Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Enrollment and Dataset Formulation
2.2. Data Preprocessing and Augmentation
2.3. Deep Neural Network Models
2.4. Segmentation Performance Evaluation
2.5. Experimental Setup
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.; Esquivel, M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.; Berry, T.; et al. Estimate of the global volume of surgery in 2012: An assessment supporting improved health outcomes. Lancet 2015, 385, S11. [Google Scholar] [CrossRef] [PubMed]
- Nicoara, A.; Skubas, N.; Ad, N.; Finley, A.; Hahn, R.T.; Mahmood, F.; Mankad, S.; Nyman, C.B.; Pagani, F.; Porter, T.R.; et al. Guidelines for the use of transesophageal echocardiography to assist with surgical decision-making in the operating room: A surgery-based approach: From the American Society of Echocardiography in collaboration with the Society of Cardiovascular Anesthesiologists and the Society of Thoracic Surgeons. J. Am. Soc. Echocardiogr. 2020, 33, 692–734. [Google Scholar] [PubMed]
- Ferro, E.G.; Alkhouli, M.; Nair, D.G.; Kapadia, S.R.; Hsu, J.C.; Gibson, D.N.; Freeman, J.V.; Price, M.J.; Roy, K.; Allocco, D.J.; et al. Intracardiac vs Transesophageal Echocardiography for Left Atrial Appendage Occlusion With Watchman FLX in the U.S. JACC Clin. Electrophysiol. 2023, 9, 2587–2599. [Google Scholar] [CrossRef] [PubMed]
- Mayo, P.H.; Narasimhan, M.; Koenig, S. Critical Care Transesophageal Echocardiography. Chest 2015, 148, 5. [Google Scholar] [CrossRef] [PubMed]
- MacKay, E.J.; Zhang, B.; Heng, S.; Ye, T.; Neuman, M.D.; Augoustides, J.G.; Feinman, J.W.; Desai, N.D.; Groeneveld, P.W. Association between Transesophageal Echocardiography and Clinical Outcomes after Coronary Artery Bypass Graft Surgery. J. Am. Soc. Echocardiogr. 2021, 34, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Jaidka, A.; Hobbs, H.; Koenig, S.; Millington, S.J.; Arntfield, R.T. Better With Ultrasound: Transesophageal Echocardiography. Chest 2019, 155, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Marbach, J.A.; Almufleh, A.; Di Santo, P.; Simard, T.; Jung, R.; Diemer, G.; West, F.M.; Millington, S.J.; Mathew, R.; Le May, M.R.; et al. A shifting paradigm: The role of focused cardiac ultrasound in bedside patient assessment. Chest 2020, 58, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Thaden, J.J.; Malouf, J.F.; Rehfeldt, K.H.; Ashikhmina, E.; Bagameri, G.; Enriquez-Sarano, M.; Stulak, J.M.; Schaff, H.V.; Michelena, H.I. Adult Intraoperative Echocardiography: A Comprehensive Review of Current Practice. J. Am. Soc. Echocardiogr. 2020, 33, 735–755. [Google Scholar] [CrossRef]
- Nabi, W.; Bansal, A.; Xu, B. Applications of artificial intelligence and machine learning approaches in echocardiography. Echocardiography 2021, 38, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.; Bae, R.; Hong, H.; Thomas, Y.; Surette, S.; Cadieu, C.; Chaudhry, A.; Martin, R.P.; McCarthy, P.M.; Rubenson, D.S.; et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol. 2021, 6, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020, 580, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.; Smistad, E.; Østvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Belhamissi, M.; Israilov, S.; Grenier, T.; et al. LU-Net: A multistage attention network to improve the robustness of segmentation of left ventricular structures in 2-D echocardiography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2519–2530. [Google Scholar] [CrossRef]
- Liu, F.; Wang, K.; Liu, D.; Yang, X.; Tian, J. Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography. Med. Image Anal. 2021, 67, 101873. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Tsui, P.H.; Pang, K.; Bin, G.; Li, J.; Lv, K.; Wu, X.; Wu, S.; Zhou, Z. MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Ultrasonics 2023, 127, 106855. [Google Scholar] [CrossRef] [PubMed]
- Haukom, T.; Berg, E.A.R.; Aakhus, S.; Kiss, G.H. Basal strain estimation in transesophageal echocardiography (tee) using deep learning based unsupervised deformable image registration. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1421–1424. [Google Scholar]
- Kang, S.; Kim, S.J.; Ahn, H.G.; Cha, K.C.; Yang, S. Left ventricle segmentation in transesophageal echocardiography images using a deep neural network. PLoS ONE 2023, 18, e0280485. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Kim, S.J.; Kang, S.; Han, J.; Hwang, S.O.; Cha, K.C.; Yang, S. Ventricle tracking in transesophageal echocardiography (TEE) images during cardiopulmonary resuscitation (CPR) using deep learning and monogenic filtering. Biomed. Eng. Lett. 2023, 13, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Proceedings, Part III 18, Munich, Germany, 5–9 October 2015; Springer International Publishing: New York, NY, USA, 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A nested U-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Proceedings 4, Granada, Spain, 20 September 2018; Springer International Publishing: New York, NY, USA, 2018; pp. 3–11. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Valanarasu, J.M.J.; Patel, V.M. UNeXt: MLP-based rapid medical image segmentation network. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer Nature: Cham, Switzerland, 2022; pp. 23–33. [Google Scholar]
- Zou, Y.; Amidi, E.; Luo, H.; Zhu, Q. Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions. Photoacoustics 2022, 28, 100420. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.; Smistad, E.; Pedrosa, J.; Østvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.-M.; Grenier, T.; et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 2019, 38, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
Deep Learning Models | # of Model Parameters | Training Time | Inference Time for a Single Image |
---|---|---|---|
U-Net [18] | 7.85 million | 6428.65 s | 101.75 ms |
UNet++ [19] | 9.16 million | 10,080.50 s | 134.21 ms |
UNeXt [20] | 1.47 million | 7122.94 s | 109.59 ms |
Attention U-Net [21] | 34.88 million | 10,556.86 s | 122.85 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Qin, W.; Zhao, Z.; Wang, C.; Tian, Y.; Zhang, Y.; He, K.; Zhang, Y.; Shen, L.; Zhou, Z.; et al. Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study. Diagnostics 2024, 14, 1655. https://doi.org/10.3390/diagnostics14151655
Tian Y, Qin W, Zhao Z, Wang C, Tian Y, Zhang Y, He K, Zhang Y, Shen L, Zhou Z, et al. Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study. Diagnostics. 2024; 14(15):1655. https://doi.org/10.3390/diagnostics14151655
Chicago/Turabian StyleTian, Yuan, Wenting Qin, Zihang Zhao, Chunrong Wang, Yajie Tian, Yuelun Zhang, Kai He, Yuguan Zhang, Le Shen, Zhuhuang Zhou, and et al. 2024. "Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study" Diagnostics 14, no. 15: 1655. https://doi.org/10.3390/diagnostics14151655
APA StyleTian, Y., Qin, W., Zhao, Z., Wang, C., Tian, Y., Zhang, Y., He, K., Zhang, Y., Shen, L., Zhou, Z., & Yu, C. (2024). Deep Learning Based Automatic Left Ventricle Segmentation from the Transgastric Short-Axis View on Transesophageal Echocardiography: A Feasibility Study. Diagnostics, 14(15), 1655. https://doi.org/10.3390/diagnostics14151655