Predicting Sudden Sensorineural Hearing Loss Recovery with Patient-Personalized Seigel’s Criteria Using Machine Learning
Abstract
:1. Introduction
2. Materials
2.1. Data Collection and Study Population
2.2. Data Variables and Minimizing PTA Variables
3. Methods
3.1. Recovery Assessment by the Newly Developed Patient-Personalized Seigel’s Criteria
3.2. Statistical Analysis to Investigate Clinical Characteristics of ISSHL Patients
3.3. Machine Learning Models
3.3.1. Logistic Regression
3.3.2. Decision Tree
3.3.3. Support Vector Machine
3.3.4. Random Forest
3.3.5. Adaptive Boosting
3.3.6. Extreme Gradient Boosting and the Light Gradient Boosting Model
3.3.7. K-Nearest Neighbors
3.3.8. Soft-Voting Ensemble
3.4. Model Development Process
3.5. SHAP Values
4. Results
4.1. Impact of Patient-Personalized Siegel’s Criteria on the Recovery Distribution
4.2. Clinical Characteristics of ISSHL Patients according to Patient-Personalized Seigel’s Criteria
4.3. Model Performance and Key Variables
5. Discussion
5.1. Impact of Applying Patient-Personalized Siegel’s Criteria on the Recovery Assessment
5.2. The Distinct Characteristics of this Study
5.3. Clinical Interpretation of the Soft-Voting Ensemble Model’s Prediction
5.4. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chin, C.-S.; Lee, T.-Y.; Chen, Y.-W.; Wu, M.-F. Idiopathic sudden sensorineural hearing loss: Is hyperbaric oxygen treatment the sooner and longer, the better? J. Pers. Med. 2022, 12, 1652. [Google Scholar] [CrossRef]
- Zahnert, T. The differential diagnosis of hearing loss. Dtsch. Ärzteblatt Int. 2011, 108, 433. [Google Scholar] [CrossRef]
- Kuhn, M.; Heman-Ackah, S.E.; Shaikh, J.A.; Roehm, P.C. Sudden sensorineural hearing loss: A review of diagnosis, treatment, and prognosis. Trends Amplif. 2011, 15, 91–105. [Google Scholar] [CrossRef]
- Fetterman, B.L.; Saunders, J.E.; Luxford, W.M. Prognosis and treatment of sudden sensorineural hearing loss. Otol. Neurotol. 1996, 17, 529–536. [Google Scholar]
- Park, K.V.; Oh, K.H.; Jeong, Y.J.; Rhee, J.; Han, M.S.; Han, S.W.; Choi, J. Machine Learning Models for Predicting Hearing Prognosis in Unilateral Idiopathic Sudden Sensorineural Hearing Loss. Clin. Exp. Otorhinolaryngol. 2020, 13, 148–156. [Google Scholar] [CrossRef]
- Tripathi, P.; Deshmukh, P. Sudden sensorineural hearing loss: A review. Cureus 2022, 14, e29458. [Google Scholar] [CrossRef]
- Lim, K.H.; Jeong, Y.J.; Han, M.S.; Rah, Y.C.; Cha, J.; Choi, J. Comparisons among vestibular examinations and symptoms of vertigo in sudden sensorineural hearing loss patients. Am. J. Otolaryngol. 2020, 41, 102503. [Google Scholar] [CrossRef]
- Bing, D.; Ying, J.; Miao, J.; Lan, L.; Wang, D.; Zhao, L.; Yin, Z.; Yu, L.; Guan, J.; Wang, Q. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models. Clin. Otolaryngol. 2018, 43, 868–874. [Google Scholar] [CrossRef]
- Lee, M.K.; Jeon, E.-T.; Baek, N.; Kim, J.H.; Rah, Y.C.; Choi, J. Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence. Sci. Rep. 2022, 12, 3977. [Google Scholar] [CrossRef]
- Uhm, T.; Lee, J.E.; Yi, S.; Choi, S.W.; Oh, S.J.; Kong, S.K.; Lee, I.W.; Lee, H.M. Predicting hearing recovery following treatment of idiopathic sudden sensorineural hearing loss with machine learning models. Am. J. Otolaryngol. 2021, 42, 102858. [Google Scholar] [CrossRef]
- Uhm, T.W.; Yi, S.; Choi, S.W.; Oh, S.J.; Kong, S.K.; Lee, I.W.; Lee, H.M. Hearing recovery prediction and prognostic factors of idiopathic sudden sensorineural hearing loss: A retrospective analysis with a deep neural network model. Braz. J. Otorhinolaryngol. 2023, 89, 101273. [Google Scholar] [CrossRef]
- Maity, N.G.; Das, S. Machine learning for improved diagnosis and prognosis in healthcare. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–9. [Google Scholar]
- Garg, A.; Mago, V. Role of machine learning in medical research: A survey. Comput. Sci. Rev. 2021, 40, 100370. [Google Scholar] [CrossRef]
- ISO 8253-1:2010; Acoustics—Audiometric Test Methods—Part 1: Pure-Tone Air and Bone Conduction Audiometry. 2010. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8253:-1:ed-2:v1:en (accessed on 11 February 2019).
- Siegel, L.G. The treatment of idiopathic sudden sensorineural hearing loss. Otolaryngol. Clin. N. Am. 1975, 8, 467–473. [Google Scholar] [CrossRef]
- Nick, T.G.; Campbell, K.M. Logistic regression. Top. Biostat. 2007, 404, 273–301. [Google Scholar]
- Song, Y.-Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar]
- Bradford, J.P.; Kunz, C.; Kohavi, R.; Brunk, C.; Brodley, C.E. Pruning decision trees with misclassification costs. In Proceedings of the European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 131–136. [Google Scholar]
- Prodromidis, A.L.; Stolfo, S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inf. Syst. 2001, 3, 449–469. [Google Scholar] [CrossRef]
- Mammone, A.; Turchi, M.; Cristianini, N. Support vector machines. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 283–289. [Google Scholar] [CrossRef]
- González, S.; García, S.; Del Ser, J.; Rokach, L.; Herrera, F. A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Inf. Fusion 2020, 64, 205–237. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Figueiredo, M.A. Boosting algorithms: A review of methods, theory, and applications. In Ensemble Machine Learning: Methods and Applications; Springer: New York, NY, USA, 2012; pp. 35–85. [Google Scholar]
- Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms. Mathematics 2020, 8, 765. [Google Scholar] [CrossRef]
- Yao, S.; Kronenburg, A.; Shamooni, A.; Stein, O.T.; Zhang, W. Gradient boosted decision trees for combustion chemistry integration. Appl. Energy Combust. Sci. 2022, 11, 100077. [Google Scholar] [CrossRef]
- ElHaji, E.; Azmani, A.; El Harzli, M. Using KNN Method for Educational and Vocational Guidance. Int. J. Comput. Appl. 2014, 100, 24–30. [Google Scholar] [CrossRef]
- Manconi, A.; Armano, G.; Gnocchi, M.; Milanesi, L. A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19. Appl. Sci. 2022, 12, 7554. [Google Scholar] [CrossRef]
- Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front. Nanotechnol. 2022, 4, 972421. [Google Scholar] [CrossRef]
- Mera-Gaona, M.; Neumann, U.; Vargas-Canas, R.; López, D.M. Evaluating the impact of multivariate imputation by MICE in feature selection. PLoS ONE 2021, 16, e0254720. [Google Scholar] [CrossRef]
- Thara, D.; PremaSudha, B.; Xiong, F. Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recognit. Lett. 2019, 128, 544–550. [Google Scholar]
- Llera, A.; Brammer, M.; Oakley, B.; Tillmann, J.; Zabihi, M.; Amelink, J.; Mei, T.; Charman, T.; Ecker, C.; Dell’Acqua, F. Evaluation of data imputation strategies in complex, deeply-phenotyped data sets: The case of the EU-AIMS Longitudinal European Autism Project. BMC Med. Res. Methodol. 2022, 22, 229. [Google Scholar] [CrossRef]
- Enders, C.K. Multiple imputation as a flexible tool for missing data handling in clinical research. Behav. Res. Ther. 2017, 98, 4–18. [Google Scholar] [CrossRef]
- Jiao, Y.; Du, P. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant. Biol. 2016, 4, 320–330. [Google Scholar] [CrossRef]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25. [Google Scholar] [CrossRef]
- Fu, W.; Nair, V.; Menzies, T. Why is differential evolution better than grid search for tuning defect predictors? arXiv 2016, arXiv:1609.02613. [Google Scholar]
- Duong, H.T.-H.; Tran, L.T.-M.; To, H.Q.; Van Nguyen, K. Academic performance warning system based on data driven for higher education. Neural Comput. Appl. 2023, 35, 5819–5837. [Google Scholar] [CrossRef]
- Ivanov, I.; Toleva, B.; Hooper, V.J. A fast and effective approach for classification medical data sets. Int. J. Innov. Res. Sci. Stud. 2023, 6, 545–552. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Luo, X.; Zhao, H. Diagnosis of Parkinson’s disease based on SHAP value feature selection. Biocybern. Biomed. Eng. 2022, 42, 856–869. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, Y.; Yin, P.; Liu, F.; Fang, Y.; Li, X.; Zhang, Q.; Zhang, Z. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP. Front. Oncol. 2022, 12, 944569. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, A.; Aich, S.; Park, M.S.; Chung, M.P.; Jeong, S.H.; Song, J.W.; Lee, J.H.; Kim, H.C. A soft voting ensemble-based model for the early prediction of idiopathic pulmonary fibrosis (IPF) disease severity in lungs disease patients. Life 2021, 11, 1092. [Google Scholar] [CrossRef]
- Bogaz, E.A.; Maranhão, A.S.d.A.; Inoue, D.P.; Suzuki, F.A.d.B.; Penido, N.d.O. Variables with prognostic value in the onset of idiopathic sudden sensorineural hearing loss. Braz. J. Otorhinolaryngol. 2015, 81, 520–526. [Google Scholar] [CrossRef]
- Shimanuki, M.N.; Shinden, S.; Oishi, N.; Suzuki, N.; Iwabu, K.; Kitama, T.; Kida, A.; Sakamoto, K.; Ogawa, K. Early hearing improvement predicts the prognosis of idiopathic sudden sensorineural hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 4251–4258. [Google Scholar] [CrossRef]
- Byl, F.M., Jr. Sudden hearing loss: Eight years’ experience and suggested prognostic table. Laryngoscope 1984, 94, 647–661. [Google Scholar] [CrossRef]
- Cvorovic, L.; Ðeric, D.; Probst, R.; Hegemann, S. Prognostic model for predicting hearing recovery in idiopathic sudden sensorineural hearing loss. Otol. Neurotol. 2008, 29, 464–469. [Google Scholar] [CrossRef]
- Avan, P.; Giraudet, F.; Büki, B. Importance of binaural hearing. Audiol. Neurotol. 2015, 20, 3–6. [Google Scholar] [CrossRef]
- Jun, H.J.; Chang, J.; Im, G.J.; Kwon, S.Y.; Jung, H.; Choi, J. Analysis of frequency loss as a prognostic factor in idiopathic sensorineural hearing loss. Acta Otolaryngol. 2012, 132, 590–596. [Google Scholar] [CrossRef]
- Mattox, D.E.; Simmons, F.B. Natural history of sudden sensorineural hearing loss. Ann. Otol. Rhinol. Laryngol. 1977, 86, 463–480. [Google Scholar] [CrossRef]
- Molnár, A.; Maihoub, S.; Tamás, L.; Szirmai, Á. Intratympanically administered steroid for progressive sensorineural hearing loss in Ménière’s disease. Acta Oto-Laryngol. 2019, 139, 982–986. [Google Scholar] [CrossRef]
- Psillas, G.; Rizou, A.; Rachovitsas, D.; Tsiropoulos, G.; Constantinidis, J. Hearing outcome of low-tone compared to high-tone sudden sensorineural hearing loss. Int. Arch. Otorhinolaryngol. 2019, 23, 65–69. [Google Scholar] [CrossRef]
- Wilson, W.R.; Byl, F.M.; Laird, N. The efficacy of steroids in the treatment of idiopathic sudden hearing loss: A double-blind clinical study. Arch. Otolaryngol. 1980, 106, 772–776. [Google Scholar] [CrossRef]
- Arastou, S.; Tajedini, A.; Borghei, P. Combined intratympanic and systemic steroid therapy for poor-prognosis sudden sensorineural hearing loss. Iran. J. Otorhinolaryngol. 2013, 25, 23. [Google Scholar]
- Kwak, M.Y.; Yang, C.J.; Shim, H.J.; Song, C.I.; Kim, J.Y.; Lee, I.W.; Jung, S.W.; Lim, H.W.; Kwon, J.K.; Lee, J.H.; et al. Intratympanic steroid injection for sudden sensorineural hearing loss: Impact of injection interval on therapeutic efficacy. Auris Nasus Larynx 2020, 47, 982–989. [Google Scholar] [CrossRef]
- Lee, J.B.; Choi, S.J. Potential benefits of combination therapy as primary treatment for sudden sensorineural hearing loss. Otolaryngol. Head Neck Surg. 2016, 154, 328–334. [Google Scholar] [CrossRef]
- Ceylan, A.; Celenk, F.; Kemaloğlu, Y.; Bayazıt, Y.; Göksu, N.; Özbi, S. Impact of prognostic factors on recovery from sudden hearing loss. J. Laryngol. Otol. 2007, 121, 1035–1040. [Google Scholar] [CrossRef]
- Ferri, E.; Frisina, A.; Fasson, A.C.; Armato, E.; Spinato, G.; Amadori, M. Intratympanic steroid treatment for idiopathic sudden sensorineural hearing loss after failure of intravenous therapy. Int. Sch. Res. Not. 2012, 2012, 647271. [Google Scholar] [CrossRef]
- Wu, H.; Wan, W.; Jiang, H.; Xiong, Y. Prognosis of idiopathic sudden sensorineural hearing loss: The nomogram perspective. Ann. Otol. Rhinol. Laryngol. 2023, 132, 5–12. [Google Scholar] [CrossRef]
- Baum, N.; Dichoso, C.C.; Carlton, C.E., Jr. Blood urea nitrogen and serum creatinine: Physiology and interpretations. Urology 1975, 5, 583–588. [Google Scholar] [CrossRef]
- Abe, Y.; Okada, M.; Tanaka, K.; Toyama, K.; Miyamoto, Y.; Hato, N. The Association between Dehydration and the Prognosis of Sudden Sensorineural Hearing Loss. Otol. Neurotol. Open 2023, 3, e041. [Google Scholar] [CrossRef]
- Seo, Y.J.; Ko, S.B.; Ha, T.H.; Gong, T.H.; Bong, J.P.; Park, D.-J.; Park, S.Y. Association of hearing impairment with chronic kidney disease: A cross-sectional study of the Korean general population. BMC Nephrol. 2015, 16, 154. [Google Scholar] [CrossRef]
- Saha, P.; Mondal, P. Study of prevalence and pattern of sensorineural hearing impairment in stage 5 chronic kidney disease patients on haemodialysis-at a tertiary health care setup in India. Int. J. Med. Sci. Diagn. Res. 2020, 4, 1–7. [Google Scholar]
- Purnami, N.; Roosmilasari, A.; Artono, A.; Mardiana, N. Correlation between blood urea nitrogen level and cochlear outer hair cell function in non-dialysis chronic kidney disease patients. J. Public Health Res. 2022, 11, 2533. [Google Scholar] [CrossRef]
- Fufore, M.; Kirfi, A.; Salisu, A.; Samdi, M.; Abubakar, A.; Lawal, J. Hearing loss in chronic kidney disease: An assessment of multiple aetiological parameters. Otolaryngology 2020, 10, 393. [Google Scholar]
- Reddy, E.; Prakash, D.S.; Krishna, M.G.R. Proportion of hearing loss in chronic renal failure: Our experience. Indian J. Otol. 2016, 22, 4–9. [Google Scholar]
- Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review and meta-analysis. BioMed Res. Int. 2018, 2018, 2703518. [Google Scholar] [CrossRef]
- Durmus, K.; Terzi, H.; Karatas, T.D.; Dogan, M.; Uysal, I.Ö.; Sencan, M.; Altuntas, E.E. Assessment of hematological factors involved in development and prognosis of idiopathic sudden sensorineural hearing loss. J. Craniofacial Surg. 2016, 27, e85–e91. [Google Scholar] [CrossRef]
- Hikita-Watanabe, N.; Kitahara, T.; Horii, A.; Kawashima, T.; Doi, K.; Okumura, S.-I. Tinnitus as a prognostic factor of sudden deafness. Acta Oto-Laryngol. 2010, 130, 79–83. [Google Scholar] [CrossRef]
- Danino, J.; Joachims, H.; Eliachar, I.; Podoshin, L.; Ben-David, Y.; Frandis, M. Tinnitus as a prognostic factor in sudden deafness. Am. J. Otolaryngol. 1984, 5, 394–396. [Google Scholar] [CrossRef]
- Lionello, M.; Staffieri, C.; Breda, S.; Turato, C.; Giacomelli, L.; Magnavita, P.; de Filippis, C.; Staffieri, A.; Marioni, G. Uni-and multivariate models for investigating potential prognostic factors in idiopathic sudden sensorineural hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1899–1906. [Google Scholar] [CrossRef]
- Xenellis, J.; Karapatsas, I.; Papadimitriou, N.; Nikolopoulos, T.; Maragoudakis, P.; Tzagkaroulakis, M.; Ferekidis, E. Idiopathic sudden sensorineural hearing loss: Prognostic factors. J. Laryngol. Otol. 2006, 120, 718–724. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, D.H.; Lee, H.J.; Kim, H.J.; Koo, J.W.; Choi, H.G.; Park, B.; Hong, S.K. Lipid profiles and obesity as potential risk factors of sudden sensorineural hearing loss. PLoS ONE 2015, 10, e0122496. [Google Scholar] [CrossRef]
- Rinaldi, M.; Cavallaro, G.; Cariello, M.; Scialpi, N.; Quaranta, N. Metabolic syndrome and idiopathic sudden sensori-neural hearing loss. PLoS ONE 2020, 15, e0238351. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Q.; Wu, X.; Xie, S.; Feng, Y.; Sun, H. The influence of metabolic syndrome on the prognosis of idiopathic sudden sensorineural hearing loss. Otol. Neurotol. 2019, 40, 994–997. [Google Scholar] [CrossRef]
- Lin, C.F.; Lee, K.J.; Yu, S.S.; Lin, Y.S. Effect of comorbid diabetes and hypercholesterolemia on the prognosis of idiopathic sudden sensorineural hearing loss. Laryngoscope 2016, 126, 142–149. [Google Scholar] [CrossRef]
Continuous Variables | Binary/Categorical Variables | |
---|---|---|
Democratic information | Age, height, weight | Gender (female) |
Health records | Body mass index, extent of smoking(packs/year), systolic blood pressure, diastolic blood pressure | Smoking, smoking post-cessation status, 8 variables regarding presence of disease including (1) hypertension, (2) diabetes, (3) stroke, (4) dizziness, (5) tinnitus, (6) hyperlipidemia, (7) chronic kidney disease, and (8) myocardial infarction or angina. |
Laboratory testing | Total cholesterol, low-density lipoprotein (LDL), triacylglycerol, hemoglobin, blood urea nitrogen (BUN), creatine (Cr), white blood cell count, neutrophil count, lymphocyte count, neutrophil–lymphocyte ratio, platelet count, prothrombin time, and activated partial thromboplastin time | None |
Onset and Treatment | Duration between the onset of ISSHL and initial treatment, euration between the onset of ISSHL and ITDI treatment | Hospitalization, affected side (left), categorized variables of duration between the onset of ISSHL and initial ITDI treatment, onset month of ISSHL, length of the hearing-impaired frequency domain, three variables of steroid treatment type including systemic steroid, ITDI, and combined method of systemic steroid and ITDI |
PTA records | The PTA average of the affected frequency domains in the affected and unaffected ears | Categorized variables of the PTA average of the affected frequency domains in the affected and unaffected ears, five variables of audiogram type regarding the initial PTA record including ascending, U-shaped, descending, flat, and deaf |
Model | Parameter | Settings | Optimal Set of Parameters |
---|---|---|---|
Logistic regression | C | (0.7, 1.0, 1.2) | 1.0 |
Decision tree | ccp_alpha | (0.005, 0.01, 0.015, 0.02, 0.025) | 0.02 |
Random Forest | n_estimators | (50, 100, 150) | 100 |
ccp_alpha | (0.01, 0.05, 0.1) | 0.05 | |
Support Vector Machine | C | (0.4, 0.6, 0.8) | 0.6 |
kernel | (“linear”) | “linear” | |
degree | (2, 3) | 2 | |
AdaBoost | n_estimators | (20, 40, 60, 100) | 20 |
learning_rate | (0.6, 1.0, 1.4) | 0.6 | |
XGBoost | n_estimators | (50, 100, 200) | 50 |
learning_rate | (0.6, 0.8, 1.0, 1.2) | 0.6 | |
reg_alpha | (0.4, 0.8, 1.2, 1.6) | 0.8 | |
reg_lambda | (1.4, 1.8, 2.2, 2.6) | 2.6 | |
gamma | (0.6, 1.0, 1.4, 1.8) | 0.6 | |
LGBM | n_estimators | (25, 50, 100) | 25 |
learning_rate | (0.2, 0.4, 0.6, 0.8, 1.0) | 0.2 | |
reg_alpha | (0.8, 1.2, 1.6, 2.0) | 2.0 | |
reg_lambda | (0.8, 1.2, 1.6, 2.0) | 2.0 | |
K-Nearest Neighbors | n_neighbors | (5, 10, 15, 20, 25) | 25 |
weights | (“uniform”, “distance”) | “distance” | |
Soft-Voting ensemble | none | none | none |
Variable | Non-Recovery (n = 361) | Recovery (n = 220) | Total (n = 581) | p-Value |
---|---|---|---|---|
Continuous variables, median (Q1, Q3) | ||||
Age, year | 55.00 (47.00, 64.00) | 48.00 (38.25, 57.00) | 52.00 (43.00, 60.00) | <0.001 |
Triacylglycerol, mg/dL | 99.00 (66.50, 148.00) | 82.00 (56.00, 132.00) | 93.00 (61.00, 142.50) | 0.006 |
Missing values, No. (%) | 156 (43.21) | 77 (35.00) | 233 (40.10) | |
Blood urea nitrogen, mg/dL | 15.20 (12.40, 19.58) | 13.60 (11.50, 16.00) | 14.50 (11.90, 18.30) | <0.001 |
Missing values, No. (%) | 49 (13.57) | 21 (9.55) | 70 (12.05) | |
Creatinine, mg/dL | 0.88 (0.71, 1.04) | 0.83 (0.70, 0.98) | 0.86 (0.70, 1.02) | 0.025 |
Missing values, No. (%) | 41 (11.36) | 16 (7.27) | 57 (9.81) | |
Duration time between onset and ITDI treatment, day | 6.00 (3.00, 16.00) | 5.00 (2.00, 8.50) | 6.00 (2.00, 13.50) | 0.003 |
Missing values, No. (%) | 137 (37.95) | 95 (43.18) | 232 (39.93) | |
PTA average of affected frequency range (AE), dB | 75.63 (56.77, 98.44) | 61.25 (48.33, 77.34) | 69.38 (51.25, 90.00) | <0.001 |
PTA average of affected frequency range (UAE), dB | 23.13 (15.00, 36.25) | 16.88 (10.83, 23.59) | 20.00 (13.00, 30.73) | <0.001 |
Categorical variables, No. (%) | ||||
Hypertension | 131 (36.29) | 46 (20.91) | 177 (30.46) | <0.001 |
Missing values, No. (%) | 2 (0.6) | 3 (1.4) | 5 (0.9) | |
Diabetes | 113 (31.30) | 47 (21.36) | 160 (27.54) | 0.01 |
Missing values, No. (%) | 2 (0.6) | 2 (0.9) | 4 (0.7) | |
Myocardial infarction or angina | 21 (5.82) | 3 (1.4) | 24 (4.13) | 0.009 |
Missing values, No. (%) | 2 (0.6) | 3 (1.4) | 5 (0.9) | |
Dizziness | 152 (42.11) | 39 (17.73) | 191 (32.87) | <0.001 |
Missing values, No. (%) | 1 (0.3) | 2 (0.9) | 3 (0.5) | |
Tinnitus | 230 (63.71) | 164 (74.55) | 394 (67.81) | 0.006 |
Missing values, No. (%) | 1 (0.3) | 1 (0.5) | 2 (0.3) | |
Category of time between onset and ITDI treatment | 0.005 | |||
1 (0–3 days from onset) | 72 (19.94) | 51 (23.18) | 123 (21.17) | |
2 (4–7 days from onset) | 51 (14.13) | 40 (18.18) | 91 (15.66) | |
3 (8–12 days from onset) | 28 (7.76) | 14 (6.36) | 42 (7.23) | |
4 (13~ days from onset) | 73 (20.22) | 20 (9.09) | 93 (16.01) | |
Missing values, No. (%) | 137 (37.95) | 95 (43.18) | 232 (39.93) | |
Categorized severity level of PTA average (AE) | <0.001 | |||
1 (Mild: 20 dB to 40 dB) | 10 (2.77) | 14 (6.36) | 24 (4.13) | |
2 (Moderate: 40 dB to 60 dB) | 87 (24.10) | 90 (40.91) | 177 (30.46) | |
3 (Severe: 60 dB to 80 dB) | 100 (27.70) | 68 (30.91) | 168 (28.92) | |
4 (Profound: 80 dB to 100 dB) | 119 (32.96) | 46 (20.91) | 165 (28.40) | |
5 (Deaf: 100 dB) | 45 (12.47) | 2 (0.91) | 47 (8.09) | |
Categorized severity level of PTA average (UAE) | <0.001 | |||
1 (Mild: 20 dB to 40 dB) | 282 (78.12) | 207 (94.09) | 489 (84.17) | |
2 (Moderate: 40 dB to 60 dB) | 45 (12.47) | 5 (2.27) | 50 (8.61) | |
3 (Severe: 60 dB to 80 dB) | 18 (4.99) | 5 (2.27) | 23 (3.96) | |
4 (Profound: 80 dB to 100 dB) | 14 (3.88) | 2 (0.91) | 16 (2.75) | |
5 (Deaf: 100 dB) | 2 (0.55) | 1 (0.45) | 3 (0.52) | |
Audiogram type—ascending | 35 (9.69) | 47 (21.36) | 82 (14.11) | <0.001 |
Audiogram type—U-shaped | 17 (4.71) | 28 (12.72) | 45 (7.75) | <0.001 |
Audiogram type—descending | 119 (32.96) | 53 (24.09) | 172 (29.60) | 0.023 |
Audiogram type—flat | 81 (22.44) | 83 (37.73) | 164 (28.22) | <0.001 |
Audiogram type—deaf | 109 (30.19) | 9 (4.09) | 118 (20.31) | <0.001 |
Length of affected frequency range | 0.001 | |||
3 | 21 (5.82) | 24 (10.91) | 45 (7.75) | |
4 | 18 (4.99) | 21 (9.55) | 39 (6.71) | |
5 | 20 (5.54) | 11 (5.00) | 31 (5.34) | |
6 | 17 (4.71) | 17 (7.73) | 34 (5.85) | |
7 | 13 (3.60) | 16 (7.27) | 29 (4.99) | |
8 | 272 (75.34) | 131 (59.55) | 403 (69.36) |
Metrics | Machine Learning Models | ||||||||
---|---|---|---|---|---|---|---|---|---|
LR | DT | RF | SVM | ADA | XGB | LGBM | KNN | SVC | |
BACC | 0.685 | 0.677 | 0.684 | 0.676 | 0.664 | 0.651 | 0.675 | 0.624 | 0.686 |
Recall | 0.695 | 0.659 | 0.673 | 0.705 | 0.548 | 0.514 | 0.618 | 0.434 | 0.597 |
Precision | 0.569 | 0.577 | 0.587 | 0.552 | 0.610 | 0.598 | 0.587 | 0.591 | 0.620 |
F1 | 0.624 | 0.609 | 0.618 | 0.618 | 0.573 | 0.548 | 0.599 | 0.497 | 0.605 |
AUROC | 0.767 | 0.707 | 0.766 | 0.761 | 0.748 | 0.715 | 0.743 | 0.719 | 0.775 |
AUROC 95% CI | 0.646–0.878 | 0.596–0.816 | 0.644–0.880 | 0.636–0.877 | 0.625–0.865 | 0.581–0.846 | 0.613–0.867 | 0.595–0.835 | 0.659–0.887 |
Metrics | Machine Learning Models | ||||||||
---|---|---|---|---|---|---|---|---|---|
LR | DT | RF | SVM | ADA | XGB | LGBM | KNN | SVC | |
BACC | 0.797 | 0.706 | 0.722 | 0.788 | 0.745 | 0.722 | 0.747 | 0.611 | 0.772 |
Recall | 0.841 | 0.727 | 0.909 | 0.864 | 0.682 | 0.636 | 0.727 | 0.455 | 0.750 |
Precision | 0.673 | 0.582 | 0.541 | 0.644 | 0.682 | 0.667 | 0.653 | 0.541 | 0.688 |
F1 | 0.747 | 0.646 | 0.678 | 0.738 | 0.682 | 0.651 | 0.688 | 0.494 | 0.717 |
AUROC | 0.850 | 0.752 | 0.803 | 0.861 | 0.858 | 0.832 | 0.847 | 0.734 | 0.864 |
AUROC 95% CI | 0.781–0.918 | 0.671–0.832 | 0.734–0.872 | 0.792–0.929 | 0.797–0.919 | 0.756–0.907 | 0.780–0.913 | 0.639–0.829 | 0.801–0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shon, S.; Lim, K.; Chae, M.; Lee, H.; Choi, J. Predicting Sudden Sensorineural Hearing Loss Recovery with Patient-Personalized Seigel’s Criteria Using Machine Learning. Diagnostics 2024, 14, 1296. https://doi.org/10.3390/diagnostics14121296
Shon S, Lim K, Chae M, Lee H, Choi J. Predicting Sudden Sensorineural Hearing Loss Recovery with Patient-Personalized Seigel’s Criteria Using Machine Learning. Diagnostics. 2024; 14(12):1296. https://doi.org/10.3390/diagnostics14121296
Chicago/Turabian StyleShon, Sanghyun, Kanghyeon Lim, Minsu Chae, Hwamin Lee, and June Choi. 2024. "Predicting Sudden Sensorineural Hearing Loss Recovery with Patient-Personalized Seigel’s Criteria Using Machine Learning" Diagnostics 14, no. 12: 1296. https://doi.org/10.3390/diagnostics14121296
APA StyleShon, S., Lim, K., Chae, M., Lee, H., & Choi, J. (2024). Predicting Sudden Sensorineural Hearing Loss Recovery with Patient-Personalized Seigel’s Criteria Using Machine Learning. Diagnostics, 14(12), 1296. https://doi.org/10.3390/diagnostics14121296