Imaging in Renal Cell Carcinoma Detection
Abstract
:1. Introduction
2. Methods
3. New Pathological Classification Updates to Renal Tumours
4. Ultrasound
5. Computed Tomography
6. Magnetic Resonance Imaging
7. 18F-FDG PET/CT
8. PSMA PET/CT
9. 99mTc-Sestamibi SPECT/CT
10. Anti-Carbonic Anhydrase IX Monoclonal Antibodies & Peptides
11. Radiomics
12. Active Surveillance
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef]
- Vasudev, N.S.; Wilson, M.; Stewart, G.D.; Adeyoju, A.; Cartledge, J.; Kimuli, M.; Datta, S.; Hanbury, D.; Hrouda, D.; Oades, G.; et al. Challenges of Early Renal Cancer Detection: Symptom Patterns and Incidental Diagnosis Rate in a Multicentre Prospective UK Cohort of Patients Presenting with Suspected Renal Cancer. BMJ Open 2020, 10, e035938. [Google Scholar] [CrossRef]
- Frank, I.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Weaver, A.L.; Zincke, H. Solid Renal Tumors: An Analysis of Pathological Features Related to Tumor Size. J. Urol. 2003, 170, 2217–2220. [Google Scholar] [CrossRef]
- Richard, P.O.; Jewett, M.A.S.; Bhatt, J.R.; Kachura, J.R.; Evans, A.J.; Zlotta, A.R.; Hermanns, T.; Juvet, T.; Finelli, A. Renal Tumor Biopsy for Small Renal Masses: A Single-Center 13-Year Experience. Eur. Urol. 2015, 68, 1007–1013. [Google Scholar] [CrossRef]
- Leveridge, M.J.; Finelli, A.; Kachura, J.R.; Evans, A.; Chung, H.; Shiff, D.A.; Fernandes, K.; Jewett, M.A.S. Outcomes of Small Renal Mass Needle Core Biopsy, Nondiagnostic Percutaneous Biopsy, and the Role of Repeat Biopsy. Eur. Urol. 2011, 60, 578–584. [Google Scholar] [CrossRef]
- Warren, H.; Rautio, A.; Marandino, L.; Pyrgidis, N.; Tzelves, L.; Roussel, E.; Muselaers, S.; Erdem, S.; Palumbo, C.; Amparore, D.; et al. Diagnostic Biopsy for Small Renal Tumours: A Survey of Current European Practice. Eur. Urol. Open Sci. 2024, 62, 54–60. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Lobo, A.; Cheng, L. The 2022 Revision of the World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs: Advances and Challenges. Hum. Pathol. 2023, 136, 123–143. [Google Scholar] [CrossRef]
- Trpkov, K.; Williamson, S.R.; Gill, A.J.; Adeniran, A.J.; Agaimy, A.; Alaghehbandan, R.; Amin, M.B.; Argani, P.; Chen, Y.-B.; Cheng, L.; et al. Novel, Emerging and Provisional Renal Entities: The Genitourinary Pathology Society (GUPS) Update on Renal Neoplasia. Mod. Pathol. 2021, 34, 1167–1184. [Google Scholar] [CrossRef]
- Vikram, R.; Beland, M.D.; Blaufox, M.D.; Moreno, C.C.; Gore, J.L.; Harvin, H.J.; Heilbrun, M.E.; Liauw, S.L.; Nguyen, P.L.; Nikolaidis, P.; et al. ACR Appropriateness Criteria Renal Cell Carcinoma Staging. J. Am. Coll. Radiol. 2016, 13, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Siddaiah, M.; Krishna, S.; McInnes, M.D.F.; Quon, J.S.; Shabana, W.M.; Papadatos, D.; Schieda, N. Is Ultrasound Useful for Further Evaluation of Homogeneously Hyperattenuating Renal Lesions Detected on CT? Am. J. Roentgenol. 2017, 209, 604–610. [Google Scholar] [CrossRef]
- Aggarwal, A.; Goswami, S.; Das, C.J. Contrast-Enhanced Ultrasound of the Kidneys: Principles and Potential Applications. Abdom. Radiol. 2022, 47, 1369–1384. [Google Scholar] [CrossRef] [PubMed]
- Bertolotto, M.; Bucci, S.; Valentino, M.; Currò, F.; Sachs, C.; Cova, M.A. Contrast-Enhanced Ultrasound for Characterizing Renal Masses. Eur. J. Radiol. 2018, 105, 41–48. [Google Scholar] [CrossRef]
- Sidhu, P.S.; Cantisani, V.; Dietrich, C.F.; Gilja, O.H.; Saftoiu, A.; Bartels, E.; Bertolotto, M.; Calliada, F.; Clevert, D.-A.; Cosgrove, D.; et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Short Version). Ultraschall Med. Eur. J. Ultrasound 2018, 39, 154–180. [Google Scholar] [CrossRef]
- Spiesecke, P.; Fischer, T.; Maxeiner, A.; Hamm, B.; Lerchbaumer, M.H. Contrast-Enhanced Ultrasound (CEUS) Reliably Rules out Neoplasm in Developmental Renal Pseudotumor. Acta Radiol. 2021, 62, 821–829. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, J.; Wang, L.; Li, N.; Zhang, X.; Li, J.; Luo, Y.; Li, Q. Comparative Diagnostic Performance of Contrast-Enhanced Ultrasound and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Differentiating Clear Cell and Non-Clear Cell Renal Cell Carcinoma. Eur. Radiol. 2023, 33, 3766–3774. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, N.; Xue, T.; Hao, Y.; Dai, J. Comparison of Contrast-Enhanced Sonography with MRI in the Diagnosis of Complex Cystic Renal Masses. J. Clin. Ultrasound 2015, 43, 203–209. [Google Scholar] [CrossRef]
- Defortescu, G.; Cornu, J.-N.; Béjar, S.; Giwerc, A.; Gobet, F.; Werquin, C.; Pfister, C.; Nouhaud, F.-X. Diagnostic Performance of Contrast-Enhanced Ultrasonography and Magnetic Resonance Imaging for the Assessment of Complex Renal Cysts: A Prospective Study. Int. J. Urol. 2017, 24, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Morshid, A.; Duran, E.S.; Choi, W.J.; Duran, C. A Concise Review of the Multimodality Imaging Features of Renal Cell Carcinoma. Cureus 2021, 13, e13231. [Google Scholar] [CrossRef]
- Wang, Z.J.; Nikolaidis, P.; Khatri, G.; Dogra, V.S.; Ganeshan, D.; Goldfarb, S.; Gore, J.L.; Gupta, R.T.; Hartman, R.P.; Heilbrun, M.E.; et al. ACR Appropriateness Criteria® Indeterminate Renal Mass. J. Am. Coll. Radiol. 2020, 17, S415–S428. [Google Scholar] [CrossRef]
- Herts, B.R.; Silverman, S.G.; Hindman, N.M.; Uzzo, R.G.; Hartman, R.P.; Israel, G.M.; Baumgarten, D.A.; Berland, L.L.; Pandharipande, P.V. Management of the Incidental Renal Mass on CT: A White Paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 2018, 15, 264–273. [Google Scholar] [CrossRef]
- Fang, L.; Bai, K.; Chen, Y.; Zhan, J.; Zhang, Y.; Qiu, Z.; Chen, L.; Wang, L. A Comparative Study of Contrast-Enhanced Ultrasound and Contrast-Enhanced CT for the Detection and Characterization of Renal Masses. Biosci. Trends 2021, 15, 24–32. [Google Scholar] [CrossRef]
- Tsili, A.C.; Andriotis, E.; Gkeli, M.G.; Krokidis, M.; Stasinopoulou, M.; Varkarakis, I.M.; Moulopoulos, L.-A. The Role of Imaging in the Management of Renal Masses. Eur. J. Radiol. 2021, 141, 109777. [Google Scholar] [CrossRef]
- van Oostenbrugge, T.J.; Fütterer, J.J.; Mulders, P.F.A. Diagnostic Imaging for Solid Renal Tumors: A Pictorial Review. Kidney Cancer 2018, 2, 79–93. [Google Scholar] [CrossRef]
- Young, J.R.; Young, J.A.; Margolis, D.J.A.; Sauk, S.; Sayre, J.; Pantuck, A.J.; Raman, S.S. Sarcomatoid Renal Cell Carcinoma and Collecting Duct Carcinoma: Discrimination From Common Renal Cell Carcinoma Subtypes and Benign RCC Mimics on Multiphasic MDCT. Acad. Radiol. 2017, 24, 1226–1232. [Google Scholar] [CrossRef]
- Maki, D.D.; Birnbaum, B.A.; Chakraborty, D.P.; Jacobs, J.E.; Carvalho, B.M.; Herman, G.T. Renal Cyst Pseudoenhancement: Beam-Hardening Effects on CT Numbers. Radiology 1999, 213, 468–472. [Google Scholar] [CrossRef]
- Birnbaum, B.A.; Maki, D.D.; Chakraborty, D.P.; Jacobs, J.E.; Babb, J.S. Renal Cyst Pseudoenhancement: Evaluation with an Anthropomorphic Body CT Phantom. Radiology 2002, 225, 83–90. [Google Scholar] [CrossRef]
- Edney, E.; Davenport, M.S.; Curci, N.; Schieda, N.; Krishna, S.; Hindman, N.; Silverman, S.G.; Pedrosa, I. Bosniak Classification of Cystic Renal Masses, Version 2019: Interpretation Pitfalls and Recommendations to Avoid Misclassification. Abdom. Radiol. 2021, 46, 2699–2711. [Google Scholar] [CrossRef]
- Bellin, M.-F.; Valente, C.; Bekdache, O.; Maxwell, F.; Balasa, C.; Savignac, A.; Meyrignac, O. Update on Renal Cell Carcinoma Diagnosis with Novel Imaging Approaches. Cancers 2024, 16, 1926. [Google Scholar] [CrossRef]
- Cao, J.; Lennartz, S.; Pisuchpen, N.; Mroueh, N.; Kongboonvijit, S.; Parakh, A.; Sahani, D.V.; Kambadakone, A. Renal Lesion Characterization by Dual-Layer Dual-Energy CT: Comparison of Virtual and True Unenhanced Images. AJR Am. J. Roentgenol. 2022, 219, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.M.; Hippe, D.S.; Zecevic, M.; Zamora, D.A.; Cai, L.M.; Toia, G.V.; Chandler, A.G.; Dighe, M.K.; O’Malley, R.B.; Shuman, W.P.; et al. Virtual Unenhanced Dual-Energy CT Images Obtained with a Multimaterial Decomposition Algorithm: Diagnostic Value for Renal Mass and Urinary Stone Evaluation. Radiology 2021, 298, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, A.; Ferrero, A.; Mileto, A.; Baffour, F.; Horst, K.; Rajiah, P.S.; Inoue, A.; Leng, S.; McCollough, C.; Fletcher, J.G. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J. Radiol. 2022, 23, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. Nephrometry Score: A Comprehensive Standardized System for Quantitating Renal Tumor Size, Location and Depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Q.; Qi, Y.; Chen, Y.; Xiong, Y.; Xi, W.; Miao, Z.; Li, X.; Quan, X.; Lin, J. Associations between R.E.N.A.L. Nephrometry Score and Survival Outcomes in Renal Tumours. Jpn. J. Clin. Oncol. 2024, 54, 339–345. [Google Scholar] [CrossRef]
- EAU Guidelines on RCC—Diagnostic Evaluation—Uroweb. Available online: https://uroweb.org/guidelines/renal-cell-carcinoma/chapter/diagnostic-evaluation (accessed on 15 May 2024).
- Serter, A.; Onur, M.R.; Coban, G.; Yildiz, P.; Armagan, A.; Kocakoc, E. The Role of Diffusion-Weighted MRI and Contrast-Enhanced MRI for Differentiation between Solid Renal Masses and Renal Cell Carcinoma Subtypes. Abdom. Radiol. N. Y. 2021, 46, 1041–1052. [Google Scholar] [CrossRef]
- de Silva, S.; Lockhart, K.R.; Aslan, P.; Nash, P.; Hutton, A.; Malouf, D.; Lee, D.; Cozzi, P.; MacLean, F.; Thompson, J. The Diagnostic Utility of Diffusion Weighted MRI Imaging and ADC Ratio to Distinguish Benign from Malignant Renal Masses: Sorting the Kittens from the Tigers. BMC Urol. 2021, 21, 67. [Google Scholar] [CrossRef]
- Mytsyk, Y.; Borzhiyevskyy, A.; Dutka, I.; Shulyak, A.; Kowal, P.; Vorobets, D.; Skrzypczyk, M.; Borzhiyevs’kyy, O.; Górecki, A.; Matskevych, V. Local Recurrence of Renal Cell Carcinoma after Partial Nephrectomy: Applicability of the Apparent Diffusion Coefficient of MRI as an Imaging Marker—A Multicentre Study. Pol. J. Radiol. 2022, 87, e325–e332. [Google Scholar] [CrossRef] [PubMed]
- Mouracade, P.; Chavali, J.S.; Kara, O.; Dagenais, J.; Maurice, M.J.; Nelson, R.J.; Rini, B.I.; Kaouk, J.H. Imaging Strategy and Outcome Following Partial Nephrectomy. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 660.e1–660.e8. [Google Scholar] [CrossRef]
- Pedrosa, I.; Cadeddu, J.A. How We Do It: Managing the Indeterminate Renal Mass with the MRI Clear Cell Likelihood Score. Radiology 2022, 302, 256–269. [Google Scholar] [CrossRef]
- Steinberg, R.L.; Rasmussen, R.G.; Johnson, B.A.; Ghandour, R.; De Leon, A.D.; Xi, Y.; Yokoo, T.; Kim, S.; Kapur, P.; Cadeddu, J.A.; et al. Prospective Performance of Clear Cell Likelihood Scores (ccLS) in Renal Masses Evaluated with Multiparametric Magnetic Resonance Imaging. Eur. Radiol. 2021, 31, 314–324. [Google Scholar] [CrossRef]
- Kim, J.H.; Sun, H.Y.; Hwang, J.; Hong, S.S.; Cho, Y.J.; Doo, S.W.; Yang, W.J.; Song, Y.S. Diagnostic Accuracy of Contrast-Enhanced Computed Tomography and Contrast-Enhanced Magnetic Resonance Imaging of Small Renal Masses in Real Practice: Sensitivity and Specificity According to Subjective Radiologic Interpretation. World J. Surg. Oncol. 2016, 14, 260. [Google Scholar] [CrossRef]
- Tang, C.; Dong, J.; Chen, H.; Li, P.; Zhou, Y.; He, H.; Sheng, Z.; Qu, L.; Zhou, W. Collecting Duct Carcinoma of the Kidney: A Single-Center Retrospective Study of 23 Cases. Technol. Cancer Res. Treat. 2023, 22, 15330338231165141. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Duzgol, C.; Kim, T.-H.; Ghafoor, S.; Becker, A.S.; Causa Andrieu, P.I.; Gangai, N.; Jiang, H.; Hakimi, A.A.; Vargas, H.A.; et al. Sarcomatoid Renal Cell Carcinoma: MRI Features and Their Association with Survival. Cancer Imaging 2023, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Racca, M.; Dall’Armellina, S.; Rescigno, P.; Banna, G.L.; Albano, D.; Dondi, F.; Bertagna, F.; Annunziata, S.; Treglia, G. The Emerging Role of PET/CT with PSMA-Targeting Radiopharmaceuticals in Clear Cell Renal Cancer: An Updated Systematic Review. Cancers 2023, 15, 355. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Ding, H.-J.; Chen, J.-H.; Chao, C.-H.; Lu, Y.-Y.; Lin, W.-Y.; Kao, C.-H. Meta-Analysis of the Diagnostic Performance of [18F]FDG-PET and PET/CT in Renal Cell Carcinoma. Cancer Imaging 2012, 12, 464–474. [Google Scholar] [CrossRef]
- Ma, H.; Shen, G.; Liu, B.; Yang, Y.; Ren, P.; Kuang, A. Diagnostic Performance of 18F-FDG PET or PET/CT in Restaging Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Nucl. Med. Commun. 2017, 38, 156–163. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, G.-M.; Li, K.; Zhang, L.-J.; Zhu, H. Collecting Duct Carcinoma of the Kidney: Imaging Observations of a Rare Tumor. Oncol. Lett. 2014, 7, 519–524. [Google Scholar] [CrossRef]
- Baccala, A.; Sercia, L.; Li, J.; Heston, W.; Zhou, M. Expression of Prostate-Specific Membrane Antigen in Tumor-Associated Neovasculature of Renal Neoplasms. Urology 2007, 70, 385–390. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-Specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-Specific Membrane Antigen-Avid Lesions: A Systematic Review and Meta-Analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-Specific Membrane Antigen PET-CT in Patients with High-Risk Prostate Cancer before Curative-Intent Surgery or Radiotherapy (proPSMA): A Prospective, Randomised, Multicentre Study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Tariq, A.; Kwok, M.; Pearce, A.; Rhee, H.; Kyle, S.; Marsh, P.; Raveenthiran, S.; Wong, D.; McBean, R.; Westera, J.; et al. The Role of Dual Tracer PSMA and FDG PET/CT in Renal Cell Carcinoma (RCC) Compared to Conventional Imaging: A Multi-Institutional Case Series with Intra-Individual Comparison. Urol. Oncol. 2022, 40, 66.e1–66.e9. [Google Scholar] [CrossRef]
- Udovicich, C.; Callahan, J.; Bressel, M.; Ong, W.L.; Perera, M.; Tran, B.; Azad, A.; Haran, S.; Moon, D.; Chander, S.; et al. Impact of Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography in the Management of Oligometastatic Renal Cell Carcinoma. Eur. Urol. Open Sci. 2022, 44, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Lin, B.-H.; Chen, S.-M.; Qiu, Q.-R.-S.; Ruan, Z.-T.; Chen, Z.-J.; Wei, Y.; Zheng, Q.-S.; Xue, X.-Y.; Miao, W.-B.; et al. Head-to-Head Comparisons of Enhanced CT, 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT in Identifying Adverse Pathology of Clear-Cell Renal Cell Carcinoma: A Prospective Study. Int. Braz. J. Urol. Off. J. Braz. Soc. Urol. 2023, 49, 716–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, L.; Wang, J.; Zang, J.; Chen, J.; Xiao, Y.; Fan, X.; Zhu, L.; Kung, H.F.; Zhu, Z. Head-to-Head Comparison of [68Ga]Ga-P16-093 and 2-[18F]FDG PET/CT in Patients with Clear Cell Renal Cell Carcinoma: A Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Gasparro, D.; Scarlattei, M.; Silini, E.M.; Migliari, S.; Baldari, G.; Cervati, V.; Graziani, T.; Campanini, N.; Maestroni, U.; Ruffini, L. High Prognostic Value of 68Ga-PSMA PET/CT in Renal Cell Carcinoma and Association with PSMA Expression Assessed by Immunohistochemistry. Diagnostics 2023, 13, 3082. [Google Scholar] [CrossRef]
- Aggarwal, P.; Singh, H.; Das, C.K.; Mavuduru, R.S.; Kakkar, N.; Lal, A.; Gorsi, U.; Kumar, R.; Mittal, B.R. Potential Role of 68Ga-PSMA PET/CT in Metastatic Renal Cell Cancer: A Prospective Study. Eur. J. Radiol. 2024, 170, 111218. [Google Scholar] [CrossRef]
- Singhal, T.; Singh, P.; Parida, G.K.; Agrawal, K. Role of PSMA-Targeted PET-CT in Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Ann. Nucl. Med. 2024, 38, 176–187. [Google Scholar] [CrossRef]
- Tariq, A.; McGeorge, S.; Pearce, A.; Rhee, H.; Wood, S.; Kyle, S.; Marsh, P.; Raveenthiran, S.; Wong, D.; McBean, R.; et al. Characterization of Tumor Thrombus in Renal Cell Carcinoma with Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography (PET)/Computed Tomography (CT). Urol. Oncol. Semin. Orig. Investig. 2022, 40, 276.e1–276.e9. [Google Scholar] [CrossRef]
- Rowe, S.P.; Gorin, M.A.; Solnes, L.B.; Ball, M.W.; Choudhary, A.; Pierorazio, P.M.; Epstein, J.I.; Javadi, M.S.; Allaf, M.E.; Baras, A.S. Correlation of 99mTc-Sestamibi Uptake in Renal Masses with Mitochondrial Content and Multi-Drug Resistance Pump Expression. EJNMMI Res. 2017, 7, 80. [Google Scholar] [CrossRef]
- Asi, T.; Tuncali, M.Ç.; Tuncel, M.; Alkanat, N.E.İ.; Hazir, B.; Kösemehmetoğlu, K.; Baydar, D.E.; Akdoğan, B. The Role of Tc-99m MIBI Scintigraphy in Clinical T1 Renal Mass Assessment: Does It Have a Real Benefit? Urol. Oncol. Semin. Orig. Investig. 2020, 38, 937.e11–937.e17. [Google Scholar] [CrossRef]
- Parihar, A.S.; Mhlanga, J.; Ronstrom, C.; Schmidt, L.R.; Figenshau, R.S.; Dehdashti, F.; Wahl, R.L. Diagnostic Accuracy of 99mTc-Sestamibi SPECT/CT for Characterization of Solid Renal Masses. J. Nucl. Med. 2023, 64, 90–95. [Google Scholar] [CrossRef]
- Sistani, G.; Bjazevic, J.; Kassam, Z.; Romsa, J.; Pautler, S. The Value of 99mTc-Sestamibi Single-Photon Emission Computed Tomography-Computed Tomography in the Evaluation and Risk Stratification of Renal Masses. Can. Urol. Assoc. J. 2021, 15, 197–201. [Google Scholar] [CrossRef]
- Viswambaram, P.; Swarbrick, N.; Picardo, A.; Hohnen, A.; Pham, K.; Macdonald, W.; Hayne, D.; Hamid, A. Technetium-99 m-Sestamibi Single-Photon Emission Computerised Tomography (CT)/CT in the Prediction of Malignant versus Benign Small Renal Masses. BJU Int. 2022, 130, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.; Boydell, A.-R.; Reza, A.; Pencharz, D.; Holman, B.F.; El-Sheikh, S.; Wildgoose, W.H.; Barod, R.; Patki, P.; Mumtaz, F.; et al. Use of 99mTc-Sestamibi SPECT/CT for Indeterminate Renal Tumours: A Pilot Diagnostic Accuracy Study. BJU Int. 2022, 130, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Schober, J.P.; Braun, A.; Ginsburg, K.B.; Bell, S.; Castro Bigalli, A.A.; Chen, M.; Wang, R.; Magee, D.; Bukavina, L.; Handorf, E.; et al. Clinical Performance of Technetium-99m–Sestamibi SPECT/CT Imaging in Differentiating Oncocytic Tumors From Renal Cell Carcinoma in Routine Clinical Practice. J. Urol. 2023, 210, 438–445. [Google Scholar] [CrossRef]
- Basile, G.; Fallara, G.; Verri, P.; Uleri, A.; Chiti, A.; Gianolli, L.; Pepe, G.; Tedde, A.; Algaba, F.; Territo, A.; et al. The Role of 99mTc-Sestamibi Single-Photon Emission Computed Tomography/Computed Tomography in the Diagnostic Pathway for Renal Masses: A Systematic Review and Meta-analysis. Eur. Urol. 2024, 85, 63–71. [Google Scholar] [CrossRef]
- Luong-Player, A.; Liu, H.; Wang, H.L.; Lin, F. Immunohistochemical Reevaluation of Carbonic Anhydrase IX (CA IX) Expression in Tumors and Normal Tissues. Am. J. Clin. Pathol. 2014, 141, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Divgi, C.R.; Uzzo, R.G.; Gatsonis, C.; Bartz, R.; Treutner, S.; Yu, J.Q.; Chen, D.; Carrasquillo, J.A.; Larson, S.; Bevan, P.; et al. Positron Emission Tomography/Computed Tomography Identification of Clear Cell Renal Cell Carcinoma: Results from the REDECT Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 187–194. [Google Scholar] [CrossRef]
- Hekman, M.C.H.; Rijpkema, M.; Aarntzen, E.H.; Mulder, S.F.; Langenhuijsen, J.F.; Oosterwijk, E.; Boerman, O.C.; Oyen, W.J.G.; Mulders, P.F.A. Positron Emission Tomography/Computed Tomography with 89Zr-Girentuximab Can Aid in Diagnostic Dilemmas of Clear Cell Renal Cell Carcinoma Suspicion. Eur. Urol. 2018, 74, 257–260. [Google Scholar] [CrossRef]
- Verhoeff, S.R.; van Es, S.C.; Boon, E.; van Helden, E.; Angus, L.; Elias, S.G.; Oosting, S.F.; Aarntzen, E.H.; Brouwers, A.H.; Kwee, T.C.; et al. Lesion Detection by [89Zr]Zr-DFO-Girentuximab and [18F]FDG-PET/CT in Patients with Newly Diagnosed Metastatic Renal Cell Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1931–1939. [Google Scholar] [CrossRef]
- Hofman, M.S.; Tran, B.; Feldman, D.R.; Pokorska-Bocci, A.; Pichereau, S.; Wessen, J.; Haskali, M.B.; Sparks, R.B.; Vlasyuk, O.; Galetic, I. First-in-Human Safety, Imaging, and Dosimetry of a Carbonic Anhydrase IX–Targeting Peptide, [68Ga]Ga-DPI-4452, in Patients with Clear Cell Renal Cell Carcinoma. J. Nucl. Med. 2024, 65, 740–743. [Google Scholar] [CrossRef]
- van Oostenbrugge, T.; Mulders, P. Targeted PET/CT Imaging for Clear Cell Renal Cell Carcinoma with Radiolabeled Antibodies: Recent Developments Using Girentuximab. Curr. Opin. Urol. 2021, 31, 249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Chen, Z.; Xie, Y.; Zhong, Q.; Xie, W. Development and Validation of a CT-Based Nomogram for Preoperative Prediction of Clear Cell Renal Cell Carcinoma Grades. Eur. Radiol. 2021, 31, 6078–6086. [Google Scholar] [CrossRef]
- Cheng, D.; Abudikeranmu, Y.; Tuerdi, B. Differentiation of Clear Cell and Non-Clear-Cell Renal Cell Carcinoma through CT-Based Radiomics Models and Nomogram. Curr. Med. Imaging 2023, 19, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Deniffel, D.; McAlpine, K.; Harder, F.N.; Jain, R.; Lawson, K.A.; Healy, G.M.; Hui, S.; Zhang, X.; Salinas-Miranda, E.; van der Kwast, T.; et al. Predicting the Recurrence Risk of Renal Cell Carcinoma after Nephrectomy: Potential Role of CT-Radiomics for Adjuvant Treatment Decisions. Eur Radiol 2023, 33, 5840–5850. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Shu, J.; Xia, Y.; Yang, R. A CT-Based Radiomics Approach for the Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma. BioMed Res. Int. 2020, 2020, 7103647. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jian, Y.; Yang, F.; Liu, R.; Zhang, W.; Wang, J.; Tan, X.; Wu, J.; Chen, Y.; Zhou, X. Radiomics Analysis Based on Single Phase and Different Phase Combinations of Radiomics Features from Tri-Phasic CT to Distinguish Renal Oncocytoma from Chromophobe Renal Cell Carcinoma. Abdom. Radiol. N. Y. 2024, 49, 182–191. [Google Scholar] [CrossRef]
- Mühlbauer, J.; Egen, L.; Kowalewski, K.-F.; Grilli, M.; Walach, M.T.; Westhoff, N.; Nuhn, P.; Laqua, F.C.; Baessler, B.; Kriegmair, M.C. Radiomics in Renal Cell Carcinoma—A Systematic Review and Meta-Analysis. Cancers 2021, 13, 1348. [Google Scholar] [CrossRef]
- Rallis, K.S.; Kleeman, S.O.; Grant, M.; Ordidge, K.L.; Sahdev, A.; Powles, T. Radiomics for Renal Cell Carcinoma: Predicting Outcomes from Immunotherapy and Targeted Therapies—A Narrative Review. Eur. Urol. Focus 2021, 7, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Khene, Z.; Mathieu, R.; Peyronnet, B.; Kokorian, R.; Gasmi, A.; Khene, F.; Rioux-Leclercq, N.; Kammerer-Jacquet, S.-F.; Shariat, S.; Laguerre, B.; et al. Radiomics Can Predict Tumour Response in Patients Treated with Nivolumab for a Metastatic Renal Cell Carcinoma: An Artificial Intelligence Concept. World J. Urol. 2021, 39, 3707–3709. [Google Scholar] [CrossRef]
- Nayyar, M.; Cheng, P.; Desai, B.; Cen, S.; Desai, M.; Gill, I.; Duddalwar, V. Active Surveillance of Small Renal Masses: A Review on the Role of Imaging with a Focus on Growth Rate. J. Comput. Assist. Tomogr. 2016, 40, 517–523. [Google Scholar] [CrossRef]
Study | Year | Type | Patient No. | Objective | Comparator | Histology | Main Outcomes |
---|---|---|---|---|---|---|---|
Tariq et al. [51] | 2021 | Retrospective | 11 | To perform an intra-patient dual tracer comparison of FDG and PSMA PET/CT against conventional imaging. | PSMA & 18F-FDG PET/CT vs. CT | ccRCC | Primary: 40% concordant, discordant 20% favouring PSMA, and 40% FDG. Systemic: 55% concordant, 27% no concordance, 18% discordance favouring PSMA. PSMA PET/CT changed management in 27% of cases. |
Udovicich et al. [52] | 2022 | Retrospective | 61 | To assess the impact of PSMA PET/CT in the management of metastatic RCC. | PSMA-PET/CT vs. CT or FDG PET/CT | ccRCC & non-ccRCC | PSMA PET/CT had a detection rate of 84%. PSMA PET/CT changed management in 49% of patients. The SUVmax was 15.2 for PSMA and 8.0 for FDG PET/CT (p = 0.02). In a subcohort of 40 patients, detection rate was 88% for PSMA and 77% for FDG PET/CT. |
Chen et al. [53] | 2023 | Prospective | 72 | To compare 68Ga-PSMA-11, 18F-FDG PET/CT, and CT in ccRCC with necrosis or sarcomatoid or rhabdoid differentiation. | 68Ga-PSMA-11 vs. 18F-FDG PET/CT vs. CT | ccRCC | 68Ga-PSMA-11 PET/CT performed better than 18F-FDG PET/CT and CT in identifying aggressive pathological features of primary ccRCC. 68Ga-PSMA-11 PET/CT SUVmax showed a sensitivity of 100% and a specificity of 75% for tumour necrosis, and a sensitivity of 100% for adverse pathology, with a specificity of 80%. |
Wang et al. [54] | 2023 | Prospective | 44 | To compare the diagnostic value of PSMA and FDG PET/CT in ccRCC. | 68Ga-P16-093 vs. 2-[18F]FDG PET/CT | Primary and metastatic ccRCC | PSMA PET/CT had a much higher tumour detection rate than FDG PET/CT. Primary: the detection rate for PSMA PET/CT was 86.4% and 59.1% for FDG PET/CT. SUVmax for PSMA PET/CT and FDG PET/CT were 15.7 ± 9.0 and 5.1 ± 3.4 (p < 0.001), respectively. Systemic: the detection rate for PSMA PET/CT was 95.5% and 63.6% for FDG PET/CT. SUVmax for PSMA PET/CT and FDG PET/CT were 11.0 ± 6.4 vs. 4.4 ± 2.7 (p < 0.001), respectively. |
Gasparro et al. [55] | 2023 | Retrospective | 26 | To find if PSMA expression in renal cancer in primary tumour or metastatic lesions on immuno-histochemistry (IHC) are associated with PET/CT findings. | 68Ga-PSMA PET/CT and IHC | ccRCC & non-ccRCC | PSMA PET/CT detected more metastases than CT. Positive PSMA PET/CT is linked with moderate or high PSMA expression on IHC. Strong correlation between positive SUVmax to intensity of PSMA expression on IHC in ccRCC and chromophobe renal cancer. IHC PSMA score was concordant in primary tumours and metastases. Median survival was significantly higher in negative PSMA PET/CT compared to a positive scan (48 vs. 24 months, p = 0.001). There was significant impact on altering management. |
Aggarwal et al. [56] | 2024 | Prospective | 37 Subgroup = 15 | To assess 68Ga-PSMA PET/CT over conventional imaging in metastatic RCC and prognostic impact on outcome. | 68Ga-PSMA PET/CT vs. CT (subgroup vs. 18F-FDG PET/CT) | ccRCC Eosinophilic variant of ccRCC pRCC CDC | 68Ga-PSMA PET/CT detected more lesions in total than CT (568 vs. 531, p = 0.215) PSMA PET/CT detected more lesions than FDG PET/CT (312 vs. 202, p < 0.001) with 113 PSMA + FDG- discordant lesions and 14 PSMA-FDG+ discordant lesions. 68Ga-PSMA PET/CT tumour burden estimation using Total Lesion-PSMA and PSMA-Total Volume had a prognostic impact on patient survival. |
Study | Year | Type | Patient No. | Histology | Outcome |
---|---|---|---|---|---|
Asi et al. [60] | 2020 | Prospective | 90 | 10 Oncocytoma 4 AML 2 chronic sclerosis 1 fibroma 1 hydatid cyst ccRCC pRCC chRCC | 99mTc-sestamibi SPECT/CT had a PPV of 60% and NPV of 91.3% for predicting benign pathology. |
Parihar et al. [61] | 2022 | Retrospective | 42 | Malignant/concerning (ccRCC, pRCC) vs. benign/nonconcerning (oncocytic renal neoplasms, chRCC) | The sensitivity and specificity of 99mTc-sestamibi SPECT/CT for diagnosing a benign lesion was 66.7% and 89.5%, respectively, compared to 10% and 75% for CT, respectively. |
Sistani et al. [62] | 2020 | Prospective | 29 | Oncocytoma HOCT chRCC ccRCC pRCC Mixed pRCC/chRCC | 99mTc-sestamibi SPECT/CT had a sensitivity of 100% and a specificity of 96% in the detection of benign or oncocytic lesions vs. RCC. |
Viswambaram et al. [63] | 2022 | Prospective | 74 | Oncocytoma AML ccRCC pRCC cRCC SCC | 99mTc-sestamibi SPECT/CT has a sensitivity of 89% (95% CI 77–95%) and a specificity of 73% (95% CI 45–91%) in differentiating between malignant and benign renal lesions. |
Warren et al. [64] | 2022 | Prospective | 20 | Oncocytoma Oncocytic RCC chRCC ccRCC pRCC unknown histology | 99mTc-sestamibi SPECT/CT sensitivity and specificity to detect benign vs. malignant tumours was 100% (95% CI 54–100%) and 85.7% (95% CI 57–98%). The sensitivity and specificity to detect oncocytic or chromophobe tumours from other RCCs was 100% (95% CI 74–100%) and 100% (95% CI 63–100%). |
Schober et al. [65] | 2023 | Retrospective | 60 | Oncocytoma chRCC pRCC ccRCC | The negative 99mTc-sestamibi imaging (suggestive of malignancy) showed that 20% who underwent biopsy or surgery returned oncocytoma on histopathology. The negative predictive value was 80%. |
Study | Year | Patient No. | Type | Comparator | Outcome |
---|---|---|---|---|---|
Divgi et al. [68] | 2012 | 195 | 24I-girentuximab PET/CT | CECT | 24I-girentuximab PET/CT diagnosed ccRCC with greater accuracy than CECT with a sensitivity of 86.2% (95% CI 75.3–97.1%) vs. 75.5% (95% CI 62.6–88.4%), and specificity of 85.9% (95% CI 69.4–99.9%) vs. 46.8% (95% CI 18.8–74.7%), respectively. |
Hekman et al. [69] | 2018 | 30 | 89Zr-girentuximab PET/CT | Nil | 89Zr-girentuximab PET/CT resulted in a change in clinical management in 36% of patients and 21% avoided repeat biopsies |
Verhoeff et al. [70] | 2019 | 42 | [89Zr]Zr-DFO-girentuximab-PET/CT | CT, [18F]FDG-PET/CT | They found 70% of lesions were visualised on [89Zr]Zr-DFO-girentuximab-PET/CT, 59% on [18F]FDG-PET/CT, and 56% on CT. The addition of [89Zr]Zr-DFO-girentuximab-PET/CT to CT increased the detection of ccRCC lesions from 56% (95% CI 50–62%) to 91% (95% CI 87–94%), which was greater than [18F]FDG-PET/CT and CT combined of 84% (95% CI 79–88%). |
Hofman et al. [71] | 2024 | 3 | [68Ga]Ga-DPI-4452 | Nil | [68Ga]Ga-DPI-4452 showed very high tumour uptake in ccRCC, with a mean SUVmax of 64.6 at one hour and very high tumour-to-background ratios. |
Study | Year | Aim | Result |
---|---|---|---|
Meng et al. [76] | 2020 | To differentiate sarcomatoid RCC from ccRCC | The combined radiomics model (CMP, NP, and subjective CT findings) had the highest AUC value 0.974 (95%CI 0.924–0.992) with an accuracy of 93.75, a sensitivity of 96.55%, and a specificity of 88.89%. The CMP + NP model had a similar AUC of 0.966 (95%CI 0.918–0.990), an accuracy of 93.75%, a sensitivity of 89.66%, and a specificity of 94.95%. The CMP model had the lowest AUC of 0.772 (95%CI 0.689–0.841) with an accuracy of 78.12%, a sensitivity of 65.52%, and a specificity of 82.83%. |
Zheng et al. [73] | 2021 | To predict ccRCC grades and detect between ccRCC and non-ccRCC | AUCs of 0.914 in training set and 0.846 in validation set. |
Cheng et al. [74] | 2023 | To discriminate between ccRCC and non-ccRCC | AUCs of 0.982 in training set and 0.949 in validation set. |
Denifel et al. [75] | 2023 | To predict risk of RCC recurrence post nephrectomy | 1 of 4 radiomics features was prognostic for disease-free survival with an adjusted hazard ratio of 0.44 (p = 0.02). The combined clinical–radiomic model (C = 0.80) was superior to the clinical model (C = 0.78, p < 0.001). |
Yang et al. [77] | 2024 | To distinguish renal oncocytoma from chromophobe RCC | Among single phase models, the NP phase model was highest, with an AUC of 0.76 (95% CI 0.57–0.99). Among two phase models, the CMP/NP model was highest, with an AUC of 0.83 (95% CI 0.66–0.99). The model with unenhanced phase, CMP, and NP had an AUC of 0.84 (95% CI 0.69–0.99). The combined model with clinical factors had the highest AUC of 0.93 (95% CI 0.83–1.00). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woon, D.; Qin, S.; Al-Khanaty, A.; Perera, M.; Lawrentschuk, N. Imaging in Renal Cell Carcinoma Detection. Diagnostics 2024, 14, 2105. https://doi.org/10.3390/diagnostics14182105
Woon D, Qin S, Al-Khanaty A, Perera M, Lawrentschuk N. Imaging in Renal Cell Carcinoma Detection. Diagnostics. 2024; 14(18):2105. https://doi.org/10.3390/diagnostics14182105
Chicago/Turabian StyleWoon, Dixon, Shane Qin, Abdullah Al-Khanaty, Marlon Perera, and Nathan Lawrentschuk. 2024. "Imaging in Renal Cell Carcinoma Detection" Diagnostics 14, no. 18: 2105. https://doi.org/10.3390/diagnostics14182105
APA StyleWoon, D., Qin, S., Al-Khanaty, A., Perera, M., & Lawrentschuk, N. (2024). Imaging in Renal Cell Carcinoma Detection. Diagnostics, 14(18), 2105. https://doi.org/10.3390/diagnostics14182105