Reconnecting Anisometropic Amblyopic Eyes to the Cortex: VEP-Based Auditory Biofeedback
Abstract
:1. Introduction
2. Methodology
3. Sample
4. Training Protocol
5. Visual Parameters Assessment
6. Statistical Analysis
7. Results
7.1. BCVA
7.2. Reading Speed (RS)
7.3. Contrast Sensitivity (CS)
7.4. SS-VEP
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunton, K.B. Advances in amblyopia: What have we learned from pedigtrials? Pediatrics 2013, 131, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Liu, Z.; Zhao, J.; Zeng, L.; Hao, G.; Shui, D.; Mao, K. The Global Prevalence of Amblyopia in Children: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 819998. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Deng, S.; Feng, L.; Yuan, J.; Chen, Z.; Yan, J.; Qiu, X.; Wang, Z.; Yu, M.; Chen, Z.; et al. Effects of Monocular Perceptual Learning on Binocular Visual Processing in Adolescent and Adult Amblyopia. iScience 2020, 23, 100875. [Google Scholar] [CrossRef]
- VAllen, B.; Schmitt, M.A.; Kushner, B.J.; Rokers, B. Retinothalamic White Matter Abnormalities in Amblyopia. Investig. Opthalmol. Vis. Sci. 2018, 59, 921–929. [Google Scholar] [CrossRef]
- Veneruso, P.E.; Ziccardi, L.; Magli, G.; Falsini, B.; Magli, A. Short-term effects of vision trainer rehabilitation in patients affected by anisometropic amblyopia: Electrofunctional evaluation. Doc. Ophthalmol. 2014, 129, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.P.; Aldred, B.; Schmitt, M.A.; Rokers, B. Impact of Amblyopia on the Central Nervous System. J. Binocul. Vis. Ocul. 2020, 70, 182–192. [Google Scholar] [CrossRef]
- Lapajne, L.; Roškar, S.; Pompe, M.T.; Svetina, M.; Jarc-Vidmar, M.; Hawlina, M. Vision training with VEP biofeedback in amblyopia after the critical period. Doc. Ophthalmol. 2020, 141, 269–278. [Google Scholar] [CrossRef]
- Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K. Removing brakes on adult brain plasticity: From molecularto behavioral interventions. J. Neurosci. 2010, 30, 14964–14971. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Fernandez, K.M. Successful amblyopia therapy initiated after age 7 years: Compliance cures. Arch. Ophthalmol. 2000, 118, 1535–1541. [Google Scholar] [CrossRef]
- Chen, P.; Chen, J.; Fu, J.; Chien, K.; Lu, D. A pilot study of anisometropic amblyopia improved in adults and children by perceptual learning: An alternative treatment to patching. Ophthalmic Physiol. 2008, 28, 422–428. [Google Scholar] [CrossRef]
- Levi, D.M.; Polat, U. Neural plasticity in adults with amblyopia. Proc. Natl. Acad. Sci. USA 1996, 93, 6830–6834. [Google Scholar] [CrossRef] [PubMed]
- Rotberg, M.H. Biofeedback for ophthalmologic disorders. Surv. Ophthalmol. 1983, 27, 381–386. [Google Scholar] [CrossRef]
- Hillyard, S.A.; Anllo-Vento, L. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci.USA 1998, 95, 781–787. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lin, W.-C.; Cherng, F.-Y.; Ko, L.-W. A visual attention monitor based on steady-state visual evoked potential. Trans. Neural Syst. Rehabil. 2016, 24, 399–408. [Google Scholar] [CrossRef]
- Yamamoto, M.; Dogru, M.; Nakamura, M.; Shirabe, H.; Tsukahara, Y.; Sekiya, Y. Visual function following congenital cataract surgery. Jpn. J. Ophthalmol. 1998, 42, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.E.; Maurer, D. Critical Periods in Vision Revisited. Annu. Rev. Vis. Sci. 2022, 8, 291–321. [Google Scholar] [CrossRef]
- Tsirlin, I.; Colpa, L.; Goltz, H.C.; Wong, A.M. Behavioral Training as New Treatment for Adult Amblyopia: A Meta-Analysis and Systematic Review. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4061–4075. [Google Scholar] [CrossRef] [PubMed]
- Tranchita, E.; Segnalini, A.; Licoccia, G.; Sferra, Y.; Marchegiani, C. Visual training: Neuro-visual enhancement in athletes. Med. Sport. 2017, 70, 282–287. [Google Scholar] [CrossRef]
- Levi, D.M.; Li, R.W. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vis. Res. 2009, 49, 2535–2549. [Google Scholar] [CrossRef]
- Richards, E.; Bennett, P.J.; Sekuler, A.B. Age related differences in learning with the useful field of view. Vis. Res. 2008, 46, 4217–4231. [Google Scholar] [CrossRef]
- Wang, X.; Cui, D.; Zheng, L.; Yang, X.; Yang, H.; Zeng, J. Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol. Vis. 2012, 18, 909–919. [Google Scholar] [PubMed]
- Flynn, J.T.; Schiffman, J.; Feuer, W.; Corona, A. The therapy of amblyopia: An analysis of the results of amblyopia therapy utilizing the pooled data of published studies. Trans. Am. Ophthalmol. Soc. 1998, 96, 431–450. [Google Scholar]
- Woodruff, G.; Hiscox, F.; Thompson, J.R.; Smith, L.K. Factors affecting the outcome of children treated for amblyopia. Eye 1994, 8, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Cleary, M. Efficacy of occlusion for strabismic amblyopia: Can anoptimal duration be identified? Br. J. Ophthalmol. 2000, 84, 572–578. [Google Scholar] [CrossRef]
- Bowman, R.J.C.; Williamson, T.H.; Andrews, R.G.L.; Aitchison, T.C.; Dutton, G.N. An inner city preschool visual screening programme: Long term visual results. Br. J. Ophthalmol. 1998, 82, 543–548. [Google Scholar] [CrossRef]
- Hussain, Z.; Sekuler Ab Bennett, P.J. How much practice is needed to produce perceptual learning? Vis. Res. 2009, 109, 2264–2634. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.E.; Fielder, A.R.; Stephens, D.A.; Moseley, M.J. Treatment of unilateral amblyopia: Factors influencing visual outcome. Invest. Ophthalmol. Vis. Sci. 2005, 46, 3152–3160. [Google Scholar] [CrossRef]
- Rakshit, A.; Schmid, K.L.; Webber, A.L.; Majhi, D. Investigation of visual functions in adult anisometropic amblyopia. Investig. Ophthalmol. Vis. Sci. 2022, 63, 1246-A0354. [Google Scholar]
- Popple, A.V.; Levi, D.M. The attentional blink in amblyopia. J. Vis. 2008, 8, 12. [Google Scholar] [CrossRef]
- Sharma, V.; Levi, D.M.; Klein, S.A. Undercounting features and missing features: Evidence for a high-level deficit in strabismic amblyopia. Nat. Neurosci. 2000, 3, 496–501. [Google Scholar] [CrossRef]
- Singer, W. The role of attention in developmental plasticity. Hum. Neurobiol. 1982, 1, 41–43. [Google Scholar] [PubMed]
- Gutnisky, D.A.; Hansen, B.J.; Iliescu, B.F.; Dragoi, V. Attention alters visual plasticity during exposure-based learning. Curr. Biol. 2009, 19, 555–560. [Google Scholar] [CrossRef]
- Kubová, Z.; Kuba, M.; Juran, J.; Blakemore, C. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vis. Res. 1996, 36, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wanger, P.; Nilsson, B.Y. Visual evoked responses to pattern-reversal simulation in patients with amblyopia and/or defective binocular functions. Acta Ophthalmol. 1978, 56, 617–627. [Google Scholar] [CrossRef]
- Beneish, R.; Lachapelle, P.; Polomeno, R.C.; Lake, N. Pattern VEP differences in strabismic and anisometric amblyopia. Clin. Vis. Sci. 1990, 5, 271–283. [Google Scholar]
- McKerral, M.; Polomeno, R.C.; Leporé, F.; Lachapelle, P. Can interocular pattern reversal visual evoked potential and motor reaction time differences distinguish anisometropic from strabismic amblyopia? Acta Ophthalmol. Scand. 1999, 77, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.R.; Jost, R.M.; De La Cruz, A.; Birch, E.E. Amblyopic children read more slowly than controls under natural, binocular reading conditions. J. AAPOS 2015, 19, 515–520. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Luo, L.; Li, F. Structural and functional alterations in the brains of patients with anisometropic and strabismic amblyopia: A systematic review of magnetic resonance imaging studies. Neural Regen. Res. 2023, 18, 2348–2356. [Google Scholar] [CrossRef]
- Meier, K.; Giaschi, D. Unilateral amblyopia affects two eyes: Fellow eye deficits in amblyopia. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1779–1800. [Google Scholar] [CrossRef]
- Birch, E.E.; Kelly, K.R.; Giaschi, D.E. Fellow eye deficits in amblyopia. J. Binocul. Vis. Ocul. Motil. 2019, 69, 116–125. [Google Scholar] [CrossRef]
- Polat, U.; Ma-Naim, T.; Spierer, A. Treatment of children with amblyopia by perceptual learning. Vis. Res. 2009, 49, 2599–2603. [Google Scholar] [CrossRef] [PubMed]
- Dikker, S.; Haegens, S.; Bevilacqua, D.; Davidesco, I.; Wan, L.; Kaggen, L.; McClintock, J.; Chaloner, K.; Ding, M.; West, T.; et al. Morning brain: Real-world neural evidence that high school class times matter. Soc. Cogn. Affect. Neurosci. 2020, 15, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, L. Amblyopia: Progress and promise of functional magnetic resonance imaging. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1229–1246. [Google Scholar] [CrossRef] [PubMed]
Measure | Pre-Treatment | After 10 Sessions | 1 Year Follow-Up | p-Value (Friedman’s) | p-Value (WSR) |
---|---|---|---|---|---|
BCVA (LogMAR) | 0.775 ± 0.717 (0.7) | 0.588 ± 0.656 (0.55) | 0.581 ± 0.756 (0.45) | <0.001 a | Pre vs 10s: 0.009 a |
Pre vs. 1y: 0.003 a | |||||
Contrast sensitivity | 1.718 ± 0.75 (2) | 1.921 ± 0.396 (2) | 1.921 ± 0.436 (2) | 0.008 a | Pre vs. 10s: 0.016 a |
Pre vs. 1y: 0.055 b | |||||
Reading speed (words/min) | 72.44 ± 124.278 (53.5) | 77.13 ± 130.7 (63) | 71.88 ± 127.86 (55.5) | 0.064 b | Pre vs. 10s: 0.432 b |
Pre vs. 1y: 0.726 b |
Variable | Mean SS-VEP Amplitude (μV) | p-Value | |
---|---|---|---|
Age (years) | Under 35 | 1.336 ± 1.082 | 0.125 a |
Over 35 | 1.981 ± 2.104 | ||
Amblyopia grade | Medium | 1.804 ± 1.348 | 0.379 a |
High | 1.556 ± 1.816 | ||
Amblyopia cause | Anisometropia | 1.581 ± 1.808 | 0.459 a |
Strabismus | 1.779 ± 1.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemeș-Drăgan, I.-A.; Țîpcu, A.; Hapca, M.C.; Pașcalău, R.; Nicoară, S.-D. Reconnecting Anisometropic Amblyopic Eyes to the Cortex: VEP-Based Auditory Biofeedback. Diagnostics 2024, 14, 1861. https://doi.org/10.3390/diagnostics14171861
Nemeș-Drăgan I-A, Țîpcu A, Hapca MC, Pașcalău R, Nicoară S-D. Reconnecting Anisometropic Amblyopic Eyes to the Cortex: VEP-Based Auditory Biofeedback. Diagnostics. 2024; 14(17):1861. https://doi.org/10.3390/diagnostics14171861
Chicago/Turabian StyleNemeș-Drăgan, Iulia-Andrada, Alexandru Țîpcu, Mădălina Claudia Hapca, Raluca Pașcalău, and Simona-Delia Nicoară. 2024. "Reconnecting Anisometropic Amblyopic Eyes to the Cortex: VEP-Based Auditory Biofeedback" Diagnostics 14, no. 17: 1861. https://doi.org/10.3390/diagnostics14171861
APA StyleNemeș-Drăgan, I. -A., Țîpcu, A., Hapca, M. C., Pașcalău, R., & Nicoară, S. -D. (2024). Reconnecting Anisometropic Amblyopic Eyes to the Cortex: VEP-Based Auditory Biofeedback. Diagnostics, 14(17), 1861. https://doi.org/10.3390/diagnostics14171861