Application of a 21-Gene Recurrence Score in a Swiss Single-Center Breast Cancer Population: A Comparative Analysis of Treatment Administration before and after TAILORx
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Objectives
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Tumor Characteristics
3.3. Recurrence Score Results
3.4. Treatment Strategies
3.5. Analysis of Chemoendocrine and Endocrine Therapy Use
3.6. Implementation of RS Guidelines into TB Decision
3.7. Implementation of TB Decisions in Clinical Practice
3.8. Logistic Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Quaglino, E.; Conti, L.; Cavallo, F. Breast cancer stem cell antigens as targets for immunotherapy. Semin. Immunol. 2020, 47, 101386. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; Ellis, I.O. Modern classification of breast cancer: Should we stick with morphology or convert to molecular profile characteristics. Adv. Anat. Pathol. 2011, 18, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Fitzal, F.; Filipits, M.; Rudas, M.; Greil, R.; Dietze, O.; Samonigg, H.; Lax, S.; Herz, W.; Dubsky, P.; Bartsch, R.; et al. The genomic expression test EndoPredict is a prognostic tool for identifying risk of local recurrence in postmenopausal endocrine receptor-positive, her2neu-negative breast cancer patients randomised within the prospective ABCSG 8 trial. Br. J. Cancer 2015, 112, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Crager, M.R.; Tang, G.; Gray, R.J.; Stemmer, S.M.; Shak, S. Development and Validation of a Tool Integrating the 21-Gene Recurrence Score and Clinical-Pathological Features to Individualize Prognosis and Prediction of Chemotherapy Benefit in Early Breast Cancer. J. Clin. Oncol. 2021, 39, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; van’t Veer, L.J.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.Y.; Brain, E.; Causeret, S.; Delorenzi, M.; et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N. Engl. J. Med. 2016, 375, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Matikas, A.; Foukakis, T.; Swain, S.; Bergh, J. Avoiding over- and undertreatment in patients with resected node-positive breast cancer with the use of gene expression signatures: Are we there yet? Ann. Oncol. 2019, 30, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Buus, R.; Sestak, I.; Kronenwett, R.; Ferree, S.; Schnabel, C.A.; Baehner, F.L.; Mallon, E.A.; Cuzick, J.; Dowsett, M. Molecular Drivers of Oncotype DX, Prosigna, EndoPredict, and the Breast Cancer Index: A TransATAC Study. J. Clin. Oncol. 2021, 39, 126–135. [Google Scholar] [CrossRef]
- Fisher, B.; Dignam, J.; Emir, B.; Bryant, J.; DeCillis, A.; Wolmark, N.; Wickerham, D.L.; Dimitrov, N.V.; Abramson, N.; Atkins, J.N.; et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 1997, 89, 1673–1682. [Google Scholar] [CrossRef]
- Fisher, B.; Dignam, J.; Bryant, J.; Wolmark, N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: Updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J. Natl. Cancer Inst. 2001, 93, 684–690. [Google Scholar] [CrossRef]
- Cancer Stat Facts: Female Breast Cancer Subtypes. Available online: https://seer.cancer.gov/statfacts/html/breast-subtypes.html (accessed on 17 April 2023).
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; et al. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012, 379, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, E.; Zhang, B.; Schaafsma, M.; Tong, C.-Y.; Zhang, L.; Cheng, C. Impact of Oncotype DX testing on ER+ breast cancer treatment and survival in the first decade of use. Breast Cancer Res. 2021, 23, 74. [Google Scholar] [CrossRef] [PubMed]
- Telli, M.L.; Gradishar, W.J.; Ward, J.H. NCCN Guidelines Updates: Breast Cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 552–555. [Google Scholar]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Ravdin, P.M.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; et al. Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer. N. Engl. J. Med. 2019, 380, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 1816–1837. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Clinical Excellence (NICE). Tumour Profiling Tests to Guide Adjuvant Chemotherapy Decisions in Early Breast Cancer. 2018. Available online: https://www.nice.org.uk/guidance/dg34/resources/tumour-profiling-tests-to-guide-adjuvant-chemotherapy-decisions-in-early-breast-cancer-pdf-1053750722245 (accessed on 17 April 2023).
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Panelists of the St Gallen Consensus Conference. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef]
- Kizy, S.; Altman, A.M.; Marmor, S.; Denbo, J.W.; Jensen, E.H.; Tuttle, T.M.; Hui, J.Y.C. 21-gene recurrence score testing in the older population with estrogen receptor-positive breast cancer. J. Geriatr. Oncol. 2019, 10, 322–329. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Perez, E.A.; Olson, J.A., Jr.; et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2015, 373, 2005–2014. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Albain, K.S.; Saphner, T.J.; Badve, S.S.; Wagner, L.I.; Kaklamani, V.G.; Keane, M.M.; Gomez, H.L.; et al. Clinical Outcomes in Early Breast Cancer with a High 21-Gene Recurrence Score of 26 to 100 Assigned to Adjuvant Chemotherapy Plus Endocrine Therapy: A Secondary Analysis of the TAILORx Randomized Clinical Trial. JAMA Oncol. 2020, 6, 367–374. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Tesch, M.E.; Speers, C.; Diocee, R.M.; Gondara, L.; Peacock, S.J.; Nichol, A.; Lohrisch, C.A. Impact of TAILORx on chemotherapy prescribing and 21-gene recurrence score-guided treatment costs in a population-based cohort of patients with breast cancer. Cancer 2022, 128, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Mattar, A.; Fonseca, G.R.; Romão, M.B.A.; Shida, J.Y.; de Oliveira, V.M.; Bastos, M.C.S.; Bagnoli, F.; Rinaldi, J.F.; Stiepcich, M.M.; da Silva, M.A.L.G.; et al. Substantial Reduction in Adjuvant Chemotherapy With the Use of the 21-Gene Test to Manage Early Breast Cancer in a Public Hospital in Brazil. JCO Glob. Oncol. 2021, 7, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Cognetti, F.; Masetti, R.; Fabi, A.; Bianchi, G.; Santini, D.; Rognone, A.; Catania, G.; Angelucci, D.; Naso, G.; Giuliano, M.; et al. PONDx: Real-life utilization and decision impact of the 21-gene assay on clinical practice in Italy. NPJ Breast Cancer 2021, 7, 47. [Google Scholar] [CrossRef]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.K.L.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
Cohort A N = 165 | Cohort B N = 161 | p-Value | |
---|---|---|---|
Men n (%) | 2 (1) | 5 (3) | 0.799 |
Age median (Q1, Q3) | 59 (IQR 16, Q1 51, Q3 67) | 58 (IQR 19, Q1 48, Q3 67) | 0.937 |
Age ≤50/>50 years old n (%) | 40 (24)/125 (76) | 55 (34)/106 (66) | <0.001 |
Postmenopausal n (%) | 122 (74) | 119 (74) | 0.922 |
Comorbidity n (%) | 75 (45) | 62 (39) | 0.718 |
Multimorbidity n (%) | 22 (13) | 13 (8) | 0.821 |
ASA score (median, IQR)) | 2 (1) | 3 (1) | 0.262 |
Body mass index (BMI) n (%) | |||
BMI < 18.5 kg/m2 n (%) | 7 (4) | 3 (2) | <0.001 |
BMI 18.5–24.9 kg/m2 n (%) | 63 (40) | 90 (58) | |
BMI 25–29.9 kg/m2 n (%) | 57 (37) | 38 (25) | |
BMI 30–34.9 kg/m2 n (%) | 18 (12) | 17 (11) | |
BMI > 35 kg/m2 n (%) | 11 (7) | 6 (4) | |
Histology | 0.544 | ||
NST n (%) | 125 (76) | 125 (78) | |
Lobular n (%) | 30 (18) | 26 (16) | |
Mixed/others n (%) | 6 (4) | 10 (6) | |
Grade | 0.811 | ||
Grade 1 n (%) | 11 (7) | 18 (11) | |
Grade 2 n (%) | 85 (54) | 90 (57) | |
Grade 3 n (%) | 61 (39) | 49 (31) | |
Tumor | |||
Size of tumor mean (SD) | 25.26 (19.68) | 24.78 (16.33) | 0.573 |
pT1 | 93 (55) | 82 (51) | 0.927 |
pT2 | 56 (34) | 64 (40) | |
pT3 and over | 16 (10) | 15 (9) | |
Nodal characteristics | |||
pN0 n (%) | 98 (59) | 95 (59) | 0.546 |
pN1 n (%) | 61 (37) | 64 (40) | |
pN2 or higher n (%) TNM | 6 (4) | 2 (1) | |
Ki67 mean (SD) | 0.19 (0.1) | 0.2 (0.11) | 0.844 |
Ki67 low (0–20%) n (%) | 113 (68%) | 98 (61%) | 0.010 |
Ki67 high n (>20%) (%) | 52 (32%) | 63 (39%) | |
Stage n (%) | 0.602 | ||
IA | 58 (35) | 52 (32) | |
IB | 5 (3) | 0 (0) | |
IIA | 59 (36) | 62 (39) | |
IIB | 33 (20) | 34 (21) | |
IIIA | 7 (4) | 8 (5) | |
IIIB | 0 (0) | 2 (1) | |
IIIC | 3 (2) | 3 (2) |
Cohort A | Cohort B | ||||
---|---|---|---|---|---|
RS Result | All N (%) | CHT n (%) | N (%) | CHT n (%) | p-Value |
0–10 | 34 (21%) | 1 (3%) | 38 (24%) | 0 (0%) | 0.763 |
11–20 | 79 (48%) | 5 (6%) | 72 (45%) | 9 (13%) | |
21–25 | 26 (16%) | 9 (35%) | 24 (15%) | 4 (17%) | |
26–30 | 12 (7%) | 9 (75%) | 9 (6%) | 7 (78%) | |
>30 | 14 (8%) | 8 (57%) | 18 (11%) | 14 (78%) |
Cohort A | ||
OR (95% CI) | p-Value | |
Age | 1.05 (1.01–1.11) | 0.03 |
Age <50/>50 | 0 | 0.998 |
N0/+ | 3.32 (1.09–10.06) | 0.034 |
Grade 3 vs. G1/2 | 0.4 (0.14–1.12) | 0.082 |
Ki-67% high/low (<20% vs. ≥20%) | 2.15 (0.74–6.29) | 0.162 |
Tumor size (T2/3 vs. T1) | 0.97 (0.95–1) | 0.043 |
RS 18–30 | 0.12 (0.03–0.43) | 0.001 |
RS > 31 | 0.04 (0.01–0.21) | <0.001 |
Cohort B | ||
OR (95% CI) | p-Value | |
Age | 0.89 (0.84–0.94) | <0.001 |
Age <50/>50 | 0.79 (0.11–5.92) | 0.818 |
N0/+ | 3.31 (1.29–8.53) | 0.013 |
Grade 3 vs. G1/2 | 0.79 (0.27–2.26) | 0.654 |
Ki-67 high/low (<20% vs. ≥20%) | 1.1 (0.39–3.13) | 0.853 |
Tumor size (T2/3 vs. T1) | 0.99 (0.96–1.01) | 0.357 |
RS 11–25 | 0.76 (0.21–2.76) | 0.678 |
RS > 26 | 1.31 (0.36–4.76) | 0.678 |
OR (95% CI) | p-Value | |
---|---|---|
Age | 0.93 (0.89–0.97) | 0.001 |
Age ≤50/>50 years old | 1.35 (0.7–2.59) | 0.367 |
Cohort A/Cohort B | 0.47 (0.19–1.16) | 0.102 |
Comorbidities Yes/No | 1.24 (0.52–2.99) | 0.626 |
pT | 1.81 (0.92–3.56) | 0.086 |
pN N0/+ | 4.77 (2.03–11-22) | <0.001 |
Lobular/ductal histology | 0.61 (0.33–1.14) | 0.12 |
Ki-67 ≤20%/>20% | 0.6 (0.23–1.55) | 0.291 |
Grade 3 vs. G1/2 | 2.45 (0.25–24.34) | 0.444 |
RS intermediate (11–25) vs. low (0–10) | 0.06 (0.02–0.18) | <0.001 |
RS high (≥26) vs. intermediate (11–25) | 618.18 (91.64–4169.91) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiru, E.D.; Oseledchyk, A.; Schoetzau, A.; Kurzeder, C.; Mosimann, R.; Vetter, M.; Grašič Kuhar, C. Application of a 21-Gene Recurrence Score in a Swiss Single-Center Breast Cancer Population: A Comparative Analysis of Treatment Administration before and after TAILORx. Diagnostics 2024, 14, 97. https://doi.org/10.3390/diagnostics14010097
Chiru ED, Oseledchyk A, Schoetzau A, Kurzeder C, Mosimann R, Vetter M, Grašič Kuhar C. Application of a 21-Gene Recurrence Score in a Swiss Single-Center Breast Cancer Population: A Comparative Analysis of Treatment Administration before and after TAILORx. Diagnostics. 2024; 14(1):97. https://doi.org/10.3390/diagnostics14010097
Chicago/Turabian StyleChiru, Elena Diana, Anton Oseledchyk, Andreas Schoetzau, Christian Kurzeder, Raphael Mosimann, Marcus Vetter, and Cvetka Grašič Kuhar. 2024. "Application of a 21-Gene Recurrence Score in a Swiss Single-Center Breast Cancer Population: A Comparative Analysis of Treatment Administration before and after TAILORx" Diagnostics 14, no. 1: 97. https://doi.org/10.3390/diagnostics14010097
APA StyleChiru, E. D., Oseledchyk, A., Schoetzau, A., Kurzeder, C., Mosimann, R., Vetter, M., & Grašič Kuhar, C. (2024). Application of a 21-Gene Recurrence Score in a Swiss Single-Center Breast Cancer Population: A Comparative Analysis of Treatment Administration before and after TAILORx. Diagnostics, 14(1), 97. https://doi.org/10.3390/diagnostics14010097