Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature
Abstract
:1. Introduction
2. Pathophysiology of Heart Failure in Diabetes
3. Natriuretic Peptides and Their Clinical Applications in Heart Failure
4. Natriuretic Peptides for HF Risk Stratification and Management in Diabetes
- The St Vincent’s Screening to Prevent Heart Failure (STOP-HF) study involved 1374 participants at HF risk (including those with diabetes), randomized into usual care or BNP screening groups. Those with BNP ≥ 50 pg/mL received echocardiography and collaborative care. The primary outcome showed a lower prevalence of LV dysfunction in the intervention group (5.3% vs. 8.7%) after a mean follow-up period of 4.2 years. Moreover, the incidence of cardiovascular hospitalizations was lower in the intervention group. BNP-based screening reduced the composite endpoint of incident asymptomatic LV dysfunction with or without newly diagnosed HF [28].
- The NT-proBNP Selected Prevention of Cardiac Events in a Population of Diabetic Patients without a History of Cardiac Disease (PONTIAC) study included 300 patients with T2DM and NT-proBNP > 125 pg/mL but without any history of cardiac disease. Participants were randomized into a control group (receiving usual care) and an intensified group, which received additional cardiac outpatient care for the up-titration of RAAS antagonists and beta-blockers and was followed up for 2 years. Notably, intensified therapy led to a significant reduction in cardiac hospitalizations/deaths compared to the control group (hazard ratio: 0.351; p = 0.044) [29].
- In the Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care (EXAMINE) trial, two NT-pro BNP measurements (6 months apart) in patients (n = 5380) with T2DM effectively identified those at the highest risk of developing symptomatic HF. Patients with persistently high or increasing NT-pro BNP levels at 6 months had a significantly higher risk of CV death or HF compared to those with consistently low levels or initial high levels that declined [30].
- The Canagliflozin Cardiovascular Assessment Study (CANVAS) involved 4330 participants with T2DM and either CVD or other risk factors for cardiac events. Plasma NT-proBNP concentrations were measured at baseline, year 1, and year 6, and associations between NT-proBNP levels and various cardiovascular, renal, and mortality outcomes were investigated. NT-pro BNP levels ≥ 125 pg/mL predicted incident hospitalization for HF (hazard ratio 5.40; p < 0.001). Furthermore, it was suggested that elevated NT-pro BNP levels could predict a wide range of deleterious cardiovascular and renal outcomes in T2DM, HF death, and all-cause mortality [31].
- The Thousand and I study assessed the prognostic significance of elevated NT-pro BNP levels in patients (n = 960) with type 1 DM with preserved LVEF and without known heart disease. During a median follow-up of 6.3 years, 121 participants experienced major cardiovascular events (MACE) and 51 died. Higher NT-pro BNP levels were linked to poorer outcomes, with adjusted hazard ratios for MACE at 1.56 and 4.29 per Loge increase for NT-proBNP [32].
5. Analytical and Clinical Considerations in Natriuretic Peptide Testing
6. Future Prospects and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARNI | Angiotensin receptor neprilysin inhibitor |
BNP | B-type natriuretic peptide |
NT-pro BNP | N-terminal pro-B-type natriuretic peptide |
RAAS | Renin–angiotensin–aldosterone system |
SGLT2i | Sodium–glucose cotransporter 2 inhibitor |
T2DM | Type 2 diabetes mellitus |
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Iacoviello, M. Diabetes leading to heart failure and heart failure leading to diabetes: Epidemiological and clinical evidence. Heart Fail. Rev. 2023, 28, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979, 241, 2035–2038. [Google Scholar] [CrossRef]
- McAllister, D.A.; Read, S.H.; Kerssens, J.; Livingstone, S.; McGurnaghan, S.; Jhund, P.; Petrie, J.; Sattar, N.; Fischbacher, C.; Kristensen, S.L.; et al. Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation 2018, 138, 2774–2786. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Givertz, M.M.; Aguilar, D.; Allen, L.A.; Chan, M.; Desai, A.S.; Deswal, A.; Dickson, V.V.; Kosiborod, M.N.; Lekavich, C.L.; et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019, 140, e294–e324. [Google Scholar] [CrossRef]
- Verma, S.; Pandey, A.; Bhatt, D. Forecasting Heart Failure Risk in Diabetes. J. Am. Coll. Cardiol. 2022, 79, 2294–2297. [Google Scholar] [CrossRef]
- Cannistraci, R.; Mazzetti, S.; Mortara, A.; Perseghin, G.; Ciardullo, S. Risk stratification tools for heart failure in the diabetes clinic. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1070–1079. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S144–S174. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar]
- Emdin, M.; Vittorini, S.; Passino, C.; Clerico, A. Old and new biomarkers of heart failure. Eur. J. Heart Fail. 2009, 11, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Ashna, M.; Ross-Comptis, J.; Ansong, S.O.; Egbunu, E.O.; Okafor, G.C.; Jingwa, K.A.; Akintunde, A.A.; et al. Heart failure and diabetes: Understanding the bidirectional relationship. Medicine 2023, 102, e34906. [Google Scholar] [CrossRef] [PubMed]
- Panchal, K.; Lawson, C.; Chandramouli, C.; Lam, C.; Khunti, K.; Zaccardi, F. Diabetes and risk of heart failure in people with and without cardiovascular disease: Systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2023, 207, 111054. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, A.I.S.; Stewart, A.J. Coagulatory Defects in Type-1 and Type-2 Diabetes. Int. J. Mol. Sci. 2019, 20, 6345. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nishikimi, T.; Kuwahara, K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides 2019, 111, 18–25. [Google Scholar] [CrossRef]
- de Bold, A.J.; Borenstein, H.B.; Veress, A.T.; Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981, 28, 89–94. [Google Scholar] [CrossRef]
- Pandey, K.N. Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. J. Am. Soc. Hypertens. 2008, 2, 210–226. [Google Scholar] [CrossRef]
- Bhatia, V.; Nayyar, P.; Dhindsa, S. Brain natriuretic peptide in diagnosis and treatment of heart failure. J. Postgrad. Med. 2003, 49, 182–185. [Google Scholar]
- Tanase, D.M.; Radu, S.; Al Shurbaji, S.; Baroi, G.L.; Florida Costea, C.; Turliuc, M.D.; Ouatu, A.; Floria, M. Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications. Int. J. Mol. Sci. 2019, 20, 2629. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Sim, D.; Lin, W.; Sindone, A.; Yingchoncharoen, T.; Prameswari, H.S.; Mohd Ghazi, A.; Pin, L.C.; Louis, T.; Aw, T.C.; Michael-Joseph, A.; et al. Asian Pacific Society of Cardiology Consensus Statements on the Diagnosis and Management of Chronic Heart Failure. J. Asian Pac. Soc. Cardiol. 2023, 2, e10. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Zannad, F.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Ferreira, J.P.; Sattar, N.; Verma, S.; Vedin, O.; et al. Prognostic Importance of NT-proBNP and Effect of Empagliflozin in the EMPEROR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 78, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Davison, B.; Chioncel, O.; Cohen-Solal, A.; Diaz, R.; Filippatos, G.; Metra, M.; Ponikowski, P.; Sliwa, K.; Voors, A.A.; et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): A multinational, open-label, randomised, trial. Lancet 2022, 400, 1938–1952. [Google Scholar] [CrossRef]
- Reza, N.; Pellicori, P.; Starling, R.C. REVOLUTION in Heart Failure Care and SELECT Highlights from the European Society of Cardiology-Heart Failure Association Heart Failure & World Congress on Acute Heart Failure 2024. J. Card Fail. 2024, 30, 1157–1160. [Google Scholar]
- Oktay, A.A.; Paul, T.K.; Koch, C.A.; Lavie, C.J. Diabetes, Cardiomyopathy, and Heart Failure; Updated 26 September 2023; Feingold, K.R., Anawalt, B., Blackman, M.R., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560257/ (accessed on 5 February 2024).
- Ledwidge, M.; Gallagher, J.; Conlon, C.; Tallon, E.; O’Connell, E.; Dawkins, I.; Watson, C.; O’Hanlon, R.; Bermingham, M.; Patle, A.; et al. Natriuretic peptide-based screening and collaborative care for heart failure: The STOP-HF randomized trial. JAMA 2013, 310, 66–74. [Google Scholar] [CrossRef]
- Huelsmann, M.; Neuhold, S.; Resl, M.; Strunk, G.; Brath, H.; Francesconi, C.; Adlbrecht, C.; Prager, R.; Luger, A.; Pacher, R.; et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): A prospective randomized controlled trial. J. Am. Coll. Cardiol. 2013, 62, 1365–1372. [Google Scholar] [CrossRef]
- Jarolim, P.; White, W.B.; Cannon, C.P.; Gao, Q.; Morrow, D.A. Serial Measurement of Natriuretic Peptides and Cardiovascular Outcomes in Patients with Type 2 Diabetes in the EXAMINE Trial. Diabetes Care 2018, 41, 1510–1515. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Xu, J.; Li, J.; Shaw, W.; Oh, R.; Pfeifer, M.; Butler, J.; Sattar, N.; Mahaffey, K.W.; Neal, B.; et al. Effects of Canagliflozin on Amino-Terminal Pro-B-Type Natriuretic Peptide: Implications for Cardiovascular Risk Reduction. J. Am. Coll. Cardiol. 2020, 76, 2076–2085. [Google Scholar] [CrossRef]
- Rørth, R.; Jørgensen, P.G.; Andersen, H.U.; Christoffersen, C.; Gøtze, J.P.; Køber, L.; Rossing, P.; Jensen, M.T. Cardiovascular prognostic value of echocardiography and N terminal pro B-type natriuretic peptide in type 1 diabetes: The Thousand & 1 Study. Eur. J. Endocrinol. 2020, 182, 481–488. [Google Scholar] [PubMed]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S179–S218. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [PubMed]
- Beavers, C.J. Heart Failure Pharmacotherapy Over the Past 30 Years: Boats Against the Current. J. Card. Fail. 2024, 30, 1044–1046. [Google Scholar] [CrossRef] [PubMed]
- Ramzi, Z.S. N-Terminal Prohormone Brain Natriuretic Peptide as a Prognostic Biomarker for the Risk of Complications in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Lab. Med. 2023, 54, 339–351. [Google Scholar] [CrossRef]
- Segar, M.W.; Patel, K.V.; Hellkamp, A.S.; Vaduganathan, M.; Lokhnygina, Y.; Green, J.B.; Wan, S.H.; Kolkailah, A.A.; Holman, R.R.; Peterson, E.D.; et al. Validation of the WATCH-DM and TRS-HFDM Risk Scores to Predict the Risk of Incident Hospitalization for Heart Failure Among Adults with Type 2 Diabetes: A Multicohort Analysis. J. Am. Heart Assoc. 2022, 11, e024094. [Google Scholar] [CrossRef]
- Patel, K.V.; Segar, M.W.; Klonoff, D.C.; Khan, M.S.; Usman, M.S.; Lam, C.S.P.; Verma, S.; DeFilippis, A.P.; Nasir, K.; Bakker, S.J.L.; et al. Optimal Screening for Predicting and Preventing the Risk of Heart Failure Among Adults with Diabetes Without Atherosclerotic Cardiovascular Disease: A Pooled Cohort Analysis. Circulation 2024, 149, 293–304. [Google Scholar] [CrossRef]
- García de Guadiana-Romualdo, L.; Ramos-Arenas, V.; Campos-Rodríguez, V.; Consuegra-Sánchez, L.; Albaladejo-Otón, M.D. In vitro stability of B-type natriuretic peptide (BNP) in plasma stored under different conditions when measured with the Lumipulse® assay. Scand. J. Clin. Lab. Investig. 2019, 79, 455–458. [Google Scholar] [CrossRef]
- Revuelta-López, E.; Barallat, J.; Cserkóová, A.; Gálvez-Montón, C.; Jaffe, A.S.; Januzzi, J.L.; Bayes-Genis, A. Pre-analytical considerations in biomarker research: Focus on cardiovascular disease. Clin. Chem. Lab. Med. 2021, 59, 1747–1760. [Google Scholar] [CrossRef]
- Lee, D.J.W.; Aw, T.C. Natriuretic Peptides in Clinical Practice: A Current Review. J. Immunol. Sci. 2023, 7, 28–34. [Google Scholar] [CrossRef]
- Troughton, R.W.; Richards, A.M.; Yandle, T.G.; Frampton, C.M.; Nicholls, M.G. The effects of medications on circulating levels of cardiac natriuretic peptides. Ann. Med. 2007, 39, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; McCarthy, C.P.; Shrestha, S.; Gaggin, H.K.; Mukai, R.; Szymonifka, J.; Apple, F.S.; Burnett, J.C., Jr.; Iyer, S.; Januzzi, J.L., Jr. Effect of Neprilysin Inhibition on Various Natriuretic Peptide Assays. J. Am. Coll. Cardiol. 2019, 73, 1273–1284. [Google Scholar] [CrossRef]
- Ibrahim, N.E.; Januzzi, J.L. Beyond Natriuretic Peptides for Diagnosis and Management of Heart Failure. Clin. Chem. 2017, 63, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Mohana, I.K.; Sai-Babaa, K.S.S.; Iyyapu, R.; Thirumalasetty, S.; Satish, O.S. Advances in congestive heart failure biomarkers. Adv. Clin. Chem. 2023, 112, 205–248. [Google Scholar]
- Lewsey, S.C.; Breathett, K. Racial and ethnic disparities in heart failure: Current state and future directions. Curr. Opin. Cardiol. 2021, 36, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Shalmia, T.W.; Jensen, A.S.B.; Goetze, J.P. Cardiac natriuretic peptides. Advances Clin. Chem. 2024, 122, 115–139. [Google Scholar]
- Commodore-Mensah, Y.; Wang, D.; Jeon, Y.; Foti, K.; McEvoy, J.W.; Coresh, J.; Tang, O.; Echouffo-Tcheugui, J.B.; Christenson, R.; Ndumele, C.E.; et al. Racial and ethnic differences in circulating N-terminal pro-brain-type natriuretic peptide (NT-proBNP) in US adults. Am. J. Prev. Cardiol. 2023, 15, 100526. [Google Scholar]
- Lam, C.S.; Li, Y.H.; Bayes-Genis, A.; Ariyachaipanich, A.; Sato, N.; Kahale, P.; Cuong, T.M.; Dong, Y.; Li, X.; Zhou, Y. The role of N-terminal pro-B-type natriuretic peptide in prognostic evaluation of heart failure. J. Chin. Med. Assoc. 2019, 82, 447–451. [Google Scholar] [CrossRef]
- Ibrahim, I.; Kuan, W.S.; Frampton, C.; Troughton, R.; Liew, O.W.; Chong, J.P.C.; Chan, S.P.; Tan, L.L.; Lin, W.Q.; Pemberton, C.J.; et al. Superior performance of N-terminal pro brain natriuretic peptide for diagnosis of acute decompensated heart failure in an Asian compared with a Western setting. Eur. J. Heart Fail. 2017, 19, 209–217. [Google Scholar] [CrossRef]
- Tromp, J.; Richards, A.M.; Tay, W.T.; Teng, T.H.K.; Yeo, P.S.D.; Sim, D.; Jaufeerally, F.; Leong, G.; Ong, H.Y.; Ling, L.H.; et al. N-terminal pro-B-type natriuretic peptide and prognosis in Caucasian vs. Asian patients with heart failure. ESC Heart Fail. 2018, 5, 279–287. [Google Scholar] [CrossRef]
- Pascual-Figal, D.; Bayés-Genis, A.; Beltrán-Troncoso, P.; Caravaca-Pérez, P.; Conde-Martel, A.; Crespo-Leiro, M.G.; Delgado, J.F.; Díez, J.; Formiga, F.; Manito, N. Sacubitril-Valsartan, Clinical Benefits and Related Mechanisms of Action in Heart Failure with Reduced Ejection Fraction. A Review. Front. Cardiovasc. Med. 2021, 11, 754499. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.L.; Lin, Y.; Lin, M.S.; Tsai, T.H.; Yang, N.I.; Wang, C.Y.; Hsieh, I.C.; Hung, M.J.; Chen, T.H. Comparing angiotensin receptor-neprilysin inhibitors with sodium-glucose cotransporter 2 inhibitors for heart failure with diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.; Michelson, E.L.; Olofsson, B.; Ostergren, J.; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet 2003, 362, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.; Tendera, M.; Adamus, J.; Freemantle, N.; Polonski, L.; Taylor, J.; PEP-CHF Investigators. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 2006, 27, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Carson, P.E.; Anand, I.S.; Win, S.; Rector, T.; Haass, M.; Lopez-Sendon, J.; Miller, A.; Teerlink, J.R.; White, M.; McKelvie, R.S.; et al. The Hospitalization Burden and Post-Hospitalization Mortality Risk in Heart Failure with Preserved Ejection Fraction: Results From the I-PRESERVE Trial (Irbesartan in Heart Failure and Preserved Ejection Fraction). JACC Heart Fail. 2015, 3, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Gronda, E.; Vanoli, E.; Iacoviello, M. The PARAGON-HF trial: The sacubitril/valsartan in heart failure with preserved ejection fraction. Eur. Heart J. Suppl. 2020, 22 (Suppl. L), L77–L81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar]
- Huelsmann, M.; Neuhold, S.; Strunk, G.; Moertl, D.; Berger, R.; Prager, R.; Abrahamian, H.; Riedl, M.; Pacher, R.; Luger, A.; et al. NT-proBNP has a high negative predictive value to rule-out short-term cardiovascular events in patients with diabetes mellitus. Eur. Heart J. 2008, 29, 2259–2264. [Google Scholar]
- Walter, E.; Arrigo, M.; Allerstorfer, S.; Marty, P.; Hülsmann, M. Cost-effectiveness of NT-proBNP-supported screening of chronic heart failure in patients with or without type 2 diabetes in Austria and Switzerland. J. Med. Econ. 2023, 26, 1287–1300. [Google Scholar]
- Spahillari, A.; Jackson, L.; Varrias, D.; Michelhaugh, S.A.; Januzzi, J.L.; Shahideh, B.; Daghfal, D.; Valkov, N.; Murtagh, G.; Das, S. MicroRNAs are associated with cardiac biomarkers, cardiac structure and function and incident outcomes in heart failure. ESC Heart Fail. 2024, 11, 1400–1410. [Google Scholar]
Cohort Name | Population Studied | Follow-Up (Median) | Major Findings |
---|---|---|---|
STOP-HF [28] | 1374 participants with cardiovascular risk factors. Mean age 64.8 years | 4.2 years | Lower prevalence of LV dysfunction in the BNP-based screening group (5.3% vs. 8.7%). |
PONTIAC [29] | 300 patients with T2DM and NT-proBNP > 125 pg/mL but without any history of cardiac disease | 2 years | Intensified therapy led to a significant reduction in cardiac hospitalizations/deaths compared to control (hazard ratio: 0.351; p = 0.044). |
EXAMINE [30] | 5380 patients with T2DM and a recent ACS event | 597 days | Two NT-proBNP measurements (6 months apart) identified those at the highest risk of developing HF (p < 0.001). |
CANVAS [31] | 4330 patients with T2DM and risk factors for CVD | 5.75 years | Higher baseline NT-proBNP levels in those with investigator-reported HF; canagliflozin reduced serial NT-proBNP levels. |
Thousand and I [32] | 960 patients with T1DM | 6.3 years | Increased levels of NT-proBNP associated with worse outcomes (hazard ratio 1.56). |
Guideline | NP Threshold for Ruling In and Ruling Out HF |
---|---|
AHA [22] | BNP > 35 pg/mL and NT-proBNP > 125 pg/mL to rule in HF in diabetes |
APSC [23] | BNP < 35 pg/mL and NT-proBNP < 125 pg/mL to exclude HF |
ADA [33] | BNP > 50 pg/mL and NT-proBNP > 125 pg/mL for screening those with diabetes |
ESC [34] | BNP > 35 pg/mL and NT-proBNP > 125 pg/mL to identify those with HF |
Study | Year | Drug Class | NP Level as Selection Criterion | Results |
---|---|---|---|---|
CHARM [54] | 2003 | ARB | Not a criterion | Non-significant to borderline-significant outcomes |
PEP-CHF [55] | 2006 | ACEI | Not a criterion | Non-significant to borderline-significant outcomes |
I-PRESERVE [56] | 2008 | ARB | Not a criterion | Non-significant to borderline-significant outcomes |
PARAGON [57] | 2019 | ARNI | Optional | Borderline-significant outcomes |
EMPEROR-Preserved [58] | 2021 | SGLT2i | Absolute | Significant outcomes |
DELIVER [59] | 2022 | SGLT2i | Absolute | Significant outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, D.; Aw, T.C. Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature. Diagnostics 2024, 14, 2251. https://doi.org/10.3390/diagnostics14192251
Tiwari D, Aw TC. Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature. Diagnostics. 2024; 14(19):2251. https://doi.org/10.3390/diagnostics14192251
Chicago/Turabian StyleTiwari, Dipti, and Tar Choon Aw. 2024. "Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature" Diagnostics 14, no. 19: 2251. https://doi.org/10.3390/diagnostics14192251
APA StyleTiwari, D., & Aw, T. C. (2024). Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature. Diagnostics, 14(19), 2251. https://doi.org/10.3390/diagnostics14192251