The Mid-Term Effect of Preservative-Free Artificial Tears Containing Hyaluronic Acid on Dry Eye Incidence after Cataract Surgery: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Cataract Surgery
2.3. Dry Eye Examinations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cicinelli, M.V.; Buchan, J.C.; Nicholson, M.; Varadaraj, V.; Khanna, R.C. Cataracts. Lancet 2023, 401, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, V.K.; Wright, T.A.; Lamoureux, E.L.; Pesudovs, K. Cataract Symptom Scale: Clarifying measurement. Br. J. Ophthalmol. 2009, 93, 1652–1656. [Google Scholar] [CrossRef] [PubMed]
- Davis, G. The Evolution of Cataract Surgery. Mol. Med. 2016, 113, 58–62. [Google Scholar]
- Aggarwal, M.; Gour, A.; Gupta, N.; Singh, A.; Sangwan, V. Visual outcome and postoperative complications of cataract surgery in patients with ocular surface disorders. J. Cataract. Refract. Surg. 2024, 50, 474–480. [Google Scholar] [CrossRef]
- Danzinger, V.; Schartmüller, D.; Lisy, M.; Schranz, M.; Schwarzenbacher, L.; Abela-Formanek, C.; Menapace, R.; Leydolt, C. Intraindividual Comparison of an Enhanced Monofocal and an Aspheric Monofocal Intraocular Lens of the Same Platform. Am. J. Ophthalmol. 2024, 261, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Fonteh, C.N.; Patnaik, J.L.; Grove, N.C.; Lynch, A.M.; Pantcheva, M.B.; Christopher, K.L. Refractive outcomes using Barrett formulas and patient characteristics of cataract surgery patients with and without prior LASIK/PRK. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Lwowski, C.; Pawlowicz, K.; Hinzelmann, L.; Adas, M.; Kohnen, T. Prediction accuracy of IOL calculation formulas using the ASCRS online calculator for a diffractive extended depth-of-focus IOL after myopic laser in situ keratomileusis. J. Cataract. Refract. Surg. 2020, 46, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.M.; Sun, J.K.; Abujaber, S.; Schlossman, D.K.; Silva, P.S. Cataract Surgery and its complications in diabetic patients. Semin. Ophthalmol. 2014, 29, 329–337. [Google Scholar] [CrossRef]
- Levin, H.J.; Mehta, M.S.; Storey, P.P.; Patel, S.N.; Kuley, B.; Wibbelsman, T.D.; Obeid, A.; Garg, S.; Vander, J.; Dunn, J.P.; et al. Endophthalmitis following cataract surgery: Visual outcomes, microbial spectrum and complications. Curr. Opin. Ophthalmol. 2023, 34, 237–242. [Google Scholar] [CrossRef]
- Batlan, S.J.; Dodick, J.M. Corneal complications of cataract surgery. Curr. Opin. Ophthalmol. 1996, 7, 52–56. [Google Scholar] [CrossRef]
- Mencucci, R.; Favuzza, E.; Decandia, G.; Cennamo, M.; Giansanti, F. Hyaluronic Acid/Trehalose Ophthalmic Solution in Reducing Post-Cataract Surgery Dry Eye Signs and Symptoms: A Prospective, Interventional, Randomized, Open-Label Study. J. Clin. Med. 2021, 10, 4699. [Google Scholar] [CrossRef] [PubMed]
- Cagini, C.; Di Lascio, G.; Torroni, G.; Mariniello, M.; Meschini, G.; Lupidi, M.; Messina, M. Dry eye and inflammation of the ocular surface after cataract surgery: Effectiveness of a tear film substitute based on trehalose/hyaluronic acid vs hyaluronic acid to resolve signs and symptoms. J. Cataract. Refract. Surg. 2021, 47, 1430–1435. [Google Scholar] [CrossRef]
- Yusufoğlu, E.; Keser, S. The effect of sodium hyaluronate on dry eye and corneal epithelial thickness following cataract surgery. Int. Ophthalmol. 2024, 44, 211. [Google Scholar] [CrossRef] [PubMed]
- Fogagnolo, P.; Giannaccare, G.; Mencucci, R.; Villani, E.; Orfeo, V.; Aragona, P.; De Ruvo, V.; Strianese, A.; Quisisana, C.; Borselli, M.; et al. Effectiveness of a New Active Tear Substitute Containing 0.2% Hyaluronic Acid and 0.001% Hydrocortisone on Signs and Symptoms of Dry Eye Disease by Means of Low- and High-Tech Assessments. Ophthalmol. Ther. 2024, 13, 251–266. [Google Scholar] [CrossRef]
- Fogagnolo, P.; Romano, D.; De Ruvo, V.; Sabella, P.; Rossetti, L. Clinical Efficacy of an Eyedrop Containing Hyaluronic Acid and Ginkgo Biloba in the Management of Dry Eye Disease Induced by Cataract Surgery. J. Ocul. Pharmacol. Ther. 2022, 38, 305–310. [Google Scholar] [CrossRef]
- Srinivasan, S.; Garofalo, R.; Williams, R. Safe and Effective Management of Dry Eye Symptoms with Hydroxypropyl Guar and Hyaluronic Acid Dual-Polymer Lubricating Eye Drops: A Review of Preclinical and Clinical Studies. Clin. Ophthalmol. 2023, 17, 3883–3898. [Google Scholar] [CrossRef] [PubMed]
- Caretti, L.; La Gloria Valerio, A.; Piermarocchi, R.; Badin, G.; Verzola, G.; Masarà, F.; Scalora, T.; Monterosso, C. Efficacy of carbomer sodium hyaluronate trehalose vs. hyaluronic acid to improve tear film instability and ocular surface discomfort after cataract surgery. Clin. Ophthalmol. 2019, 13, 1157–1163. [Google Scholar] [CrossRef]
- Jensen, P.; Nilsen, C.; Gundersen, M.; Gundersen, K.G.; Potvin, R.; Gazerani, P.; Chen, X.; Utheim, T.P.; Utheim, Ø. A Preservative-Free Approach—Effects on Dry Eye Signs and Symptoms after Cataract Surgery. Clin. Ophthalmol. 2024, 18, 591–604. [Google Scholar] [CrossRef]
- Kohli, P.; Arya, S.K.; Raj, A.; Handa, U. Changes in ocular surface status after phacoemulsification in patients with senile cataract. Int. Ophthalmol. 2019, 39, 1345–1353. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Shen, J.-H.; Chao, C.-C.; Lian, I.-B.; Huang, J.-Y.; Yang, S.-F.; Chang, C.-K. Topographic and surgical risk factors for high postoperative residual astigmatism after small incision lenticule extraction in patients with different degrees of myopia: A retrospective cohort study. BMC Ophthalmol. 2024, 24, 45. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Yang, S.-F.; Chang, Y.-L.; Huang, J.-Y.; Chang, C.-K. The Degrees of Coronary Heart Disease and the Degrees of New-Onset Blepharitis: A Nationwide Cohort Study. Diagnostics 2024, 14, 1349. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and Validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef]
- Clayton, J.A. Dry Eye. N. Engl. J. Med. 2018, 378, 2212–2223. [Google Scholar] [CrossRef]
- Baudouin, C.; Aragona, P.; Messmer, E.M.; Tomlinson, A.; Calonge, M.; Boboridis, K.G.; Akova, Y.A.; Geerling, G.; Labetoulle, M.; Rolando, M. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: Proceedings of the OCEAN group meeting. Ocul. Surf. 2013, 11, 246–258. [Google Scholar] [CrossRef]
- Roda, M.; Corazza, I.; Bacchi Reggiani, M.L.; Pellegrini, M.; Taroni, L.; Giannaccare, G.; Versura, P. Dry Eye Disease and Tear Cytokine Levels—A Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3111. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.R.; Praveen, M.; Narasimhan, R.; Khamar, P.; D’souza, S.; Sinha-Roy, A.; Sethu, S.; Shetty, R.; Ghosh, A. Tear biomarkers in dry eye disease: Progress in the last decade. Indian J. Ophthalmol. 2023, 71, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Seen, S.; Tong, L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018, 96, e412–e420. [Google Scholar] [CrossRef]
- Bu, J.; Liu, Y.; Zhang, R.; Lin, S.; Zhuang, J.; Sun, L.; Zhang, L.; He, H.; Zong, R.; Wu, Y.; et al. Potential New Target for Dry Eye Disease—Oxidative Stress. Antioxidants 2024, 13, 422. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S.; Lee, C.; Hsueh, Y.; Huang, J.; Chang, C. Differences in change of post-operative antioxidant levels between laser-assisted lenticule extraction and femtosecond laser in situ keratomileusis. J. Cell. Mol. Med. 2024, 28, 18069. [Google Scholar] [CrossRef]
- Rolando, M.; Zierhut, M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv. Ophthalmol. 2001, 45 (Suppl. S2), S203–S210. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Stern, M.E. The cornea in keratoconjunctivitis sicca. Exp. Eye Res. 2020, 201, 108295. [Google Scholar] [CrossRef]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Nagata, T.; Kudo, H.; Müller-Lierheim, W.G.K.; van Setten, G.-B.; Dogru, M.; Tsubota, K. The Effects of High Molecular Weight Hyaluronic Acid Eye Drop Application in Environmental Dry Eye Stress Model Mice. Int. J. Mol. Sci. 2020, 21, 3516. [Google Scholar] [CrossRef]
- Tseng, C.-L.; Hung, Y.-J.; Chen, Z.-Y.; Fang, H.-W.; Chen, K.-H. Synergistic Effect of Artificial Tears Containing Epigallocatechin Gallate and Hyaluronic Acid for the Treatment of Rabbits with Dry Eye Syndrome. PLoS ONE 2016, 11, e0157982. [Google Scholar] [CrossRef]
- Macri, A.; Scanarotti, C.; Bassi, A.M.; Giuffrida, S.; Sangalli, G.; Traverso, C.E.; Iester, M. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 253, 425–430. [Google Scholar] [CrossRef]
- Hynnekleiv, L.; Magno, M.; Moschowits, E.; Tønseth, K.A.; Vehof, J.; Utheim, T.P. A comparison between hyaluronic acid and other single ingredient eye drops for dry eye, a review. Acta Ophthalmol. 2024, 102, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Duan, H.; Yang, T.; Ma, B.; Zhou, Y.; Bian, L.; Cai, X.; Qi, H. Efficacy of topical 0.05% cyclosporine A and 0.1% sodium hyaluronate in post-refractive surgery chronic dry eye patients with ocular pain. BMC Ophthalmol. 2024, 24, 28. [Google Scholar] [CrossRef]
- Abouzeid, H.; Ferrini, W. Femtosecond-laser assisted cataract surgery: A review. Acta Ophthalmol. 2014, 92, 597–603. [Google Scholar] [CrossRef]
- Liu, Y.C.; Setiawan, M.; Ang, M.; Yam, G.H.F.; Mehta, J.S. Changes in aqueous oxidative stress, prostaglandins, and cytokines: Comparisons of low-energy femtosecond laser-assisted cataract surgery versus conventional phacoemulsification. J. Cataract. Refract. Surg. 2019, 45, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Aragona, P.; Simmons, P.A.; Wang, H.; Wang, T. Physicochemical Properties of Hyaluronic Acid–Based Lubricant Eye Drops. Transl. Vis. Sci. Technol. 2019, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.F.; Millar, T.J.; Raju, S.R. Tear film stability: A review. Exp. Eye Res. 2013, 117, 28–38. [Google Scholar] [CrossRef]
- Matossian, C.; McDonald, M.; Donaldson, K.E.; Nichols, K.K.; MacIver, S.; Gupta, P.K. Dry Eye Disease: Consideration for Women’s Health. J. Womens Health 2019, 28, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Donthineni, P.R.; Deshmukh, R.; Ramamurthy, C.; Sangwan, V.S.; Mehta, J.S.; Basu, S. Management of cataract in dry eye disease: Preferred practice pattern guidelines. Indian J. Ophthalmol. 2023, 71, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Toda, I. Dry Eye After LASIK. Investig. Ophthalmol. Vis. Sci. 2018, 59, des109–des115. [Google Scholar] [CrossRef]
- Biela, K.; Winiarczyk, M.; Borowicz, D.; Mackiewicz, J. Dry Eye Disease as a Cause of Refractive Errors After Cataract Surgery—A Systematic Review. Clin. Ophthalmol. 2023, 17, 1629–1638. [Google Scholar] [CrossRef]
- Asena, L.; Kırcı Dogan, I.; Oto, S.; Dursun Altınors, D. Comparison of visual performance and quality of life with a new nondiffractive EDOF intraocular lens and a trifocal intraocular lens. J. Cataract. Refract. Surg. 2023, 49, 504–511. [Google Scholar] [CrossRef]
- Kern, C.; Kortüm, K.; Müller, M.; Kampik, A.; Priglinger, S.; Mayer, W.J. Comparison of Two Toric IOL Calculation Methods. J. Ophthalmol. 2018, 2018, 2840246. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Zhang, F.; Li, H.; Liu, Z.; Li, S.; Qian, S.; Zhao, Y. Femtosecond Laser-Assisted Cataract Surgery versus Conventional Phacoemulsification Surgery: Clinical Outcomes with EDOF IOLs. J. Pers. Med. 2023, 13, 400. [Google Scholar] [CrossRef]
Feature | Non-HA Group (N: 74) | HA Group (N: 37) | p |
---|---|---|---|
Age (years, mean ± SD) | 61.25 ± 10.32 | 60.70 ± 10.87 | 0.733 |
Sex (male: female) | 34:40 | 21:16 | 0.318 |
Laterality (right: left) | 29:45 | 15:22 | 0.891 |
Disease | 0.854 | ||
Hypertension | 4 | 2 | |
Diabetes mellitus | 5 | 2 | |
Autoimmune disease | 3 | 1 | |
Other | 2 | 0 | |
Ophthalmic diseases | 0.305 | ||
Retinal disease | 2 | 2 | |
Uveitis | 0 | 1 | |
Ocular surgery | 6 | 2 | 0.717 |
UDVA (LogMAR) | 0.45 ± 0.26 | 0.41 ± 0.28 | 0.409 |
CDVA (LogMAR) | 0.34 ± 0.18 | 0.29 ± 0.17 | 0.146 |
Cycloplegia refraction (D) | |||
Sphere | −3.17 ± 4.56 | −3.02 ± 5.41 | 0.858 |
Cylinder | −1.25 ± 0.73 | −1.18 ± 0.82 | 0.617 |
SE | −3.79 ± 5.09 | −3.61 ± 4.81 | 0.834 |
TBUT | 12.15 ± 3.79 | 13.01 ± 3.57 | 0.213 |
Schirmer II test | 15.76 ± 6.61 | 14.84 ± 7.24 | 0.486 |
Ocular surface stain | 2 | 2 | 0.514 |
DED-related syndrome | 0.803 | ||
0 | 52 | 24 | |
1 | 17 | 10 | |
2 | 5 | 3 | |
≥3 | 0 | 0 |
Outcome | Non-HA Group (N: 74) | HA Group (N: 37) | p |
---|---|---|---|
UDVA | |||
1 day | 0.10 ± 0.11 | 0.09 ± 0.15 | 0.641 |
1 week | 0.08 ± 0.15 | 0.07 ± 0.11 | 0.688 |
1 month | 0.08 ± 0.13 | 0.06 ± 0.08 | 0.364 |
2 months | 0.07 ± 0.09 | 0.03 ± 0.07 | 0.018 * |
SE | |||
1 day | −0.29 ± 0.31 | −0.26 ± 0.34 | 0.615 |
1 week | −0.25 ± 0.28 | −0.25 ± 0.30 | 0.996 |
1 month | −0.26 ± 0.24 | −0.24 ± 0.23 | 0.637 |
2 months | −0.25 ± 0.25 | −0.24 ± 0.21 | 0.808 |
DED Parameters | Non-HA Group (N: 74) | HA Group (N: 37) | p |
---|---|---|---|
Superficial keratitis | |||
Incidence | 10 | 2 | |
Crude OR (95% CI) | Reference | 0.415 (0.217–0.759) | <0.001 * |
aOR (95% CI) | Reference | 0.577 (0.329–0.868) | <0.001 * |
Multiple DED symptoms | |||
Incidence | 13 | 5 | |
Crude OR (95% CI) | Reference | 0.719 (0.556–0.852) | 0.002 * |
aOR (95% CI) | Reference | 0.833 (0.706–0.959) | 0.024 * |
Factor | aOR | 95% CI | p | |
---|---|---|---|---|
Lower | Upper | |||
HA group | ||||
Old age | 1.121 | 0.923 | 1.368 | 0.247 |
Female sex | 1.065 | 0.872 | 1.395 | 0.394 |
Low preoperative TBUT | 1.289 | 1.004 | 1.462 | 0.043 * |
Low Preoperative Schirmer II test | 1.117 | 0.902 | 1.287 | 0.176 |
Ocular surface stain | 1.296 | 0.973 | 1.519 | 0.069 |
Any DED symptoms | 1.077 | 0.899 | 1.317 | 0.348 |
Non-HA group | ||||
Old age | 1.245 | 1.098 | 1.466 | 0.033 * |
Female sex | 1.153 | 0.991 | 1.307 | 0.061 |
Low preoperative TBUT | 1.376 | 1.138 | 1.551 | 0.016 * |
Low Preoperative Schirmer II test | 1.283 | 0.954 | 1.462 | 0.144 |
Ocular surface stain | 1.323 | 1.149 | 1.576 | 0.018 * |
Any DED symptoms | 1.119 | 0.923 | 1.401 | 0.221 |
Factor | aOR | 95% CI | p | |
---|---|---|---|---|
Lower | Upper | |||
HA group | ||||
Old age | 1.005 | 0.822 | 1.257 | 0.748 |
Female sex | 1.287 | 0.938 | 1.584 | 0.107 |
Low preoperative TBUT | 1.394 | 1.021 | 1.627 | 0.020 * |
Low Preoperative Schirmer II test | 1.052 | 0.877 | 1.419 | 0.336 |
Ocular surface stain | 1.096 | 0.913 | 1.255 | 0.531 |
Any DED symptoms | 1.274 | 0.949 | 1.472 | 0.144 |
Non-HA group | ||||
Old age | 1.212 | 0.965 | 1.443 | 0.098 |
Female sex | 1.299 | 1.018 | 1.485 | 0.035 * |
Low preoperative TBUT | 1.459 | 1.162 | 1.694 | 0.001 * |
Low Preoperative Schirmer II test | 1.229 | 0.867 | 1.453 | 0.245 |
Ocular surface stain | 1.178 | 0.882 | 1.409 | 0.191 |
Any DED symptoms | 1.297 | 1.056 | 1.565 | 0.027 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Yang, S.-F.; Chen, H.-C.; Lian, I.-B.; Huang, C.-T.; Huang, J.-Y.; Chang, C.-K. The Mid-Term Effect of Preservative-Free Artificial Tears Containing Hyaluronic Acid on Dry Eye Incidence after Cataract Surgery: A Retrospective Cohort Study. Diagnostics 2024, 14, 1848. https://doi.org/10.3390/diagnostics14171848
Lee C-Y, Yang S-F, Chen H-C, Lian I-B, Huang C-T, Huang J-Y, Chang C-K. The Mid-Term Effect of Preservative-Free Artificial Tears Containing Hyaluronic Acid on Dry Eye Incidence after Cataract Surgery: A Retrospective Cohort Study. Diagnostics. 2024; 14(17):1848. https://doi.org/10.3390/diagnostics14171848
Chicago/Turabian StyleLee, Chia-Yi, Shun-Fa Yang, Hung-Chi Chen, Ie-Bin Lian, Chin-Te Huang, Jing-Yang Huang, and Chao-Kai Chang. 2024. "The Mid-Term Effect of Preservative-Free Artificial Tears Containing Hyaluronic Acid on Dry Eye Incidence after Cataract Surgery: A Retrospective Cohort Study" Diagnostics 14, no. 17: 1848. https://doi.org/10.3390/diagnostics14171848
APA StyleLee, C. -Y., Yang, S. -F., Chen, H. -C., Lian, I. -B., Huang, C. -T., Huang, J. -Y., & Chang, C. -K. (2024). The Mid-Term Effect of Preservative-Free Artificial Tears Containing Hyaluronic Acid on Dry Eye Incidence after Cataract Surgery: A Retrospective Cohort Study. Diagnostics, 14(17), 1848. https://doi.org/10.3390/diagnostics14171848