Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection
Abstract
:1. Introduction
2. The Principles of the Probe-Based LAMP Assays
2.1. Assimilating Probe-Based LAMP Assay
2.2. Detection of Amplification Using Release of Quenching (DARQ)
2.3. Quenching Probe (Q Probe)-Based LAMP Assay
2.4. Enzyme-Mediated Probe-Based LAMP Assays
2.4.1. Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification (MERT-LAMP)
2.4.2. Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP)
2.4.3. High-Fidelity DNA Polymerase-Mediated LAMP
2.4.4. LAMP Coupled with TaqMan Probe and a New Generation Bst DNA Polymerase (Taqman-LAMP)
3. Applications of the Probe-Based LAMP Methods in Pathogen Detection
Methods | Year | Singleplex or Multiplex | Targets | Reaction Condition | Sensitivity | Limitation of Detection | Clinical Evaluation | Tt Values | Ref. |
---|---|---|---|---|---|---|---|---|---|
Assimilating probe | 2011 | singleplex | Ralstonia solanacearum | 65 °C for 60 min | 50 fg | 137 copies per reaction | NE * | consistently around 20 min regardless of copy number (102 to 106 gene copies) | [41] |
Assimilating probe | 2011 | singleplex | Salmonella enterica | 65 °C for 60 min | 5 pg | 15 copies per reaction | NE | NA ** | [51] |
Assimilating probe | 2015 | multiplex | Salmonela enterica and Phage λ | 65 °C for 30 min | 50 fg | 9.8 × 103 and 1000 copies per reaction for Salmonella enterica and Phage λ | NE | NA | [68] |
Assimilating probe | 2020 | singleplex | foot-and-mouth disease virus | 62 °C for 30 min | 100 copies | 2.5 × 103 copies per reaction | 69 clinical samples (28 blood, 28 oropharyngeal fluid, and 13 tissues) | 4.19–15.98 (9.95 ± 3.08) min | [52] |
Assimilating probe | 2020 | singleplex | Porcine circovirus type 3 | 62 °C for 30 min | 50 copies | NA | 326 pig samples (136 tissues and 190 sera) | 8.42–27.73 (17.34 ± 4.45) min | [53] |
DARQ | 2012 | multiplex | Bacteriophage λ, HeLa, Escherichia coli, and Caenorhabditis elegans genomic DNA | 65 °C for 60 min | 5 ng, 10 pg, 5 ng, 82.5 ng for Bacteriophage λ, HeLa, Escherichia coli, and Caenorhabditis elegans genomic DNA, respectively. | NA | NE | 11.8 ± 0.03 min | [42] |
DARQ | 2016 | singleplex | Salmonella | 65 °C for 40 min and inactivated at 85 °C for 5 min. | 10 copies | NA | 312 fecal samples | NA | [54] |
DARQ | 2017 | singleplex | avian reovirus | 65 °C for 60 min | 10 copies | NA | 98 clinical tendon tissue samples | NA | [55] |
DARQ | 2019 | multiplex | methicillin-resistant Staphylococcus aureus (MRSA) | 65 °C for 60 min | 103 copies, 103 copies, 104 copies for singleplex detection of femB, spa, and mecA of MRSA genes.104 copies for duplex and triplex detection. | NA | NE | NA | [56] |
DARQ | 2019 | singleplex | Brucella | 65 °C for 45 min and terminated at 85 °C for 5 min. | 20 copies | NA | 250 samples | NA | [57] |
DARQ | 2021 | multiplex | SARS-CoV-2, influenza A, influenza B, human RNA | 60 °C, 15 s for 108 cycles | 50 copies of SARS-CoV-2 RNA, 1:10000 diluted influenza A RNA (VR-1737D) and approximately 21 copies of influenza B RNA (VR-1885DQ). | NA | NE | NA | [58] |
DARQ | 2022 | multiplex | foot-and-mouth disease, vesicular stomatitis, and bluetongue viruses | 63 °C for 75 min, 80 °C for 5 min for termination | 1000 copies for FMDV, 100 copies for VSV, BTV-4 | 2477copies/reaction for FMDV, 526 copies/reaction for VSV, and 913 copies/reaction for BTV | 111 clinical samples, including 12 vesicular fluid samples, 30 esophageal–pharyngeal samples, 42 whole-blood samples, 6 vesicular skin samples, and 21 oral swabs collected from cattle | NA | [59] |
DARQ | 2023 | multiplex | Chicken parvovirus (ChPV), chicken infectious anemia virus (CIAV), and fowl adenovirus serotype 4 (FAdV-4) | 63 °C for 75 min for amplification and 80 °C for 5 min for termination | 66,106,95 copies for ChPV, CIAV, and FAdV-4, respectively. | 307 copies/µL for ChPV, 749 copies/µL for CIAV and 648 copies/µL for FAdV-4 | 342 samples (cloacal swab, heart, liver, and kidney) collected from chicken farms | NA | [60] |
Q Probe | 2017 | singleplex | Fusarium oxysporum f. sp. Lycopersici | 66 °C for 60 min, and subsequent melting curve analysis from 30 or 35 °C to 95 °C with a decrement of 0.2 °C per second. | 3 ng | NA | 4 Soil DNA | NA | [69] |
Q Probe | 2018 | singleplex | Middle East respiratory syndrome coronavirus | 63 °C for 30 min | 20 copies | NA | 19 nasal aspirates, secretions, or swabs | 20.2–30.9 min | [43] |
QProbe | 2020 | singleplex | Genus Phytophthora and Species Phytophthora | preheat 5 min at 68 °C, 68 °C for 60 min, and annealing curve analysis at 98 °C to 80 °C, ramping at 0.05 °C per sec. | 100 fg | NA | 161 taxa, including subspecies, varieties, and hybrids) of phytophthora, 12 species (12 isolates) of Pythium, 17 species (17 isolates) of Phytopythium, and one isolate of each of the soil-borne pathogens. | NA | [62] |
Q Probe | 2021 | singleplex | severe fever with thrombocytopenia syndrome virus (SFTSV) | 63 °C for 30 min | 10–100 copies | NA | 12 SFTSV strains | NA | [63] |
Enzyme-mediated probe-based LAMP assays (MERT-LAMP) | 2015 | multiplex | L. monocytogenes and L. ivanovii | 64 °C for 60 min and then at 80 °C for 5 min | 250 fg | NA | 70 raw meat samples (including pork, beef, lamb, and chicken samples) | NA | [45] |
Enzyme-mediated probe-based LAMP assays (TEC-LAMP) | 2018 | multiplex | Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and Internal Amplification Control | 67 °C for 60 min | 100 copies for S. pneumoniae, N. meningitidis, and H. influenzae, 50 copies for Internal Amplification Control | 39.5, 17.3, and 25.9 genome copies per reaction for S. pneumoniae, N. meningitidis, and H. influenzae, respectively. | 65 samples, including 34 blood, 5 blood culture, 17 CSF, 5 pleural fluid, 1 knee fluid, and 3 other body fluids | NA | [46] |
Enzyme-mediated probe-based LAMP assays (Proofman) | 2021 | multiplex | N and Orf1ab genes SARS-CoV-2, human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) | 60 °C for 60 min | 100 copies of N gene RNA | 100 copies per reaction | NE | NA | [36] |
Enzyme-mediated probe-based LAMP assays (HFman) | 2022 | multiplex | ORF and E genes of SARS-CoV-2, human β-actin gene | 64 °C for 50 min | 30 copies of ORF and E gene RNA | 78 and 115 copies per reaction for ORF gene and E gene, respectively. | 190 nasopharyngeal swabs (NP) samples | 4.0–33.5 min (ORF gene),4.0–45.0 min (E gene) | [37] |
Enzyme-mediated probe-based LAMP assays (HFman) | 2022 | singleplex | HIV-1 subtypes, including CRF01_AE, CRF07_BC, CRF08_BC, CRF55_01B, and unique recombinant forms (URFs). | 64 °C for 50 min | 3 copies | 89 copies per reaction | 101 plasma sample | 9.67–29.98 min | [64] |
Enzyme-mediated probe-based LAMP assays (HFman) | 2022 | multiplex | Hantaan virus (HTNV) and Seoul virus (SEOV) | 64 °C for 50 min | 3 copies | 41 and 73 copies per reaction for HTNV and SEOV, respectively. | 46 serum samples | NA | [65] |
Enzyme-mediated probe-based LAMP assays (HFman) | 2023 | multiplex | Monkeypox virus (MPXV) and Monkey B virus (BV) | 64 °C for 50 min | 3 copies | 28.7 and 27.8 copies per reaction for MPXV and BV, respectively. | simulated 6 serum samples collected from monkeys | NA | [66] |
Enzyme-mediated probe-based LAMP assays (HFman) | 2023 | singleplex | BK virus (BKV) | 64 °C for 50 min | 3 copies | 12 copies/reaction | 132 urine samples from HIV-1 infected individuals, 20 BKV positive samples, and 10 BKV negative samples | 3.9 to 15.4 min | [67] |
Enzyme-mediated probe-based LAMP assays (LANTERN) | 2022 | multiplex | S gene of SARS-CoV-2 and human ACTB | 65 °C for 40 min | 2 copies | 8 copies per reaction | 52 COVID-19 positive samples and 22 COVID-19 negative samples | NA | [38] |
Enzyme-mediated probe-based LAMP assays (TaqMan-LAMP) | 2021 | singleplex | pigeon paramyxovirus type 1 | 65 °C for 10 s and 65 °C for 50 s with 25 cycles. | 10 copies | NA | 108 fecal samples | NA | [49] |
4. Comparison of the Probe-Based LAMP Methods with the Traditional LAMP Methods
5. Comparison of Various Probe-Based LAMP Methods
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brister, J.R.; Bao, Y.; Bao, Y.; Zhdanov, S.A.; Ostapchuck, Y.; Chetvernin, V.; Kiryutin, B.; Zaslavsky, L.; Kimelman, M.; Tatusova, T.A. Virus Variation Resource—Recent updates and future directions. Nucleic Acids Res. 2014, 42, D660–D665. [Google Scholar] [CrossRef]
- Hatcher, E.L.; Zhdanov, S.A.; Bao, Y.; Blinkova, O.; Nawrocki, E.P.; Ostapchuck, Y.; Schaffer, A.A.; Brister, J.R. Virus Variation Resource—Improved response to emergent viral outbreaks. Nucleic Acids Res. 2017, 45, D482–D490. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.W.d.J.; Menno, D. Pandemic moves and countermoves: Vaccines and viral variants. Lancet 2021, 397, 1326–1327. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.O.; Cetin, A.E.; Azimzadeh, M.; Topkaya, S.N. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J. Electroanal. Chem. 2021, 882, 114989. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.U.; Iqbal, J. An Update on Molecular Diagnostics for COVID-19. Front. Cell. Infect. Microbiol. 2020, 10, 560616. [Google Scholar] [CrossRef] [PubMed]
- Habibzadeh, P.; Mofatteh, M.; Silawi, M.; Ghavami, S.; Faghihi, M.A. Molecular diagnostic assays for COVID-19: An overview. Crit. Rev. Clin. Lab. Sci. 2021, 58, 385–398. [Google Scholar] [CrossRef]
- Gupta, N.; Augustine, S.; Narayan, T.; O’Riordan, A.; Das, A.; Kumar, D.; Luong, J.H.T.; Malhotra, B.D. Point-of-Care PCR Assays for COVID-19 Detection. Biosensors 2021, 11, 141. [Google Scholar] [CrossRef]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, H.L.; Li, L.X.; Chen, M.J.; Gu, D.Y.; Wang, J.; Xu, Y. Recent Improvements in CRISPR-Based Amplification-Free Pathogen Detection. Front. Microbiol. 2021, 12, 751408. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Makhawi, A.M. SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J. Clin. Microbiol. 2021, 59, e00745-20. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Datta, M.; Singh, D.D.; Naqvi, A.R. Molecular Diagnostic Tools for the Detection of SARS-CoV-2. Int. Rev. Immunol. 2021, 40, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Sritong, N.; Sala de Medeiros, M.; Basing, L.A.; Linnes, J.C. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. Lab Chip 2023, 23, 888–912. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-mediated isothermal amplification (LAMP)—Review and classification of methods for sequence-specific detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Bodulev, O.L.; Sakharov, I.Y. Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis. Biochemistry 2020, 85, 147–166. [Google Scholar] [CrossRef]
- Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens. Bioelectron. 2020, 170, 112674. [Google Scholar] [CrossRef]
- Dinnes, J.; Deeks, J.J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar] [CrossRef]
- Compton, J. Nucleic acid sequence-based amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Malek, L.; Sooknanan, R.; Compton, J. Nucleic acid sequence-based amplification (NASBA). In Protocols for Nucleic Acid Analysis by Nonradioactive Probes; Methods in Molecular Biology™ Book Series; Humana Press: Clifton, NJ, USA, 1994; Volume 28, pp. 253–260. [Google Scholar] [CrossRef]
- Baner, J.; Nilsson, M.; Mendel-Hartvig, M.; Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 1998, 26, 5073–5078. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Vincent, M.; Xu, Y.; Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004, 5, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef]
- Gao, D.; Guo, X.; Yang, Y.; Shi, H.; Hao, R.; Wang, S.; Li, Z.J.; Zhao, R.; Song, H. Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid. J. Biol. Eng. 2022, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wan, Z.; Yang, S.; Li, Y.; Li, M.; Wang, B.; Hu, Y.; Xia, X.; Jin, X.; Yu, N.; et al. A Mismatch-Tolerant Reverse Transcription Loop-Mediated Isothermal Amplification Method and Its Application on Simultaneous Detection of All Four Serotype of Dengue Viruses. Front. Microbiol. 2019, 10, 1056. [Google Scholar] [CrossRef]
- Tanner, N.A.; Zhang, Y.; Evans, T.C., Jr. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques 2015, 58, 59–68. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Zhao, Y.; Wan, Z.; Zeng, Y.; Ma, Y.; Zhou, L.; Xu, G.; Reboud, J.; Cooper, J.M.; et al. A rapid variant-tolerant reverse transcription loop-mediated isothermal amplification assay for the point of care detection of HIV-1. Analyst 2021, 146, 5347–5356. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens. Bioelectron. 2020, 166, 112437. [Google Scholar] [CrossRef]
- Peto, L.; Rodger, G.; Carter, D.P.; Osman, K.L.; Yavuz, M.; Johnson, K.; Raza, M.; Parker, M.D.; Wyles, M.D.; Andersson, M.; et al. Diagnosis of SARS-CoV-2 Infection with LamPORE, a High-Throughput Platform Combining Loop-Mediated Isothermal Amplification and Nanopore Sequencing. J. Clin. Microbiol. 2021, 59, e03271-20. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Chu, Y.; Cheng, S.; Wu, H.; Kajiyama, T.; Kambara, H.; Zhou, G. Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing. Anal. Chem. 2012, 84, 3758–3763. [Google Scholar] [CrossRef] [PubMed]
- Warneford-Thomson, R.; Shah, P.P.; Lundgren, P.; Lerner, J.; Morgan, J.; Davila, A.; Abella, B.S.; Zaret, K.; Schug, J.; Jain, R.; et al. A LAMP sequencing approach for high-throughput co-detection of SARS-CoV-2 and influenza virus in human saliva. eLife 2022, 11, e69949. [Google Scholar] [CrossRef]
- Rolando, J.C.; Jue, E.; Barlow, J.T.; Ismagilov, R.F. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res. 2020, 48, e42. [Google Scholar] [CrossRef]
- Ding, S.; Chen, G.; Wei, Y.; Dong, J.; Du, F.; Cui, X.; Huang, X.; Tang, Z. Sequence-specific and multiplex detection of COVID-19 virus (SARS-CoV-2) using proofreading enzyme-mediated probe cleavage coupled with isothermal amplification. Biosens. Bioelectron. 2021, 178, 113041. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Y.; Li, S.; Wan, Z.; Lu, R.; Yang, X.; Yu, G.; Reboud, J.; Cooper, J.M.; Tian, Z.; et al. Multiplex, Real-Time, Point-of-care RT-LAMP for SARS-CoV-2 Detection Using the HFman Probe. ACS Sens. 2022, 7, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.H.; Liu, M.M.; Moo, J.R.; Nimsamer, P.; Payungporn, S.; Kaewsapsak, P.; Tan, M.H. A Sensitive and Specific Fluorescent RT-LAMP Assay for SARS-CoV-2 Detection in Clinical Samples. ACS Synth. Biol. 2022, 11, 448–463. [Google Scholar] [CrossRef]
- Shirato, K. Detecting amplicons of loop-mediated isothermal amplification. Microbiol. Immunol. 2019, 63, 407–412. [Google Scholar] [CrossRef]
- Becherer, L.; Bakheit, M.; Frischmann, S.; Stinco, S.; Borst, N.; Zengerle, R.; von Stetten, F. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters. Anal. Chem. 2018, 90, 4741–4748. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Alvarez, A.M.; Su, W.W.; Jenkins, D.M. FRET-Based Assimilating Probe for Sequence-Specific Real-Time Monitoring of Loop-Mediated Isothermal Amplification (LAMP). Biol. Eng. Trans. 2011, 4, 81–100. [Google Scholar] [CrossRef]
- Tanner, N.A.; Zhang, Y.; Evans, T.C., Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques 2012, 53, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Shirato, K.; Semba, S.; El-Kafrawy, S.A.; Hassan, A.M.; Tolah, A.M.; Takayama, I.; Kageyama, T.; Notomi, T.; Kamitani, W.; Matsuyama, S.; et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J. Virol. Methods 2018, 258, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Takayama, I.; Nakauchi, M.; Takahashi, H.; Oba, K.; Semba, S.; Kaida, A.; Kubo, H.; Saito, S.; Nagata, S.; Odagiri, T.; et al. Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assay with quenching primer for influenza virus and respiratory syncytial virus. J. Virol. Methods 2019, 267, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Lan, R.; Xu, H.; Ma, A.; Li, D.; Dai, H.; Yuan, X.; Xu, J.; Ye, C. Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification: A Novel Analytically Rapid, Sensitive, Multiplex Loop-Mediated Isothermal Amplification Detection Technique. J. Mol. Diagn. 2015, 17, 392–401. [Google Scholar] [CrossRef]
- Higgins, O.; Clancy, E.; Cormican, M.; Boo, T.W.; Cunney, R.; Smith, T.J. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens. Int. J. Mol. Sci. 2018, 19, 524. [Google Scholar] [CrossRef]
- Hao, W.; Fan, L.; Chen, Q.; Chen, X.; Zhang, S.; Lan, K.; Lu, J.; Zhang, C. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer. PLoS ONE 2015, 10, e0123468. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K.; Hu, Y.; Lin, Y.; Li, Y.; Zhong, P.; Jin, X.; Zhu, X.; Zhang, C. A novel quantitative PCR mediated by high-fidelity DNA polymerase. Sci. Rep. 2017, 7, 10365. [Google Scholar] [CrossRef]
- Liang, R.; Liang, L.; Ren, X.; Jia, Y.; Han, K.; Zhao, J.; Song, C.; Cui, S. Development of a TaqMan loop-mediated isothermal amplification assay for the rapid detection of pigeon paramyxovirus type 1. Arch. Virol. 2021, 166, 1599–1605. [Google Scholar] [CrossRef]
- Thompson, D.; Lei, Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sens. Actuators Rep. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Jenkins, D.M.; Kubota, R.; Dong, J.; Li, Y.; Higashiguchi, D. Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosens. Bioelectron. 2011, 30, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.R.; Kim, H.R.; Chae, H.G.; Ku, B.K.; Nah, J.J.; Ryoo, S.; Wee, S.H.; Lee, C.; Lyoo, Y.S.; Park, C.K. Probe-based real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay for rapid and specific detection of foot-and-mouth disease virus. Transbound. Emerg. Dis. 2020, 67, 2936–2945. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Lim, D.R.; Chae, H.G.; Park, J.Y.; Kim, S.H.; Lee, K.K.; Lee, C.; Lyoo, Y.S.; Park, C.K. Advanced target-specific probe-based real-time loop-mediated isothermal amplification assay for the rapid and specific detection of porcine circovirus 3. Transbound. Emerg. Dis. 2020, 67, 2336–2344. [Google Scholar] [CrossRef] [PubMed]
- Mashooq, M.; Kumar, D.; Niranjan, A.K.; Agarwal, R.K.; Rathore, R. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification. J. Microbiol. Methods 2016, 126, 24–29. [Google Scholar] [CrossRef]
- Kumar, D.; Chauhan, T.K.; Agarwal, R.K.; Dhama, K.; Goswami, P.P.; Mariappan, A.K.; Tiwari, A.K.; Mishra, B.P. A double-stranded probe coupled with isothermal amplification for qualitative and quantitative detection of avian reovirus. Arch. Virol. 2017, 162, 979–985. [Google Scholar] [CrossRef]
- Nanayakkara, I.A.; White, I.M. Demonstration of a quantitative triplex LAMP assay with an improved probe-based readout for the detection of MRSA. Analyst 2019, 144, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Bhat, I.A.; Mashooq, M.; Kumar, D.; Varshney, R.; Rathore, R. Development of probe-based real-time loop-mediated isothermal amplification for detection of Brucella. J. Appl. Microbiol. 2019, 126, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tanner, N.A. Development of multiplexed reverse-transcription loop-mediated isothermal amplification for detection of SARS-CoV-2 and influenza viral RNA. Biotechniques 2021, 70, 167–174. [Google Scholar] [CrossRef]
- Fan, Q.; Xie, Z.; Wei, Y.; Zhang, Y.; Xie, Z.; Xie, L.; Huang, J.; Zeng, T.; Wang, S.; Luo, S.; et al. Development of a visual multiplex fluorescent LAMP assay for the detection of foot-and-mouth disease, vesicular stomatitis and bluetongue viruses. PLoS ONE 2022, 17, e0278451. [Google Scholar] [CrossRef]
- Fan, Q.; Xie, Z.; Zhang, Y.; Xie, Z.; Xie, L.; Huang, J.; Zeng, T.; Wang, S.; Luo, S.; Li, M. A multiplex fluorescence-based loop-mediated isothermal amplification assay for identifying chicken parvovirus, chicken infectious anaemia virus, and fowl aviadenovirus serotype 4. Avian Pathol. 2023, 52, 128–136. [Google Scholar] [CrossRef]
- Nakauchi, M.; Takayama, I.; Takahashi, H.; Semba, S.; Saito, S.; Kubo, H.; Kaida, A.; Oba, K.; Nagata, S.; Odagiri, T.; et al. Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assays for rhinovirus detection. J. Med. Virol. 2019, 91, 1232–1238. [Google Scholar] [CrossRef]
- Hieno, A.; Li, M.; Afandi, A.; Otsubo, K.; Suga, H.; Kageyama, K. Detection of the Genus Phytophthora and the Species Phytophthora nicotianae by LAMP with a QProbe. Plant Dis. 2020, 104, 2469–2480. [Google Scholar] [CrossRef] [PubMed]
- Sano, S.; Fukushi, S.; Yamada, S.; Harada, S.; Kinoshita, H.; Sugimoto, S.; Yoshikawa, T.; Kurosu, T.; Takamatsu, Y.; Shimojima, M.; et al. Development of an RT-LAMP Assay for the Rapid Detection of SFTS Virus. Viruses 2021, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Liu, Z.; Zhao, Y.; Zeng, Y.; Dong, Y.; Li, L.; Zhang, C. An HFman probe-based reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for HIV-1 detection. Mol. Cell. Probes 2022, 64, 101834. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Feng, Y.; Zhao, Y.; Zhang, X.; Yang, L.; Wang, J.; Gao, Z.; Zhang, C. An HFman Probe-Based Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Simultaneous Detection of Hantaan and Seoul Viruses. Diagnostics 2022, 12, 1925. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, Y.; Ren, X.; Zhou, X.; Zhang, C.; Wan, Z.; Kuang, Y.Q. Rapid detection of monkeypox virus and monkey B virus by a multiplex loop-mediated isothermal amplification assay. J. Infect. 2023, 86, E114–E116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zeng, Y.; Lu, R.; Wang, Z.; Zhang, X.; Wu, N.; Zhu, T.; Wang, Y.; Zhang, C. Rapid point-of-care detection of BK virus in urine by an HFman probe-based loop-mediated isothermal amplification assay and a finger-driven microfluidic chip. PeerJ 2023, 11, e14943. [Google Scholar] [CrossRef]
- Kubota, R.; Jenkins, D.M. Real-time duplex applications of loop-mediated AMPlification (LAMP) by assimilating probes. Int. J. Mol. Sci. 2015, 16, 4786–4799. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Hanyuda, S.; Fujita, N.; Komatsu, K.; Arie, T. Novel loop-mediated isothermal amplification (LAMP) assay with a universal QProbe can detect SNPs determining races in plant pathogenic fungi. Sci. Rep. 2017, 7, 4253. [Google Scholar] [CrossRef]
- Natoli, M.E.; Kundrod, K.A.; Chang, M.M.; Smith, C.A.; Paul, S.; Coole, J.B.; Butlin, N.G.; Tanner, N.A.; Baker, E.; Schmeler, K.M.; et al. Improving Performance of a SARS-CoV-2 RT-LAMP Assay for Use With a Portable Isothermal Fluorimeter: Towards a Point-of-Care Molecular Testing Strategy. J. Biomol. Tech. JBT 2021, 32, 180–185. [Google Scholar] [CrossRef]
- Higgins, O.; Chueiri, A.; O’Connor, L.; Lahiff, S.; Burke, L.; Morris, D.; Pfeifer, N.M.; Santamarina, B.G.; Berens, C.; Menge, C.; et al. Portable Differential Detection of CTX-M ESBL Gene Variants, bla(CTX-M-1) and bla(CTX-M-15), from Escherichia coli Isolates and Animal Fecal Samples Using Loop-Primer Endonuclease Cleavage Loop-Mediated Isothermal Amplification. Microbiol. Spectr. 2023, 11, e0331622. [Google Scholar] [CrossRef]
- Crego-Vicente, B.; Fernandez-Soto, P.; Garcia-Bernalt Diego, J.; Febrer-Sendra, B.; Muro, A. Development of a Duplex LAMP Assay with Probe-Based Readout for Simultaneous Real-Time Detection of Schistosoma mansoni and Strongyloides spp.—A Laboratory Approach to Point-of-Care. Int. J. Mol. Sci. 2023, 24, 893. [Google Scholar] [CrossRef] [PubMed]
- Coole, J.; Kortum, A.; Tang, Y.; Vohra, I.; Maker, Y.; Kundrod, K.; Natoli, M.; Richards-Kortum, R. Open-Source Miniature Fluorimeter to Monitor Real-Time Isothermal Nucleic Acid Amplification Reactions in Resource-Limited Settings. J. Vis. Exp. 2021, 168, e62148. [Google Scholar] [CrossRef]
- Choi, G.; Guan, W. An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer. In Biomedical Engineering Technologies; Part of the Methods in Molecular Biology Book Series; Humana: New York, NY, USA, 2022; Volume 2393, pp. 257–278. [Google Scholar] [CrossRef]
- Choi, G.; Guan, W. Sample-to-Answer Microfluidic Nucleic Acid Testing (NAT) on Lab-on-a-Disc for Malaria Detection at Point of Need. In Biomedical Engineering Technologies; Part of the Methods in Molecular Biology Book Series; Humana: New York, NY, USA, 2022; Volume 2393, pp. 297–313. [Google Scholar] [CrossRef]
- de Oliveira, K.G.; Estrela, P.F.N.; Mendes, G.M.; Dos Santos, C.A.; Silveira-Lacerda, E.P.; Duarte, G.R.M. Rapid molecular diagnostics of COVID-19 by RT-LAMP in a centrifugal polystyrene-toner based microdevice with end-point visual detection. Analyst 2021, 146, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Moehling, T.J.; Meagher, R.J. Advances in RT-LAMP for COVID-19 testing and diagnosis. Expert Rev. Mol. Diagn. 2023, 23, 9–28. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Ma, Y.; Xu, R.; Jin, X.; Zhang, C. A Mismatch-tolerant RT-LAMP Method for Molecular Diagnosis of Highly Variable Viruses. Bio Protoc. 2019, 9, e3415. [Google Scholar] [CrossRef] [PubMed]
- Gadkar, V.J.; Goldfarb, D.M.; Gantt, S.; Tilley, P.A.G. Real-time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic Probes. Sci. Rep. 2018, 8, 5548. [Google Scholar] [CrossRef]
- Shen, H.; Wang, S.; Huang, J.; Lin, Q.; Zhang, C.; Liu, Z.; Zhang, J.; Liao, M. A Novel, Cleaved Probe-Based Reverse Transcription Loop-Mediated Isothermal Amplification Method for Specific and Sensitive Detection of Porcine Deltacoronavirus. Front. Vet. Sci. 2022, 9, 896416. [Google Scholar] [CrossRef]
- Bhatt, A.; Fatima, Z.; Ruwali, M.; Misra, C.S.; Rangu, S.S.; Rath, D.; Rattan, A.; Hameed, S. CLEVER assay: A visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology. J. Appl. Microbiol. 2022, 133, 410–421. [Google Scholar] [CrossRef]
- Lalli, M.A.; Langmade, J.S.; Chen, X.; Fronick, C.C.; Sawyer, C.S.; Burcea, L.C.; Wilkinson, M.N.; Fulton, R.S.; Heinz, M.; Buchser, W.J.; et al. Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva by Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification. Clin. Chem. 2021, 67, 415–424. [Google Scholar] [CrossRef]
- Schellenberg, J.J.; Ormond, M.; Keynan, Y. Extraction-free RT-LAMP to detect SARS-CoV-2 is less sensitive but highly specific compared to standard RT-PCR in 101 samples. J. Clin. Virol. 2021, 136, 104764. [Google Scholar] [CrossRef]
- Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 2021, 16, 3141–3162. [Google Scholar] [CrossRef] [PubMed]
Traditional LAMP | Probe-Based LAMP | |
---|---|---|
Reaction instrument | Thermal cycler/small portable isothermal devices/simple, low-cost device | Real-time thermal cycler/small portable isothermal fluorimeters/simple, low-cost device |
Reaction time | about 60 min | less than 30 min |
Detection method | Agarose gel electrophoresis/Turbidity/Fluorescence detection by non-specific fluorescent dyes or pH indicators | Real-time monitoring/end-point fluorescence detection |
Specificity (non-specific signal) | Relatively low | High |
Sensitivity (copies/reaction) | High | Slightly higher |
Single-tube multiplex detection | No | Yes |
The possibility of false positive results | Relatively high | Low |
Operation | Difficult | Relatively easy |
Testing cost | Slightly low | Low |
Potential for commercial and/or clinical application | Low | High |
Methods | Probe Design | Specificity | Sensitivity (LOD, Copies per Reaction) * | One-pot Multiplexing | Variant-Tolerance | Amplification Speed (Tt Values) * |
---|---|---|---|---|---|---|
Assimilating probe | Difficult. Two partially complementary oligonucleotides need to be designed. | Relatively low. The probe is involved in one of the inner primers that more likely result in non-specific amplification, and the release of fluorescent signal depends on strand displacement of double-stranded probe. | Low (15–9.8 × 103) | Yes | No | Relatively fast (4.19–27.73 min) |
DARQ | Easy | Relatively low. The probe is involved in one of the inner primers that more likely result in non-specific amplification, and the release of fluorescent signal depends on strand displacement of double-stranded probe. | High (526–2477) | Yes | No | Relatively fast (11.8 ± 0.03 min) |
Q Probe | Difficult. The 3′ or 5′ end of at least one loop primer is required to be cytosine for labeling a fluorescent dye. | High | High (ND) | Yes $ | No | Relatively slow (20.2–30.9 min) |
MERT-LAMP/TEC-LAMP | Difficult. An endonuclease recognition site is required to be included in the probe. | Relatively low. The probe is involved in one of the inner primers that more likely result in non-specific amplification, and the release of fluorescent signal depends on strand displacement of double-stranded probe. | High (17.3–39.5) | Yes | No | Relatively slow (ND) |
Proofman/HFman/LANTERN | Slightly easier. Any one of the loop primers can be selected as the probe by labeling a fluorophore and a quencher at both ends. | High | High (8–100) | Yes | Yes | Relatively fast (4.0–45.0 min) |
TaqMan-LAMP | Difficult. The probe needs to be designed between F1 and F2 or B1 and B2. | High | High (ND) | Yes $ | No | Relatively fast (ND) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, Y.; Zeng, Y.; Zhang, C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics 2023, 13, 1530. https://doi.org/10.3390/diagnostics13091530
Zhang X, Zhao Y, Zeng Y, Zhang C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics. 2023; 13(9):1530. https://doi.org/10.3390/diagnostics13091530
Chicago/Turabian StyleZhang, Xiaoling, Yongjuan Zhao, Yi Zeng, and Chiyu Zhang. 2023. "Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection" Diagnostics 13, no. 9: 1530. https://doi.org/10.3390/diagnostics13091530
APA StyleZhang, X., Zhao, Y., Zeng, Y., & Zhang, C. (2023). Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics, 13(9), 1530. https://doi.org/10.3390/diagnostics13091530