Med. 2011, 65, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Ouriadov, A.; Svenningsen, S.; Owrangi, A.; Wheatley, A.; Etemad-Rezai, R.; Santyr, G.E.; McCormack, D.G.; Parraga, G. Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: Physiological relevance in older never- and ex-smokers. Physiol. Rep. 2014, 2, e12068. [Google Scholar] [CrossRef]
- Thomen, R.P.; Quirk, J.D.; Roach, D.; Egan-Rojas, T.; Ruppert, K.; Yusen, R.D.; Altes, T.A.; Yablonskiy, D.A.; Woods, J.C. Direct comparison of (129) Xe diffusion measurements with quantitative histology in human lungs. Magn. Reson. Med. 2017, 77, 265–272. [Google Scholar] [CrossRef]
- Stewart, N.J.; Norquay, G.; Marshall, H.; Wild, J.M. Feasibility of high quality lung MRI with naturally-abundant hyperpolarised 129Xe. Eur. Respir. J. 2014, 44 (Suppl. 58), 1729. [Google Scholar]
- Kaushik, S.S.; Freeman, M.S.; Cleveland, Z.I.; Davies, J.; Stiles, J.; Virgincar, R.S.; Robertson, S.H.; He, M.; Kelly, K.T.; Foster, W.M. Probing the regional distribution of pulmonary gas exchange through single-breath gas-and dissolved-phase 129Xe MR imaging. J. Appl. Physiol. 2013, 115, 850–860. [Google Scholar] [CrossRef]
- Kaushik, S.S.; Robertson, S.H.; Freeman, M.S.; He, M.; Kelly, K.T.; Roos, J.E.; Rackley, C.R.; Foster, W.M.; McAdams, H.P.; Driehuys, B. Single-breath clinical imaging of hyperpolarized (129)Xe in the airspaces, barrier, and red blood cells using an interleaved 3D radial 1-point Dixon acquisition. Magn. Reson. Med. 2016, 75, 1434–1443. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Zhong, J.; Ruan, W.; Han, Y.; Sun, X.; Ye, C.; Zhou, X. Oxygen-dependent hyperpolarized (129) Xe brain MR. NMR Biomed. 2016, 29, 220–225. [Google Scholar] [CrossRef]
- Hane, F.T.; Imai, H.; Kimura, A.; Fujiwara, H.; Rao, M.; Wild, J.M.; Albert, M.S. Chapter 16—Brain Imaging Using Hyperpolarized Xenon MRI. In Hyperpolarized and Inert Gas MRI; Academic Press: Boston, MA, USA, 2017; pp. 251–262. [Google Scholar] [CrossRef]
- Cleveland, Z.I.; Moller, H.E.; Hedlund, L.W.; Driehuys, B. Continuously infusing hyperpolarized 129Xe into flowing aqueous solutions using hydrophobic gas exchange membranes. J. Phys. Chem. B 2009, 113, 12489–12499. [Google Scholar] [CrossRef]
- Hersman, F.W.; Ruset, I.C.; Ketel, S.; Muradian, I.; Covrig, S.D.; Distelbrink, J.; Porter, W.; Watt, D.; Ketel, J.; Brackett, J.; et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad. Radiol. 2008, 15, 683–692. [Google Scholar] [CrossRef]
- Ouriadov, A.; Farag, A.; Kirby, M.; McCormack, D.G.; Parraga, G.; Santyr, G.E. Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn. Reson. Med. 2013, 70, 1699–1706. [Google Scholar] [CrossRef]
- Yablonskiy, D.A.; Sukstanskii, A.L.; Leawoods, J.C.; Gierada, D.S.; Bretthorst, G.L.; Lefrak, S.S.; Cooper, J.D.; Conradi, M.S. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc. Natl. Acad. Sci. USA 2002, 99, 3111–3116. [Google Scholar] [CrossRef]
- Yablonskiy, D.A.; Sukstanskii, A.L.; Woods, J.C.; Gierada, D.S.; Quirk, J.D.; Hogg, J.C.; Cooper, J.D.; Conradi, M.S. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J. Appl. Physiol. (1985) 2009, 107, 1258–1265. [Google Scholar] [CrossRef]
- Bhandari, A.; Bhandari, V. Pathogenesis, pathology and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front. Biosci. 2003, 8, e370–e380. [Google Scholar] [CrossRef]
- Bals, R. Alpha-1-antitrypsin deficiency. Best Pr. Res. Clin. Gastroenterol. 2010, 24, 629–633. [Google Scholar] [CrossRef]
- Sheikh, K.; Bhalla, A.; Ouriadov, A.; Young, H.M.; Yamashita, C.M.; Luu, T.M.; Katz, S.; Parraga, G.; Williams, M.A. Pulmonary magnetic resonance imaging biomarkers of lung structure and function in adult survivors of bronchopulmonary dysplasia with COPD. Cogent Med. 2017, 4, 1282033. [Google Scholar] [CrossRef]
- Ouriadov, A.; Lessard, E.; Sheikh, K.; Parraga, G.; Canadian Respiratory Research Network. Pulmonary MRI morphometry modeling of airspace enlargement in chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency. Magn. Reson. Med. 2018, 79, 439–448. [Google Scholar] [CrossRef]
- Pike, D.; Mohan, S.; Ma, W.; Lewis, J.F.; Parraga, G. Pulmonary imaging abnormalities in an adult case of congenital lobar emphysema. J. Radiol. Case Rep. 2015, 9, 9–15. [Google Scholar] [CrossRef]
- Ruppert, K.; Quirk, J.D.; Mugler, J.P.I.; Altes, T.A.; Wang, C.; Miller, G.W.; Ruset, I.C.; Mata, J.F.; Hersman, F.W.; Yablonskiy, D.A. Lung Morphometry using Hyperpolarized Xenon-129: Preliminary Experience [abstract]. In Proceedings of the ISMRM 20th Annual Meeting, Melbourne, Australia, 5–11 May 2012; p. 1352. [Google Scholar]
- Mugler, J.P.; Brookeman, J.R. Method and System for Rapid Magnetic Resonance Imaging of Gases with Reduced Diffusion-induced Signal Loss. U.S. Patent 7,034,533, 25 April 2006. [Google Scholar]
- Mugler Iii, J.P. Chapter 1—MRI Acquisition Techniques A2—Albert, Mitchell S. In Hyperpolarized and Inert Gas MRI; Hane, F.T., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 1–21. [Google Scholar] [CrossRef]
- Lee, R.F.; Johnson, G.; Stefanescu, C.; Trampel, R.; McGuinness, G.; Stoeckel, B. A 24-ch Phased-Array System for Hyperpolarized Helium Gas Parallel MRI to Evaluate Lung Functions. In Proceedings of the IEEE-EMBS 27th Annual International Conference, Shanghai, China, 17–18 January 2006; p. 4278. [Google Scholar]
- Teh, K.; Lee, K.J.; Paley, M.N.; Wild, J.M. Parallel imaging of hyperpolarized helium-3 with simultaneous slice excitation. Magn. Reson. Med. 2006, 55, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Qing, K.; Altes, T.A.; Tustison, N.J.; Feng, X.; Chen, X.; Mata, J.F.; Miller, G.W.; de Lange, E.E.; Tobias, W.A.; Cates, G.D., Jr.; et al. Rapid acquisition of helium-3 and proton three-dimensional image sets of the human lung in a single breath-hold using compressed sensing. Magn. Reson. Med. 2015, 74, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Paulin, G.A.; Ouriadov, A.; Lessard, E.; Sheikh, K.; McCormack, D.G.; Parraga, G. Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers. Physiol. Rep. 2015, 3, e12583. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.V.; Quirk, J.D.; Yablonskiy, D.A. In vivo lung morphometry with accelerated hyperpolarized (3) He diffusion MRI: A preliminary study. Magn. Reson. Med. 2015, 73, 1609–1614. [Google Scholar] [CrossRef]
- Chan, H.F.; Stewart, N.J.; Parra-Robles, J.; Collier, G.J.; Wild, J.M. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. Magn. Reson. Med. 2017, 77, 1916–1925. [Google Scholar] [CrossRef]
- Abascal, J.F.P.J.; Desco, M.; Parra-Robles, J. Incorporation of prior knowledge of the signal behavior into the reconstruction to accelerate the acquisition of MR diffusion data. IEEE Trans. Med. Imaging 2017, 37, 547–556. [Google Scholar] [CrossRef]
- Parra-Robles, J.; Marshall, H.; Hartley, R.A.; Brightling, C.E.; Wild, J.M. Quantification of lung microstructure in asthma using a 3He fractional diffusion approach [abstract]. In Proceedings of the ISMRM 22nd Annual Meeting, Milano, Italy, 10–16 May 2014; p. 3529. [Google Scholar]
- Berberan-Santos, M.N.; Bodunov, E.N.; Valeur, B. Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem. Phys. 2005, 315, 171–182. [Google Scholar] [CrossRef]
- Stenger, V.A.; Noll, D.C.; Boada, F.E. Partial Fourier reconstruction for three-dimensional gradient echo functional MRI: Comparison of phase correction methods. Magn. Reson. Med. 1998, 40, 481–490. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef]
- Ouriadov, A.; Lessard, E.; Guo, F.; Young, H.M.; Bhalla, A.; McCormack, D.G.; Parraga, G. Accelerated Diffusion-weighted 129Xe MRI Morphometry of Emphysema in COPD and Alpha-1 Antitrypsin Deficiency Patients [abstract]. In Proceedings of the ISMRM 25th Annual Meeting, Honolulu, HI, USA, 22–27 April 2017; p. 1763. [Google Scholar]
- Ouriadov, A.; Farag, A.; Kirby, M.; McCormack, D.G.; Parraga, G.; Santyr, G.E. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects. Magn. Reson. Med. 2015, 74, 1726–1732. [Google Scholar] [CrossRef]
- Kirby, M.; Pike, D.; McCormack, D.G.; Lam, S.; Coxson, H.O.; Parraga, G. Longitudinal Computed Tomography and Magnetic Resonance Imaging of COPD: Thoracic Imaging Network of Canada (TINCan) Study Objectives. Chronic Obstr. Pulm. Dis. 2014, 1, 200–211. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Miller, G.; Altes, T.; Brookeman, J.; De Lange, E.; Mugler Iii, J. Hyperpolarized 3He lung ventilation imaging with B 1-inhomogeneity correction in a single breath-hold scan. Magn. Reson. Mater. Phys. Biol. Med. 2004, 16, 218–226. [Google Scholar] [CrossRef]
- Haacke, E.M.; Lindskogj, E.D.; Lin, W. A fast, iterative, partial-fourier technique capable of local phase recovery. J. Magn. Reson. (1969) 1991, 92, 126–145. [Google Scholar] [CrossRef]
- Kirby, M.; Heydarian, M.; Svenningsen, S.; Wheatley, A.; McCormack, D.G.; Etemad-Rezai, R.; Parraga, G. Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation. Acad. Radiol. 2012, 19, 141–152. [Google Scholar] [CrossRef]
- Zach, J.A.; Newell, J.D., Jr.; Schroeder, J.; Murphy, J.R.; Curran-Everett, D.; Hoffman, E.A.; Westgate, P.M.; Han, M.; Silverman, E.K.; Crapo, J.D. Quantitative CT of the Lungs and Airways in Healthy Non-Smoking Adults. Investig. Radiol. 2012, 47, 596. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- van Beek, E.J.; Dahmen, A.M.; Stavngaard, T.; Gast, K.K.; Heussel, C.P.; Krummenauer, F.; Schmiedeskamp, J.; Wild, J.M.; Sogaard, L.V.; Morbach, A.E.; et al. Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur. Respir. J. 2009, 34, 1311–1321. [Google Scholar] [CrossRef]
- Diaz, S.; Casselbrant, I.; Piitulainen, E.; Magnusson, P.; Peterson, B.; Pickering, E.; Tuthill, T.; Ekberg, O.; Akeson, P. Progression of emphysema in a 12-month hyperpolarized 3He-MRI study: Lacunarity analysis provided a more sensitive measure than standard ADC analysis. Acad. Radiol. 2009, 16, 700–707. [Google Scholar] [CrossRef]
- Diaz, S.; Casselbrant, I.; Piitulainen, E.; Pettersson, G.; Magnusson, P.; Peterson, B.; Wollmer, P.; Leander, P.; Ekberg, O.; Akeson, P. Hyperpolarized 3He apparent diffusion coefficient MRI of the lung: Reproducibility and volume dependency in healthy volunteers and patients with emphysema. J. Magn. Reson. Imaging 2008, 27, 763–770. [Google Scholar] [CrossRef]
- Stavngaard, T.; Sogaard, L.V.; Batz, M.; Schreiber, L.M.; Dirksen, A. Progression of emphysema evaluated by MRI using hyperpolarized (3)He (HP (3)He) measurements in patients with alpha-1-antitrypsin (A1AT) deficiency compared with CT and lung function tests. Acta. Radiol. 2009, 50, 1019–1026. [Google Scholar] [CrossRef]
- Chan, H.-F.; Stewart, N.; Parra-Robles, J.; Collier, G.; Wild, J.M. 3D Mapping of Whole Lung Morphometry with 129Xe Diffusion-Weighted MRI and Compressed Sensing: Comparison with 3He. In Proceedings of the ISMRM 25th Annual Meeting, Honolulu, HI, USA, 22–27 April 2017; p. 2138. [Google Scholar]
- Zhang, H.; Xiao, S.; Chen, X.; Zhao, X.; Wang, K.; Wu, G.; Ye, C.; Zhou, X. Human Lung Morphometry using Hyperpolarized 129Xe Multi-b Diffusion MRI with Compressed Sensing. In Proceedings of the ISMRM 25th Annual Meeting, Honolulu, HI, USA, 22–27 April 2017; p. 2159. [Google Scholar]
- Kirby, M.; Owrangi, A.; Svenningsen, S.; Wheatley, A.; Coxson, H.O.; Paterson, N.A.; McCormack, D.G.; Parraga, G. On the role of abnormal DL(CO) in ex-smokers without airflow limitation: Symptoms, exercise capacity and hyperpolarised helium-3 MRI. Thorax 2013, 68, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Fain, S.B.; Altes, T.A.; Panth, S.R.; Evans, M.D.; Waters, B.; Mugler, J.P., 3rd; Korosec, F.R.; Grist, T.M.; Silverman, M.; Salerno, M.; et al. Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad. Radiol. 2005, 12, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Wild, J.M.; Paley, M.N.; Viallon, M.; Schreiber, W.G.; van Beek, E.J.; Griffiths, P.D. k-space filtering in 2D gradient-echo breath-hold hyperpolarized 3He MRI: Spatial resolution and signal-to-noise ratio considerations. Magn. Reson. Med. 2002, 47, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Sheikh, K.; Svenningsen, S.; Pike, D.; Guo, F.; Etemad-Rezai, R.; Leipsic, J.; Coxson, H.O.; McCormack, D.G.; Parraga, G. Ultra-short echo-time pulmonary MRI: Evaluation and reproducibility in COPD subjects with and without bronchiectasis. J. Magn. Reson. Imaging 2015, 41, 1465–1474. [Google Scholar] [CrossRef]
- Wawrzyn, K.; Ouriadov, A.; Hegarty, E.; Hickling, S.; Santyr, G. Mapping 129 Xenon ADC of Radiation-Induced Lung Injury at Low Magnetic Field Strength Using a Sectoral Approach. In Proceedings of the 23th Annual Meeting of ISMRM, Toronto, ON, Canada, 30 May–5 June 2015; p. 1492. [Google Scholar]
Parameter (Mean ± SD) | Never-Smokers (n = 4) | COPD (n = 5) | Significant Difference p |
---|---|---|---|
Male Sex n (%) | 2 (50) | 4 (80) | - |
Age years | 66 (13) | 72 (5) | 0.8 |
FVC%pred | 102 (8) | 100 (21) | 0.9 |
FEV1%pred | 103 (6) | 58 (30) | 0.1 |
FEV1/FVC% | 76 (2) | 42 (14) | 0.02 |
RV%pred | 102 (9) | 160 (57) | 0.3 |
TLC%pred | 102 (8) | 123 (8) | 0.04 |
RV/TLC%pred | 39 (9) | 48 (14) | 0.9 |
DLCO%pred | 104 (12) | 39 (13) | 0.0009 |
VDP% | 4 (0.3) | 28 (14) | 0.2 |
RA950% | - | 19 (9) | - |
Fully-Sampled | AF = 2 | AF = 3 | Fully-Sampled—AF = 2 | Fully-Sampled—AF = 3 | p-Value * | |
---|---|---|---|---|---|---|
Never-Smokers (n = 4) | ||||||
ADC cm2/s | 0.05 (0.01) | 0.05 (0.01) | 0.05 (0.01) | 7% | 7% | >0.99 |
LmD µm | 140 (30) | 130 (30) | 140 (30) | 6% | 5% | 0.94 |
Lm µm | 280 (130) | 300 (130) | 300 (130) | 10% | 7% | 0.59 |
COPD (n = 5) | ||||||
ADC cm2/s | 0.08 (0.02) | 0.08 (0.02) | 0.08 (0.02) | 3% | 4% | 0.99 |
LmD µm | 190 (50) | 190 (50) | 190 (50) | 5% | 5% | 0.97 |
Lm µm | 560 (250) | 570 (260) | 580 (260) | 11% | 10% | 0.95 |
AATD (n = 1) | ||||||
ADC cm2/s | 0.08 (0.01) | 0.08 (0.01) | 0.08 (0.01) | 7% | 8% | - |
LmD µm | 220 (40) | 230 (30) | 230 (30) | 6% | 5% | - |
Lm µm | 690 (210) | 730 (180) | 730 (180) | 13% | 12% | - |
p-value ADC ** | <0.0001 | <0.0001 | <0.0001 | |||
p-value LmD ** | 0.003 | 0.045 | 0.02 | - | - | - |
p-value Lm ** | 0.002 | 0.009 | 0.005 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perron, S.; McCormack, D.G.; Parraga, G.; Ouriadov, A. Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease. Diagnostics 2023, 13, 1477. https://doi.org/10.3390/diagnostics13081477
Perron S, McCormack DG, Parraga G, Ouriadov A. Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease. Diagnostics. 2023; 13(8):1477. https://doi.org/10.3390/diagnostics13081477
Chicago/Turabian StylePerron, Samuel, David G. McCormack, Grace Parraga, and Alexei Ouriadov. 2023. "Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease" Diagnostics 13, no. 8: 1477. https://doi.org/10.3390/diagnostics13081477
APA StylePerron, S., McCormack, D. G., Parraga, G., & Ouriadov, A. (2023). Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease. Diagnostics, 13(8), 1477. https://doi.org/10.3390/diagnostics13081477