Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine
Abstract
:1. Introduction
2. Characteristics of Laboratory Data
2.1. Numerical Data
2.1.1. Discrete Data
2.1.2. Continuous Data
2.2. Categorical Data
2.2.1. Nominal Data
2.2.2. Ordinal Data
3. Laboratory Data and Statistical Distributions
4. Diagnosis of Diseases
4.1. The Theory of References for Measurands
4.2. The Source of References to Interpret Laboratory Test Results
4.2.1. Population-Based Big Data
Population-Based Big Data of Healthy Subjects
Population-Based Big Data of Diseased Subjects
4.2.2. Individuals’ Small Datasets
4.3. Population-Based Big Data and Personalized Laboratory Medicine
4.3.1. Population-Based Reference Intervals for Personalized Laboratory Medicine
4.3.2. Population-Based Decision Limits for Personalized Laboratory Medicine
4.4. Individuals’ Small Datasets and Personalized Laboratory Medicine
4.4.1. Personalized Reference Intervals
4.4.2. Personalized Decision Limits
5. High-Dimensional Data and Personalized Laboratory Medicine
6. Artificial Intelligence and Machine Learning for Personalized Laboratory Medicine
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alanazi, N.A.; Almehini, A.A.; Yousef, L.; Al Ghilan, A.; Almansour, H.S.; Alharbi, F. The Role of Laboratory Testing in Disease Diagnosis: A Comprehensive Review. Migr. Lett. 2022, 19, 608–617. [Google Scholar]
- Cabalar, I.; Le, T.H.; Silber, A.; O’Hara, M.; Abdallah, B.; Parikh, M.; Busch, R. The role of blood testing in prevention, diagnosis, and management of chronic diseases: A review. Am. J. Med. Sci. 2024, 368, 274–286. [Google Scholar] [CrossRef] [PubMed]
- EP28-A3c Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline-Third Edition. 2010. Available online: www.clsi.org (accessed on 1 July 2024).
- Higgins, V.; Nieuwesteeg, M.; Adeli, K. Reference intervals: Theory and practice. In Contemporary Practice in Clinical Chemistry; Academic Press: Cambridge, MA, USA, 2020; pp. 37–56. [Google Scholar]
- Jones, G.; Barker, A. Reference Intervals. Clin. Biochem. Rev. 2008, 29, 93. [Google Scholar]
- Ozarda, Y.; Sikaris, K.; Streichert, T.; Macri, J. Distinguishing reference intervals and clinical decision limits—A review by the IFCC Committee on Reference Intervals and Decision Limits. Crit. Rev. Clin. Lab. Sci. 2018, 55, 420–431. [Google Scholar] [CrossRef]
- Fraser, C.G. Reference change values. Clin. Chem. Lab. Med. 2011, 50, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Ertaylan, G.; Pusparum, M.; Van Hoof, R.; Kaya, Z.Z.; Khosravi, A.; Zarrabi, A. Advancing personalized medicine: Integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167339. [Google Scholar] [CrossRef]
- Coskun, A.; Lippi, G. Personalized laboratory medicine in the digital health era: Recent developments and future challenges. Clin. Chem. Lab. Med. 2023, 62, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Sandberg, S.; Unsal, I.; Serteser, M.; Aarsand, A.K. Personalized reference intervals: From theory to practice. Crit. Rev. Clin. Lab. Sci. 2022, 59, 501–516. [Google Scholar] [CrossRef]
- Coşkun, A.; Sandberg, S.; Unsal, I.; Cavusoglu, C.; Serteser, M.; Kilercik, M.; Aarsand, A.K. Personalized Reference Intervals in Laboratory Medicine: A New Model Based on Within-Subject Biological Variation. Clin. Chem. 2021, 67, 374–384. [Google Scholar] [CrossRef]
- Ahmmed, S.; Mondal, M.R.H.; Mia, R.; Adibuzzaman, M.; Hoque, A.S.M.L.; Ahamed, S.I. A novel approach for standardizing clinical laboratory categorical test results using machine learning and string distance similarity. Heliyon 2023, 9, 21523. [Google Scholar] [CrossRef]
- Ali, Z.; Bhaskar, S.B. Basic statistical tools in research and data analysis. Indian J. Anaesth. 2016, 60, 662. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, K. Handbook of Statistical Distributions with Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis group: Lafayette, LA, USA, 2020. [Google Scholar]
- Carlsen, S.; Petersen, P.H.; Skeie, S.; Øyvind, S.; Sandberg, S. Within-subject biological variation of glucose and HbA(1c) in healthy persons and in type 1 diabetes patients. Clin. Chem. Lab. Med. 2011, 49, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Oosterhuis, W.P. Statistical distributions commonly used in measurement uncertainty in laboratory medicine. Biochem. Med. 2020, 30, 010101. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Lippi, G. The impact of physiological variations on personalized reference intervals and decision limits: An in-depth analysis. Clin. Chem. Lab. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, S.; Aarsand, A.K. Biological variation and analytical performance spesifications. In Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics, 9th ed.; Rifai, N., Chiu, R.W.K., Young, I., Wittwer, C.T., Eds.; Elsevier: St. Louis, MI, USA, 2024. [Google Scholar]
- Siest, G.; Henny, J.; Gräsbeck, R.; Wilding, P.; Petitclerc, C.; Queraltó, J.M.; Petersen, P.H. The theory of reference values: An unfinished symphony. Clin. Chem. Lab. Med. 2013, 51, 47–64. [Google Scholar] [CrossRef]
- Coskun, A.; Sandberg, S.; Unsal, I.; Cavusoglu, C.; Serteser, M.; Kilercik, M.; Aarsand, A.K. Personalized reference intervals: Using estimates of within-subject or within-person biological variation requires different statistical approaches. Clin. Chim. Acta 2022, 524, 201–202. [Google Scholar] [CrossRef]
- Coskun, A.; Sandberg, S.; Unsal, I.; Yavuz, F.G.; Cavusoglu, C.; Serteser, M.; Kilercik, M.; Aarsand, A.K. Personalized reference intervals-statistical approaches and considerations. Clin. Chem. Lab. Med. 2021, 60, 629–635. [Google Scholar] [CrossRef]
- Coşkun, A.; Sandberg, S.; Unsal, I.; Cavusoglu, C.; Serteser, M.; Kilercik, M.; Aarsand, A.K. Personalized and Population-Based Reference Intervals for 48 Common Clinical Chemistry and Hematology Measurands: A Comparative Study. Clin. Chem. 2023, 69, 1009–1030. [Google Scholar] [CrossRef]
- Coşkun, A.; Sandberg, S.; Unsal, I.; Topcu, D.I.; Aarsand, A.K. Reference Intervals Revisited: A Novel Model for Population-Based Reference Intervals, Using a Small Sample Size and Biological Variation Data. Clin. Chem. 2024, hvae109. [Google Scholar] [CrossRef]
- Ozarda, Y. Establishing and using reference intervals. Turk. J. Biochem. 2020, 45, 1–10. [Google Scholar] [CrossRef]
- Pramanik, P.K.D.; Pal, S.; Mukhopadhyay, M. Healthcare Big Data: A Comprehensive Overview. In Intelligent Systems for Healthcare Management and Delivery; IGI Global: Hershey, PA, USA, 2022; Chapter 4. [Google Scholar]
- Patgiri, R.; Ahmed, A. Big Data: The V’s of the Game Changer Paradigm. In Proceedings of the 18th IEEE International Conference on High Performance Computing and Communications, 14th IEEE International Conference on Smart City and 2nd IEEE International Conference on Data Science and Systems, Sydney, NSW, Australia, 12–14 December 2016; HPCC/SmartCity/DSS 2016. pp. 17–24. [Google Scholar]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef]
- Kahn, R. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997, 20, 1183–1197. [Google Scholar]
- Hekler, E.B.; Klasnja, P.; Chevance, G.; Golaszewski, N.M.; Lewis, D.; Sim, I. Why we need a small data paradigm. BMC Med. 2019, 17, 133. [Google Scholar] [CrossRef]
- Jeong, I.; Kim, Y.; Cho, N.-J.; Gil, H.-W.; Lee, H. A Novel Method for Medical Predictive Models in Small Data Using Out-of-Distribution Data and Transfer Learning. Mathematics 2024, 12, 237. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.Y.; Ma, C. Making a big impact with small datasets using machine-learning approaches. Lancet Rheumatol. 2020, 2, e451. [Google Scholar] [CrossRef]
- Harris, E.K.; Kanofsky, P.; Shakarji, G.; Cotlove, E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. II. Estimating biological components of variation. Clin. Chem. 1970, 16, 1022–1027. [Google Scholar] [CrossRef]
- Williams, G.Z.; Young, D.S.; Stein, M.R.; Ernest Cotlove, E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. I. Objectives, subject selection, laboratory procedures, and estimation of analytic deviation. Clin. Chem. 1970, 16, 1016–1021. [Google Scholar] [CrossRef]
- Cotlove, E.; Harris, E.K.; Williams, G.Z. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. 3. Physiological and medical implications. Clin. Chem. 1970, 16, 1028–1032. [Google Scholar] [CrossRef]
- Young, D.S.; Harris, E.K.; Cotlove, E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. IV. Results of a study designed to eliminate long-term analytic deviations. Clin. Chem. 1971, 17, 403–410. [Google Scholar] [CrossRef]
- Keyser, J.W. The concept of the normal range in clinical chemistry. Postgrad Med. J. 1965, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Gräsbeck, R.; Fellman, J. Normal values and statistics. Scand. J. Clin. Lab. Investig. 1968, 21, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, W.; Gräsbeck, R.; Saarni, M.; von Bonsdorff, B.W. Serum vitamin B12 levels and incidence of tapeworm anemia in a population heavily infected with Diphyllobothrium latum. Am. J. Clin. Nutr. 1961, 9, 606–612. [Google Scholar] [CrossRef]
- Tang, W.W.; Wu, Y.; Nicholls, S.J.; Hazen, S.L. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem. 2011, 57, 33–39. [Google Scholar] [CrossRef]
- Morrow, D.A.; Cook, N.R. Determining Decision Limits for New Biomarkers: Clinical and Statistical Considerations. Clin. Chem. 2011, 57, 1–3. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Su, Z.; Mu, R. Annual biological variation and personalized reference intervals of clinical chemistry and hematology analytes. Clin. Chem. Lab. Med. 2022, 60, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espartosa, D.; Alegre, E.; Casero-Ramírez, H.; Díaz-Garzón, J.; Fernández-Calle, P.; Fuentes-Bullejos, P.; Varo, N.; González, Á. Clinical utility of personalized reference intervals for CEA in the early detection of oncologic disease. Clin. Chem. Lab. Med. 2024. [Google Scholar] [CrossRef]
- Coskun, A. Prediction interval: A powerful statistical tool for monitoring patients and analytical systems. Biochem. Med. 2024, 34, 020101. [Google Scholar] [CrossRef]
- Sandberg, S.; Carobene, A.; Bartlett, B.; Coskun, A.; Fernandez-Calle, P.; Jonker, N.; Díaz-Garzón, J.; Aarsand, A.K. Biological variation: Recent development and future challenges. Clin. Chem. Lab. Med. 2022, 61, 741–750. [Google Scholar] [CrossRef]
- Aarsand, A.K.; Fernandez-Calle, P.; Webster, C.; Coskun, A.; Gonzales-Lao, E.; Diaz-Garzon, J.; Braga, F. EFLM Biological Variation Database. Available online: https://biologicalvariation.eu/ (accessed on 1 August 2024).
- Jonker, N.; Aslan, B.; Boned, B.; Marqués-García, F.; Ricós, C.; Alvarez, V.; Bartlett, W.; Braga, F.; Carobene, A.; Coskun, A.; et al. Critical appraisal and meta-analysis of biological variation estimates for kidney related analytes. Clin. Chem. Lab. Med. 2020, 60, 469–478. [Google Scholar] [CrossRef]
- Diaz-Garzon, J.; Fernandez-Calle, P.; Sandberg, S.; Özcürümez, M.; Bartlett, W.A.; Coskun, A.; Carobene, A.; Perich, C.; Simon, M.; Marques, F.; et al. Biological Variation of Cardiac Troponins in Health and Disease: A Systematic Review and Meta-analysis. Clin. Chem. 2021, 67, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Garzón, J.; Fernández–Calle, P.; Minchinela, J.; Aarsand, A.K.; Bartlett, W.A.; Aslan, B.; Boned, B.; Braga, F.; Carobene, A.; Coskun, A.; et al. Biological variation data for lipid cardiovascular risk assessment biomarkers. A systematic review applying the biological variation data critical appraisal checklist (BIVAC). Clin. Chim. Acta 2019, 495, 467–475. [Google Scholar] [CrossRef]
- González-Lao, E.; Corte, Z.; Simón, M.; Ricós, C.; Coskun, A.; Braga, F.; Aarsand, A.; Carobene, A.; Bartlett, W.; Boned, B.; et al. Systematic review of the biological variation data for diabetes related analytes. Clin. Chim. Acta 2019, 488, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Carobene, A.; Aarsand, A.K.; Bartlett, W.A.; Coskun, A.; Diaz-Garzon, J.; Fernandez-Calle, P.; Guerra, E.; Jonker, N.; Locatelli, M.; Plebani, M.; et al. The European Biological Variation Study (EuBIVAS): A summary report. Clin. Chem. Lab. Med. 2021, 60, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, A.; Aarsand, A.K.; Sandberg, S.; Guerra, E.; Locatelli, M.; Díaz-Garzón, J.; Fernandez-Calle, P.; Ceriotti, F.; Jonker, N.; Bartlett, W.A.; et al. Within- and between-subject biological variation data for tumor markers based on the European Biological Variation Study. Clin. Chem. Lab. Med. 2021, 60, 543–552. [Google Scholar] [CrossRef]
- Ceriotti, F.; Marco, J.D.-G.; Fernández-Calle, P.; Maregnani, A.; Aarsand, A.K.; Coskun, A.; Jonker, N.; Sandberg, S.; Carobene, A. The European Biological Variation Study (EuBIVAS): Weekly biological variation of cardiac troponin I estimated by the use of two different high-sensitivity cardiac troponin I assays. Clin. Chem. Lab. Med. 2020, 58, 1741–1747. [Google Scholar] [CrossRef]
- Bottani, M.; Aarsand, A.K.; Banfi, G.; Locatelli, M.; Coşkun, A.; Díaz-Garzón, J.; Fernandez-Calle, P.; Sandberg, S.; Ceriotti, F.; Carobene, A. European Biological Variation Study (EuBIVAS): Within- and between-subject biological variation estimates for serum thyroid biomarkers based on weekly samplings from 91 healthy participants. Clin. Chem. Lab. Med. 2021, 60, 523–532. [Google Scholar] [CrossRef]
- Johnstone, I.M.; Titterington, D.M. Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4237–4253. [Google Scholar] [CrossRef]
- Berisha, V.; Krantsevich, C.; Hahn, P.R.; Hahn, S.; Dasarathy, G.; Turaga, P.; Liss, J. Digital medicine and the curse of dimensionality. NPJ Digit. Med. 2021, 4, 153. [Google Scholar] [CrossRef]
- De Bin, R.; Benner, A.; Ambrogi, F.; Lusa, L.; Boulesteix, A.-L.; Migliavacca, E.; Binder, H.; Michiels, S.; Sauerbrei, W.; McShane, L.; et al. Statistical analysis of high-dimensional biomedical data: A gentle introduction to analytical goals, common approaches and challenges. BMC Med. 2023, 21, 182. [Google Scholar]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, S.; Colburn, D.A.M.; Sia, S.K. Biosensors for Personal Mobile Health: A System Architecture Perspective. Adv. Mater. Technol. 2020, 5, 1900720. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Tomoto, K.; Nitta, H.; Toma, K.; Takeuchi, S.; Sekita, T.; Minakuchi, S.; Mitsubayashi, K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for in Vivo Salivary Glucose Measurement. Anal. Chem. 2020, 92, 12201–12207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef]
- Chen, D.; Cai, J.; Huang, Y.; Lv, Y. Deep Neural Fuzzy System Oriented toward High-Dimensional Data and Interpretable Artificial Intelligence. Appl. Sci. 2021, 11, 7766. [Google Scholar] [CrossRef]
- Aziz, R.; Verma, C.K.; Srivastava, N. Artificial Neural Network Classification of High Dimensional Data with Novel Optimization Approach of Dimension Reduction. Ann. Data Sci. 2018, 5, 615–635. [Google Scholar] [CrossRef]
- Ray, P.; Reddy, S.S.; Banerjee, T. Various dimension reduction techniques for high dimensional data analysis: A review. Artif. Intell. Rev. 2021, 54, 3473–3515. [Google Scholar] [CrossRef]
- Guni, A.; Normahani, P.; Davies, A.; Jaffer, U. Harnessing Machine Learning to Personalize Web-Based Health Care Content. J. Med. Internet Res. 2021, 23, e25497. [Google Scholar] [CrossRef]
- Owais, M.; Arsalan, M.; Choi, J.; Mahmood, T.; Park, K.R. Artificial Intelligence-Based Classification of Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. J. Clin. Med. 2019, 8, 986. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Botsis, T.; Albers, D.; Mamykina, L.; Hartvigsen, G. Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes. J. Med. Internet Res. 2019, 21, e11030. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Nia, N.G.; Kaplanoglu, E.; Nasab, A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discov. Artif. Intell. 2023, 3, 5. [Google Scholar]
- Umapathy, V.R.; Raj, R.D.S.; Yadav, S.; Munavarah, S.A.; Anandapandian, P.A.; Mary, A.V.; Akshay, R. Perspective of Artificial Intelligence in Disease Diagnosis: A Review of Current and Future Endeavours in the Medical Field. Cureus 2023, 15, e45684. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhang, R.; Li, J. Artificial intelligence in the clinical laboratory. Clin. Chim. Acta 2024, 559, 119724. [Google Scholar] [CrossRef]
- Haymond, S.; McCudden, C. Rise of the Machines: Artificial Intelligence and the Clinical Laboratory. J. Appl. Lab. Med. 2021, 6, 1640–1654. [Google Scholar] [CrossRef]
- Çubukçu, H.C.; Topcu, D.İ.; Yenice, S. Machine learning-based clinical decision support using laboratory data. Clin. Chem. Lab. Med. 2024, 62, 793–823. [Google Scholar] [CrossRef]
- Naugler, C.; Church, D.L. Automation and artificial intelligence in the clinical laboratory. Crit. Rev. Clin. Lab. Sci. 2019, 56, 98–110. [Google Scholar] [CrossRef]
- Shouval, R.; Fein, J.A.; Savani, B.; Mohty, M.; Nagler, A. Machine learning and artificial intelligence in haematology. Br. J. Haematol. 2021, 192, 239–250. [Google Scholar] [CrossRef]
- Herman, D.S.; Rhoads, D.D.; Schulz, W.L.; Durant, T.J.S. Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review. Clin. Chem. 2021, 67, 1466–1482. [Google Scholar] [CrossRef]
- Gedefaw, L.; Liu, C.-F.; Ip, R.K.L.; Tse, H.-F.; Yeung, M.H.Y.; Yip, S.P.; Huang, C.-L. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells 2023, 12, 1755. [Google Scholar] [CrossRef]
- Freely, J. Celestial Revolutionary: Copernicus, the Man and His Universe; I.B. Tauris & Co Ltd.: New York, NY, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coskun, A. Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine. Diagnostics 2024, 14, 2135. https://doi.org/10.3390/diagnostics14192135
Coskun A. Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine. Diagnostics. 2024; 14(19):2135. https://doi.org/10.3390/diagnostics14192135
Chicago/Turabian StyleCoskun, Abdurrahman. 2024. "Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine" Diagnostics 14, no. 19: 2135. https://doi.org/10.3390/diagnostics14192135
APA StyleCoskun, A. (2024). Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine. Diagnostics, 14(19), 2135. https://doi.org/10.3390/diagnostics14192135