Are There Differences in Skin Autofluorescence-Measured Advanced Glycation End-Product Levels between Chronic Kidney Disease and Kidney Transplant Recipients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Advanced Glycation End Products (AGE) Measurement
2.3. Body Composition and Anthropometric Parameters
2.4. Blood Pressure Measurements
2.5. Medical History, Clinical and Laboratory Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koska, J.; Gerstein, H.C.; Beisswenger, P.J.; Reaven, P.D. Advanced glycation end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes. Diabetes Care 2022, 45, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. The pathobiology of diabetic complications. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Fotheringham, A.K.; Gallo, L.A.; Borg, D.J.; Forbes, J.M. Advanced glycation end products (ages) and chronic kidney disease: Does the modern diet age the kidney? Nutrients 2022, 14, 2675. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.F.; Erhard, P.; Kader-Attia, F.A.; Wu, Y.C.; Deoreo, P.B.; Araki, A.; Glomb, M.A.; Monnier, V.M. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int. 2000, 57, 2571–2585. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.J.; Gerrits, E.G. Skin autofluorescence as a measure of advanced glycation endproduct deposition: A novel risk marker in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2010, 19, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nakayama, M.; Kanno, M.; Kimura, H.; Watanabe, K.; Tani, Y.; Kusano, Y.; Suzuki, H.; Hayashi, Y.; Asahi, K.; et al. Skin autofluorescence is associated with the progression of chronic kidney disease: A prospective observational study. PLoS ONE 2013, 8, e83799. [Google Scholar] [CrossRef]
- Genevieve, M.; Vivot, A.; Gonzalez, C.; Raffaitin, C.; Barberger-Gateau, P.; Gin, H.; Rigalleau, V. Skin autofluorescence is associated with past glycaemic control and complications in type 1 diabetes mellitus. Diabetes Metab. 2013, 39, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Meerwaldt, R.; Hartog, J.W.L.; Graaff, R.; Huisman, R.J.; Links, T.P.; den Hollander, N.C.; Thorpe, S.R.; Baynes, J.W.; Navis, G.; Gans, R.O.B.; et al. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2005, 16, 3687–3693. [Google Scholar] [CrossRef]
- Kratochvilová, M.; Zakiyanov, O.; Kalousová, M.; Kříha, V.; Zima, T.; Tesař, V. Associations of serum levels of advanced glycation end products with nutrition markers and anemia in patients with chronic kidney disease. Ren. Fail. 2011, 33, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Jandeleit-Dahm, K.; Lassila, M.; Allen, T.J. Advanced glycation end products in diabetes-associated atherosclerosis and renal disease: Interventional Studies. Ann. N. Y. Acad. Sci. 2005, 1043, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Leonardis, D.; Basta, G.; Mallamaci, F.; Cutrupi, S.; Pizzini, P.; Tripepi, R.; Tripepi, G.; De Caterina, R.; Zoccali, C. Circulating soluble receptor for advanced glycation end product (srage) and left ventricular hypertrophy in patients with chronic kidney disease (CKD). Nutr. Metab. Cardiovasc. Dis. 2012, 22, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, J.; Ueda, S.; Yamagishi, S.; Nohara, N.; Nagasawa, H.; Wakabayashi, K.; Matsui, T.; Yuichiro, H.; Kadoguchi, T.; Otsuka, T.; et al. Association of advanced glycation end products with sarcopenia and frailty in chronic kidney disease. Sci. Rep. 2020, 10, 17647. [Google Scholar] [CrossRef] [PubMed]
- Sebeková, K.; Podracká, L.; Blazícek, P.; Syrová, D.; Heidland, A.; Schinzel, R. Plasma levels of advanced glycation end products in children with renal disease. Pediatr. Nephrol. 2001, 16, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Hartog, J.W.L.; De Vries, A.P.J.; Lutgers, H.L.; Meerwaldt, R.; Huisman, R.M.; Van Son, W.J.; De Jong, P.E.; Smit, A.J. Accumulation of advanced glycation end products, measured as skin autofluorescence, in renal disease. Ann. N. Y. Acad. Sci. 2005, 1043, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Steenbeke, M.; Speeckaert, R.; Desmedt, S.; Glorieux, G.; Delanghe, J.R.; Speeckaert, M.M. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int. J. Mol. Sci. 2022, 23, 3439. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; Gomes-Neto, A.W.; van Londen, M.; Gans, R.O.; Nolte, I.M.; Berger, S.P.; Navis, G.J.; Rodrigo, R.; Leuvenink, H.G.; Schalkwijk, C.G.; et al. Circulating advanced glycation endproducts and long-term risk of cardiovascular mortality in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 2019, 14, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Hartog, J.W.L.; Smit, A.J.; van Son, W.J.; Navis, G.; Gans, R.O.B.; Wolffenbuttel, B.H.R.; de Jong, P.E. Advanced glycation end products in kidney transplant patients: A putative role in the development of chronic renal transplant dysfunction. Am. J. Kidney Dis. 2004, 43, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.E.; Johnson, C.P.; McIntyre, N.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W.; Leung, J.C.H. Tissue advanced glycation end product deposition after kidney transplantation. Nephron Clin. Pract. 2013, 124, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Mallipattu, S.K.; Uribarri, J. Advanced glycation end product accumulation. Curr. Opin. Nephrol. Hypertens. 2014, 23, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Diagnoptics. Available online: https://www.diagnoptics.com/agereaderapp/ (accessed on 23 June 2019).
- Mc780—User Manual. Available online: https://tanita.eu/media/pdf/products-tanita/professional/MC-780/MC-780MA%20N%20Instruction%20Manual%20%28EN%29%202018%20%282%29.pdf (accessed on 20 June 2019).
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-Project.Org/ (accessed on 24 April 2019).
- Meerwaldt, R.; Zeebregts, C.J.; Navis, G.; Hillebrands, J.L.; Lefrandt, J.D.; Smit, A.J. Accumulation of advanced glycation end products and chronic complications in ESRD treated by dialysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2009, 53, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Oleniuc, M.; Secara, I.; Onofriescu, M.; Hogas, S.; Voroneanu, L.; Siriopol, D.; Covic, A. Consequences of Advanced Glycation End Products Accumulation in Chronic Kidney Disease and Clinical Usefulness of Their Assessment Using a Non-invasive Technique—Skin Autofluorescence. Maedica 2011, 6, 298–307. [Google Scholar] [PubMed]
- Arsov, S.; Graaff, R.; van Oeveren, W.; Stegmayr, B.; Sikole, A.; Rakhorst, G.; Smit, A. Advanced glycation end-products and skin autofluorescence in end-stage renal disease: A review. Clin. Chem. Lab. Med. 2014, 52, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Halimi, J.M.; Ortiz, A.; Sarafidis, P.A.; Mallamaci, F.; Wuerzner, G.; Pisano, A.; London, G.; Persu, A.; Rossignol, P.; Sautenet, B.; et al. Hypertension in kidney transplantation: A consensus statement of the ‘hypertension and the kidney’ working group of the European Society of Hypertension. J. Hypertens. 2021, 39, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Tantisattamo, E.; Molnar Miklos, Z.; Ho Bing, T.; Reddy Uttam, G.; Dafoe Donald, C.; Ichii, H.; Ferrey, A.J.; Hanna Ramy, M.; Kalantar-Zadeh, K.; Amin, A. Approach and Management of Hypertension After Kidney Transplantation. Front. Med. 2020, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.S.; Gadegbeku, C.A. Addressing kidney health disparities with new national policy: The time is now. Cardiovasc. Diagn. Ther. 2023, 13, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Schakman, O.; Kalista, S.; Barbé, C.; Loumaye, A.; Thissen, J.P. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Vučković, M.; Radić, J.; Gelemanović, A.; Raos, H.; Bučan Nenadić, D.; Kolak, E.; Radić, M. Mediterranean Diet Adherence and Nutritional Status in Dalmatian Kidney Transplant Recipients-Are They Related? Nutrients 2021, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Bučan Nenadić, D.; Radić, J.; Kolak, E.; Vučković, M.; Novak, I.; Selak, M.; Radić, M. Mediterranean Diet Adherence and Nutritional Status in Dalmatian Diabetic Hypertensive Patients Regarding Presence of Chronic Kidney Disease—Is There Any Difference? Int. J. Environ. Res. Public Health 2022, 19, 2293. [Google Scholar] [CrossRef] [PubMed]
- Sebeková, K.; Podracká, L.; Heidland, A.; Schinzel, R. Enhanced plasma levels of advanced glycation end products (AGE) and pro-inflammatory cytokines in children/adolescents with chronic renal insufficiency and after renal replacement therapy by dialysis and transplantation—Are they inter-related? Clin. Nephrol. 2001, 56, S21–S26. [Google Scholar]
- Padi, S.S.; Chopra, K. Salvage of cyclosporine A-induced oxidative stress and renal dysfunction by carvedilol. Nephron 2002, 92, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Mishra, M. Do Advanced Glycation End Products and Its Receptor Play a Role in Pathophysiology of Hypertension? Int. J. Angiol. 2017, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Buch, J. Urapidil, a dual-acting antihypertensive agent: Current usage considerations. Adv. Ther. 2010, 27, 426–443. [Google Scholar] [CrossRef] [PubMed]
- Sourris, K.C.; Lyons, J.G.; Dougherty, S.L.; Chand, V.; Straznicky, N.E.; Schlaich, M.P.; Grima, M.T.; Cooper, M.E.; Kingwell, B.A.; de Courten, M.P.; et al. Plasma advanced glycation end products (AGEs) and NF-κB activity are independent determinants of diastolic and pulse pressure. Clin. Chem. Lab. Med. 2014, 52, 129–138. [Google Scholar] [CrossRef] [PubMed]
Total (N = 217) | CKD (N = 118) | KTRs (N = 99) | p * | ||
---|---|---|---|---|---|
Age (years), median (IQR) | 64 (18) | 64 (20.25) | 64 (16.5) | 0.665 | |
Sex, N (%) | Women | 86 (39.63) | 47 (39.83) | 39 (39.39) | 1.000 |
Men | 131 (60.37) | 71 (60.17) | 60 (60.61) | ||
AGE, median (IQR) | 3.3 (1.3) | 3.3 (1.5) | 3.2 (1.25) | 0.548 | |
AGE categories, N (%) | No CVD risk | 11 (5.07) | 5 (4.24) | 6 (6.06) | 0.897 |
Mild CVD risk | 28 (12.9) | 15 (12.71) | 13 (13.13) | ||
Moderate CVD risk | 33 (15.21) | 17 (14.41) | 16 (16.16) | ||
Severe CVD risk | 145 (66.82) | 81 (68.64) | 64 (64.65) | ||
COMORBIDITIES | |||||
Presence of arterial hypertension, N (%) | No | 43 (19.91) | 33 (28.21) | 10 (10.1) | 0.002 |
Yes | 173 (80.09) | 84 (71.79) | 89 (89.9) | ||
Presence of diabetes mellitus, N (%) | No | 154 (70.97) | 78 (66.1) | 76 (76.77) | 0.115 |
Yes | 63 (29.03) | 40 (33.9) | 23 (23.23) | ||
Presence of CVD, N (%) | No | 156 (72.22) | 86 (73.5) | 70 (70.71) | 0.760 |
Yes | 60 (27.78) | 31 (26.5) | 29 (29.29) | ||
Presence of CVA, N (%) | No | 202 (93.09) | 115 (97.46) | 87 (87.88) | 0.012 |
Yes | 15 (6.91) | 3 (2.54) | 12 (12.12) | ||
LABORATORY PARAMETERS | |||||
Urea (mmol/L), median (IQR) | 11.95 (12.9) | 18 (16.3) | 9.8 (5.85) | <0.001 | |
Creatinine (mmol/L), median (IQR) | 159 (183) | 260 (322) | 132 (57.25) | <0.001 | |
eGFR (mL/min/1.73 m2), median (IQR) | 36.15 (37.73) | 17.65 (31.65) | 43.45 (29.1) | <0.001 | |
E (×1012/L), mean (SD) | 4.33 (0.77) | 4.04 (0.71) | 4.67 (0.7) | <0.001 | |
Hb (g/L), mean (SD) | 126.22 (19.33) | 121.41 (19.57) | 131.78 (17.58) | <0.001 | |
MCV (fL), median (IQR) | 88.1 (7.45) | 88.95 (7.95) | 87.2 (7) | 0.017 | |
CRP (mg/L), median (IQR) | 2.9 (5.4) | 3.75 (7.2) | 2.2 (3.95) | 0.040 | |
Na (mmol/L), median (IQR) | 140 (4) | 140 (4) | 141 (3) | 0.001 | |
K (mmol/L), median (IQR) | 4.3 (0.7) | 4.5 (0.7) | 4.1 (0.6) | <0.001 | |
Ca (mmol/L), median (IQR) | 2.34 (0.19) | 2.3 (0.18) | 2.41 (0.16) | <0.001 | |
P (mmol/L), median (IQR) | 1.12 (0.41) | 1.25 (0.49) | 1.02 (0.25) | <0.001 | |
FBG (mmol/L), median (IQR) | 5.4 (1.45) | 5.5 (2) | 5.3 (1.05) | 0.058 | |
Total cholesterol (mmol/L), median (IQR) | 5 (1.6) | 4.6 (1.9) | 5.5 (1.5) | 0.001 | |
LDL (mmol/L), median (IQR) | 2.8 (1.4) | 2.5 (1.6) | 3.1 (1.36) | 0.002 | |
Tgl (mmol/L), median (IQR) | 1.6 (1.19) | 1.5 (1.1) | 1.75 (1.22) | 0.370 | |
Uric acid (mmol/L), median (IQR) | 391 (120) | 392 (128) | 385.5 (107.5) | 0.667 | |
Alb (g/L), median (IQR) | 41.1 (5.6) | 40.2 (5.5) | 41.7 (4.38) | 0.013 |
Total (N = 217) | CKD (N = 118) | KTRs (N = 99) | p * | ||
---|---|---|---|---|---|
ANTHROPOMETRIC PARAMETERS | |||||
Height (cm), mean (SD) | 173.8 (10.08) | 173.47 (10.07) | 174.22 (10.14) | 0.589 | |
Weight (kg), median (IQR) | 78.6 (22.7) | 77.2 (26.2) | 79.8 (20.58) | 0.394 | |
BMI (kg/m2), mean (SD) | 25.7 (5.85) | 25.25 (6.17) | 26.15 (5.33) | 0.220 | |
Middle upper arm circumference (cm), median (IQR) | 30 (6) | 29 (5.5) | 31 (5) | 0.055 | |
Waist circumference (cm), mean (SD) | 97.68 (13.01) | 96.66 (13.85) | 99.02 (11.75) | 0.209 | |
WHtR, mean (SD) | 0.56 (0.09) | 0.55 (0.08) | 0.56 (0.08) | 0.216 | |
BODY COMPOSITION | |||||
Fat mass (kg), median (IQR) | 17.4 (12) | 15.65 (11.7) | 19.4 (11.1) | 0.058 | |
Fat mass (%), mean (SD) | 22.8 (9.08) | 21.91 (9.14) | 23.86 (8.94) | 0.128 | |
Fat-free mass (kg), median (IQR) | 60.6 (18.85) | 61.4 (19.92) | 60 (17.6) | 0.746 | |
Visceral fat, median (IQR) | 9 (5) | 8 (6) | 9 (5) | 0.216 | |
Metabolic age (years), median (IQR) | 52 (16) | 52 (17.5) | 52 (15) | 0.910 | |
Muscle mass (kg), median (IQR) | 57.6 (17.95) | 58.35 (19.02) | 57 (16.8) | 0.745 | |
Skeletal muscle mass (kg), median (IQR) | 32.2 (11.4) | 32.9 (11.38) | 32 (11.4) | 0.570 | |
Skeletal muscle mass (%), median (IQR) | 42.5 (9.35) | 43.05 (9.45) | 41.1 (10) | 0.079 | |
Phase angle (◦), median (IQR) | 5.2 (1.2) | 5.4 (1.27) | 5 (1) | 0.002 | |
Trunk visceral fat, median (IQR) | 9.7 (6.45) | 6.8 (3.7) | 10.2 (6.1) | 0.004 |
Total (N = 217) | CKD (N = 118) | KTRs (N = 99) | p * | ||
---|---|---|---|---|---|
BLOOD PRESSURE PARAMETERS | |||||
pSBP (mmHg), median (IQR) | 137 (29.5) | 141.5 (32) | 135 (20.5) | 0.069 | |
pDBP (mmHg), mean (SD) | 88.29 (12.6) | 88.3 (12.77) | 88.27 (12.47) | 0.989 | |
pMAP (mmHg), median (IQR) | 112 (20.25) | 112.5 (21.75) | 112 (18.75) | 0.545 | |
pPP (mmHg), median (IQR) | 53 (22) | 55 (19) | 50 (22) | 0.120 | |
cSBP (mmHg), median (IQR) | 126.25 (26.25) | 126 (27) | 126.5 (21) | 0.759 | |
cDBP (mmHg), mean (SD) | 89.74 (13.05) | 89.87 (12.94) | 89.55 (13.27) | 0.876 | |
cMAP (mmHg), median (IQR) | 101.58 (15.25) | 100 (13.83) | 102 (14.67) | 0.478 | |
cPP (mmHg), median (IQR) | 37 (16.12) | 38 (14.5) | 36.5 (15) | 0.270 | |
HR (beat/min), median (IQR) | 74 (17) | 75 (18) | 72 (17) | 0.037 | |
Aix (%), median (IQR) | 23 (22.75) | 24 (24) | 20.5 (22) | 0.131 | |
PWV (m/s), median (IQR) | 62.67 (10.18) | 63.99 (9.75) | 61.09 (10.51) | 0.052 | |
MEDICATION USE | |||||
Beta blockers, N (%) | No | 92 (43.19) | 65 (57.02) | 27 (27.27) | <0.001 |
Yes | 121 (56.81) | 49 (42.98) | 72 (72.73) | ||
Angiotensin-converting enzyme inhibitors, N (%) | No | 160 (75.12) | 79 (69.3) | 81 (81.82) | 0.051 |
Yes | 53 (24.88) | 35 (30.7) | 18 (18.18) | ||
Angiotensin II receptor blockers, N (%) | No | 200 (93.9) | 108 (94.74) | 92 (92.93) | 0.793 |
Yes | 13 (6.1) | 6 (5.26) | 7 (7.07) | ||
Calcium channel blockers, N (%) | No | 87 (40.85) | 50 (43.86) | 37 (37.37) | 0.412 |
Yes | 126 (59.15) | 64 (56.14) | 62 (62.63) | ||
Alpha1 antagonists, N (%) | No | 203 (95.31) | 114 (100) | 89 (89.9) | 0.002 |
Yes | 10 (4.69) | NA | 10 (10.1) | ||
Aldosterone antagonist, N (%) | No | 210 (98.59) | 113 (99.12) | 97 (97.98) | 0.902 |
Yes | 3 (1.41) | 1 (0.88) | 2 (2.02) | ||
Moxonidine, N (%) | No | 132 (61.97) | 69 (60.53) | 63 (63.64) | 0.745 |
Yes | 81 (38.03) | 45 (39.47) | 36 (36.36) | ||
Diuretics, N (%) | No | 72 (33.8) | 39 (34.21) | 33 (33.33) | 1.000 |
Yes | 141 (66.2) | 75 (65.79) | 66 (66.67) | ||
Peroral antihyperglycemics, N (%) | No | 172 (80.75) | 84 (73.68) | 88 (88.89) | 0.008 |
Yes | 41 (19.25) | 30 (26.32) | 11 (11.11) | ||
Insulin, N (%) | No | 179 (84.43) | 98 (86.73) | 81 (81.82) | 0.333 |
Yes | 32 (15.09) | 14 (12.39) | 18 (18.18) | ||
Statins, N (%) | No | 126 (59.43) | 73 (64.6) | 53 (53.54) | 0.134 |
Yes | 86 (40.57) | 40 (35.4) | 46 (46.46) | ||
Urapidil, N (%) | No | 183 (85.92) | 101 (88.6) | 82 (82.83) | 0.313 |
Yes | 30 (14.08) | 13 (11.4) | 17 (17.17) | ||
Antihypertensives, N (%) | No | 44 (20.28) | 32 (27.12) | 12 (12.12) | 0.010 |
Yes | 173 (79.72) | 86 (72.88) | 87 (87.88) | ||
Corticosteroids, N (%) | No | 103 (48.13) | 92 (80) | 11 (11.11) | <0.001 |
Yes | 111 (51.87) | 23 (20) | 88 (88.89) | ||
Calcineurin inhibitors, N (%) | No | 127 (59.91) | 110 (97.35) | 17 (17.17) | <0.001 |
Yes | 85 (40.09) | 3 (2.65) | 82 (82.83) |
Predictor | Beta | SE | p |
---|---|---|---|
Predictors for CKD (R2 = 44.1%) | |||
Age (years) | 0.020 | 0.006 | <0.001 |
Sex (men) | 0.538 | 0.209 | 0.011 |
eGFR (mL/min/1.73 m2) | −0.012 | 0.003 | <0.001 |
Hb (g/L) | −0.007 | 0.004 | 0.126 |
Uric acid (mmol/L) | −0.001 | 0.001 | 0.170 |
Skeletal muscle mass (kg) | −0.025 | 0.013 | 0.055 |
cSBP (mmHg) | −0.012 | 0.004 | 0.005 |
Presence of CVD | 0.249 | 0.175 | 0.156 |
Predictors for KTRs (R2 = 46.9%) | |||
Age (years) | 0.024 | 0.006 | <0.001 |
Sex (men) | 0.317 | 0.156 | 0.045 |
eGFR (mL/min/1.73 m2) | −0.013 | 0.004 | 0.002 |
Time since KTx (years) | −0.037 | 0.014 | 0.010 |
Dialysis duration prior to KTx (years) | 0.085 | 0.020 | <0.001 |
BMI (kg/m2) | 0.053 | 0.033 | 0.115 |
E (×1012/L) | 0.199 | 0.120 | 0.100 |
Trunk fat mass (kg) | −0.074 | 0.027 | 0.007 |
Presence of AH | 0.869 | 0.265 | 0.001 |
Angiotensin II receptor blockers | −0.649 | 0.292 | 0.029 |
Urapidil | −0.433 | 0.202 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radić, J.; Vučković, M.; Đogaš, H.; Gelemanović, A.; Belančić, A.; Radić, M. Are There Differences in Skin Autofluorescence-Measured Advanced Glycation End-Product Levels between Chronic Kidney Disease and Kidney Transplant Recipients? Diagnostics 2024, 14, 1383. https://doi.org/10.3390/diagnostics14131383
Radić J, Vučković M, Đogaš H, Gelemanović A, Belančić A, Radić M. Are There Differences in Skin Autofluorescence-Measured Advanced Glycation End-Product Levels between Chronic Kidney Disease and Kidney Transplant Recipients? Diagnostics. 2024; 14(13):1383. https://doi.org/10.3390/diagnostics14131383
Chicago/Turabian StyleRadić, Josipa, Marijana Vučković, Hana Đogaš, Andrea Gelemanović, Andrej Belančić, and Mislav Radić. 2024. "Are There Differences in Skin Autofluorescence-Measured Advanced Glycation End-Product Levels between Chronic Kidney Disease and Kidney Transplant Recipients?" Diagnostics 14, no. 13: 1383. https://doi.org/10.3390/diagnostics14131383
APA StyleRadić, J., Vučković, M., Đogaš, H., Gelemanović, A., Belančić, A., & Radić, M. (2024). Are There Differences in Skin Autofluorescence-Measured Advanced Glycation End-Product Levels between Chronic Kidney Disease and Kidney Transplant Recipients? Diagnostics, 14(13), 1383. https://doi.org/10.3390/diagnostics14131383