Modified FIB-4 Index in Type 2 Diabetes Mellitus with Steatosis: A Non-Linear Predictive Model for Advanced Hepatic Fibrosis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Definition
2.4. Liver Histology
2.5. In-Depth Analysis of FIB-4 Variables
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Major Clinical Risk Factors and Their Interactions in Advanced Hepatic Fibrosis
3.3. Optimized FIB-4 Model for T2DM with MASLD for Advanced Hepatic Fibrosis in T2DM
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Yoon, E.L.; Kim, M.; Kang, B.K.; Cho, S.; Nah, E.H.; Jun, D.W. Prevalence, distribution, and hepatic fibrosis burden of the different subtypes of steatotic liver disease in primary care settings. Hepatology 2024, 79, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Yu, J.H.; Chon, Y.E.; Kim, S.U.; Kim, M.N.; Han, J.W.; Lee, H.A.; Jin, Y.J.; An, J.; Choi, M.; et al. Prevalence of clinically significant liver fibrosis in the general population: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2024, 30, S199–S213. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, J.; Caussy, C.; Teng, G.J.; Loomba, R. Epidemiology, screening, and co-management of type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease. Hepatology 2024. [Google Scholar] [CrossRef]
- Ajmera, V.; Cepin, S.; Tesfai, K.; Hofflich, H.; Cadman, K.; Lopez, S.; Madamba, E.; Bettencourt, R.; Richards, L.; Behling, C.; et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J. Hepatol. 2023, 78, 471–478. [Google Scholar] [CrossRef]
- Mertens, J.; Weyler, J.; Dirinck, E.; Vonghia, L.; Kwanten, W.J.; Mortelmans, L.; Peleman, C.; Chotkoe, S.; Spinhoven, M.; Vanhevel, F.; et al. Prevalence, risk factors and diagnostic accuracy of non-invasive tests for NAFLD in people with type 1 diabetes. JHEP Rep. 2023, 5, 100753. [Google Scholar] [CrossRef]
- Ortiz-Lopez, C.; Lomonaco, R.; Orsak, B.; Finch, J.; Chang, Z.; Kochunov, V.G.; Hardies, J.; Cusi, K. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care 2012, 35, 873–878. [Google Scholar] [CrossRef]
- Park, H.; Yoon, E.L.; Kim, M.; Kwon, S.H.; Kim, D.; Cheung, R.; Kim, H.L.; Jun, D.W. Cost-effectiveness study of FIB-4 followed by transient elastography screening strategy for advanced hepatic fibrosis in a NAFLD at-risk population. Liver Int. 2024, 44, 944–954. [Google Scholar] [CrossRef]
- Noureddin, M.; Jones, C.; Alkhouri, N.; Gomez, E.V.; Dieterich, D.T.; Rinella, M.E.; Therapondos, G.; Girgrah, N.; Mantry, P.S.; Sussman, N.L.; et al. Screening for Nonalcoholic Fatty Liver Disease in Persons with Type 2 Diabetes in the United States Is Cost-effective: A Comprehensive Cost-Utility Analysis. Gastroenterology 2020, 159, 1985–1987.e4. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 2022, 28, 528–562. [Google Scholar] [CrossRef]
- Chan, W.K.; Wong, V.W.; Adams, L.A.; Nguyen, M.H. MAFLD in adults: Non-invasive tests for diagnosis and monitoring of MAFLD. Hepatol. Int. 2024, 18 (Suppl. 2), 909–921. [Google Scholar] [CrossRef]
- Vieira Barbosa, J.; Lai, M. Nonalcoholic Fatty Liver Disease Screening in Type 2 Diabetes Mellitus Patients in the Primary Care Setting. Hepatol. Commun. 2021, 5, 158–167. [Google Scholar] [CrossRef]
- Kim, R.G.; Deng, J.; Reaso, J.N.; Grenert, J.P.; Khalili, M. Noninvasive Fibrosis Screening in Fatty Liver Disease Among Vulnerable Populations: Impact of Diabetes and Obesity on FIB-4 Score Accuracy. Diabetes Care 2022, 45, 2449–2451. [Google Scholar] [CrossRef]
- Meritsi, A.; Latsou, D.; Manesis, E.; Gatos, I.; Theotokas, I.; Zoumpoulis, P.; Rapti, S.; Tsitsopoulos, E.; Moshoyianni, H.; Manolakopoulos, S.; et al. Noninvasive, Blood-Based Biomarkers as Screening Tools for Hepatic Fibrosis in People with Type 2 Diabetes. Clin. Diabetes 2022, 40, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Sporea, I.; Mare, R.; Popescu, A.; Nistorescu, S.; Baldea, V.; Sirli, R.; Braha, A.; Sima, A.; Timar, R.; Lupusoru, R. Screening for Liver Fibrosis and Steatosis in a Large Cohort of Patients with Type 2 Diabetes Using Vibration Controlled Transient Elastography and Controlled Attenuation Parameter in a Single-Center Real-Life Experience. J. Clin. Med. 2020, 9, 1032. [Google Scholar] [CrossRef]
- Park, H.; Yoon, E.L.; Kim, M.; Lee, J.; Kim, H.L.; Cho, S.; Nah, E.H.; Jun, D.W. Diagnostic performance of the fibrosis-4 index and the NAFLD fibrosis score for screening at-risk individuals in a health check-up setting. Hepatol. Commun. 2023, 7, e0249. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Henry, L. Understanding the Burden of Nonalcoholic Fatty Liver Disease: Time for Action. Diabetes Spectr. 2024, 37, 9–19. [Google Scholar] [CrossRef]
- Chan, W.K.; Petta, S.; Noureddin, M.; Goh, G.B.B.; Wong, V.W. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment. Pharmacol. Ther. 2024, 59 (Suppl. 1), S23–S40. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Mehta, M.; Duseja, A.; ICOM-D Study Group. Substantial overlap between NAFLD and MASLD with comparable disease severity and non-invasive test performance: An analysis of the Indian Consortium on MASLD (ICOM-D) cohort. J. Hepatol. 2024, 81, e162–e164. [Google Scholar] [CrossRef] [PubMed]
- Vali, Y.; Lee, J.; Boursier, J.; Spijker, R.; Loffler, J.; Verheij, J.; Brosnan, M.J.; Bocskei, Z.; Anstee, Q.M.; Bossuyt, P.M.; et al. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2020, 73, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Doycheva, I.; Cui, J.; Nguyen, P.; Costa, E.A.; Hooker, J.; Hofflich, H.; Bettencourt, R.; Brouha, S.; Sirlin, C.B.; Loomba, R. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment. Pharmacol. Ther. 2016, 43, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Graupera, I.; Thiele, M.; Serra-Burriel, M.; Caballeria, L.; Roulot, D.; Wong, G.L.; Fabrellas, N.; Guha, I.N.; Arslanow, A.; Exposito, C.; et al. Low Accuracy of FIB-4 and NAFLD Fibrosis Scores for Screening for Liver Fibrosis in the Population. Clin. Gastroenterol. Hepatol. 2022, 20, 2567–2576.e6. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. FIB-4 index and NAFLD fibrosis score are useful indicators for screening high-risk groups of non-viral hepatocellular carcinoma. Mol. Clin. Oncol. 2023, 19, 80. [Google Scholar] [CrossRef]
- van Kleef, L.A.; Sonneveld, M.J.; de Knegt, R.J. Reply to: Low Accuracy of FIB-4 and NAFLD Fibrosis Scores for Screening for Liver Fibrosis in the Population. Clin. Gastroenterol. Hepatol. 2023, 21, 238–239. [Google Scholar] [CrossRef]
- Nakano, M.; Kawaguchi, M.; Kawaguchi, T. Almost identical values of various non-invasive indexes for hepatic fibrosis and steatosis between NAFLD and MASLD in Asia. J. Hepatol. 2024, 80, e155–e157. [Google Scholar] [CrossRef]
- Boursier, J.; Hagstrom, H.; Ekstedt, M.; Moreau, C.; Bonacci, M.; Cure, S.; Ampuero, J.; Nasr, P.; Tallab, L.; Canivet, C.M.; et al. Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J. Hepatol. 2022, 76, 1013–1020. [Google Scholar] [CrossRef]
- Qadri, S.; Yki-Jarvinen, H. Surveillance of the liver in type 2 diabetes: Important but unfeasible? Diabetologia 2024, 67, 961–973. [Google Scholar] [CrossRef]
- Qadri, S.; Ahlholm, N.; Lonsmann, I.; Pellegrini, P.; Poikola, A.; Luukkonen, P.K.; Porthan, K.; Juuti, A.; Sammalkorpi, H.; Penttila, A.K.; et al. Obesity Modifies the Performance of Fibrosis Biomarkers in Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2022, 107, e2008–e2020. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Shao, W.; Song, J. The transition from NAFLD to MASLD and its impact on clinical practice and outcomes. J. Hepatol. 2024, 81, e155–e156. [Google Scholar] [CrossRef] [PubMed]
- Nascimbeni, F.; Pais, R.; Bellentani, S.; Day, C.P.; Ratziu, V.; Loria, P.; Lonardo, A. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013, 59, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M. Practice guidelines on NAFLD. Hepatology 2013, 57, 853. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoon, E.L.; Oh, J.H.; Kim, K.; Ahn, S.B.; Jun, D.W. Barriers to care linkage and educational impact on unnecessary MASLD referrals. Front. Med. 2024, 11, 1407389. [Google Scholar] [CrossRef]
Total (n = 1503) | Non-T2DM (n = 986) | T2DM (n = 517) | p | |
---|---|---|---|---|
Age (years) † | 48.10 ± 14.85 | 45.11 ± 14.95 | 53.81 ± 12.88 | <0.001 a |
Male | 48.4% | 49.3% | 46.6% | 0.352 b |
BMI (kg/m2) † | 29.39 ± 6.59 | 29.41 ± 7.23 | 29.355 ± 5.16 | 0.854 a |
Waist circumference (cm) † | 95.83 ± 12.46 | 95.41 ± 11.75 | 96.50 ± 13.54 | 0.469 a |
Hypertension | 42.4% | 33.9% | 58.6% | <0.001 b |
Diabetes | 34.4% | |||
Triglyceride (mg/dL) † | 159.46 ± 100.72 | 156.62 ± 102.69 | 164.89 ± 96.71 | 0.129 a |
HDL-CROL (mg/dL) † | 48.06 ± 14.77 | 49.00 ± 14.56 | 46.27 ± 15.00 | 0.001 a |
Cholesterol (mg/dL) | 124.39 ± 50.58 | 127.54 ± 47.84 | 118.12 ± 55.16 | 0.004 a |
Albumin (mg/dL) | 4.33 ± 0.44 | 4.35 ± 0.42 | 4.29 ± 0.46 | 0.007 a |
Glucose (mg/dL) † | 113.90 ± 35.59 | 99.45 ± 16.10 | 141.41 ± 45.07 | <0.001 a |
AST (IU/L) † | 51.54 ± 35.39 | 47.74 ± 33.87 | 58.79 ± 37.09 | <0.001 a |
ALT (IU/L) † | 73.63 ± 58.89 | 71.19 ± 60.20 | 78.29 ± 56.07 | 0.023 a |
AST/ALT † | 0.8697 ± 0.4423 | 0.8650 ± 0.4634 | 0.8786 ± 0.3993 | 0.555 a |
Platelets (×109/L) † | 236.65 ± 72.67 | 246.55 ± 70.32 | 217.78 ± 73.41 | <0.001 a |
FIB-4 index † | 1.58 ± 1.47 | 1.32 ± 1.24 | 2.07 ± 1.73 | <0.001 a |
NAFLD fibrosis score † | −1.82 ± 1.67 | −2.46 ± 1.39 | −0.58 ± 1.45 | <0.001 a |
Steatosis | 1.39 ± 1.01 | 1.24 ± 1.03 | 1.74 ± 0.86 | <0.001 a |
Inflammation | 1.11 ± 0.99 | 0.91 ± 0.96 | 1.56 ± 0.90 | <0.001 a |
Fibrosis | 285 (19.0%) | 130 (13.2%) | 155 (30.0%) | <0.001 b |
Prevalence of ≥F2 | 1218 | 856 | 362 | |
Prevalence of ≥F3 | 285 | 130 | 155 |
Total (n = 517) | ≥F3 (n = 155) | F0~2 (n = 362) | p | |
---|---|---|---|---|
Age (years) † | 53.8 ± 12.9 | 57.5 ± 12.2 | 52.2 ± 12.9 | <0.001 a |
Male | 46.6% | 41.9% | 48.6% | 0.194 b |
BMI (kg/m2) † | 29.36 ± 5.16 | 29.41 ± 4.48 | 29.33 ± 5.43 | 0.865 a |
Waist circumference (cm) † | 96.50 ± 13.54 | 98.28 ± 7.75 | 95.90 ± 14.99 | 0.266 a |
Hypertension | 58.6% | 65.8% | 55.4% | 0.036 b |
Triglyceride (mg/dL) † | 164.89 ± 96.71 | 141.09 ± 64.46 | 175.49 ± 106.39 | <0.001 a |
HDL-CROL (mg/dL) † | 46.27 ± 15.00 | 47.60 ± 17.15 | 45.68 ± 13.92 | 0.226 a |
Cholesterol (mg/dL) | 188.12 ± 55.16 | 122.30 ± 82.12 | 116.31 ± 38.01 | 0.444 a |
Albumin (mg/dL) | 4.29 ± 0.46 | 4.20 ± 0.47 | 4.32 ± 0.45 | 0.005 a |
Glucose (mg/dL) † | 141.41 ± 45.07 | 142.56 ± 46.87 | 140.91 ± 44.34 | 0.711 a |
AST (IU/L) † | 58.79 ± 37.09 | 65.35 ± 33.84 | 55.99 ± 38.10 | 0.006 a |
ALT (IU/L) † | 78.29 ± 56.08 | 75.90 ± 47.52 | 79.31 ± 59.39 | 0.490 a |
AST/ALT † | 0.8786 ± 0.3993 | 0.9893 ± 0.4348 | 0.8312 ± 0.3738 | <0.001 a |
Platelets (×109/L) † | 217.78 ± 73.41 | 183.91 ± 73.51 | 232.279 ± 68.52 | <0.001 a |
FIB-4 index † | 2.07 ± 1.73 | 3.02 ± 2.20 | 1.67 ± 1.29 | <0.001 a |
NAFLD fibrosis score † | −0.58 ± 1.45 | 0.16 ± 1.56 | −0.91 ± 1.27 | <0.001 a |
Steatosis (mean ± SD) | 1.74 ± 0.86 | 1.77 ± 0.68 | 1.73 ± 0.92 | 0.805 a |
Inflammation (mean ± SD) | 1.56 ± 0.90 | 1.86 ± 0.80 | 1.44 ± 0.91 | 0.006 a |
Hepatic fibrosis (%) | 30.0% | 155 | 362 | |
F0/1 | 228 (63.0%) | |||
F2 | 134 (37.0%) | |||
F3 | 112 (72.3%) | |||
F4 | 43 (27.7%) |
Total | T2DM | |||||||
---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI Lower | 95% CI Upper | p | Odds Ratio | 95% CI Lower | 95% CI Upper | p | |
T2DM | 2.799 | 2.145 | 3.657 | <0.001 | ||||
Age (years) † | 1.064 | 1.053 | 1.076 | <0.001 | 1.063 | 1.044 | 1.084 | <0.001 |
Gender (M) | 1.518 | 1.166 | 1.983 | <0.001 | 1.540 | 1.020 | 2.342 | 0.041 |
BMI (kg/m2) † | 0.991 | 0.970 | 1.010 | 0.355 | 0.991 | 0.953 | 1.028 | 0.636 |
AST (IU/L) † | 1.011 | 1.008 | 1.014 | <0.001 | 1.007 | 1.002 | 1.013 | 0.008 |
ALT (IU/L) † | 1.001 | 0.998 | 1.003 | 0.532 | 0.998 | 0.994 | 1.002 | 0.285 |
AST/ALT † | 2.031 | 1.539 | 2.680 | <0.001 | 3.099 | 1.927 | 5.071 | <0.001 |
Albumin (mg/dL) | 0.381 | 0.270 | 0.534 | <0.001 | 0.476 | 0.274 | 0.820 | 0.008 |
Glucose (mg/dL) † | 1.009 | 1.006 | 1.012 | <0.001 | 1.006 | 1.002 | 1.011 | 0.004 |
HBA1c (%) | 1.195 | 1.069 | 1.340 | 0.002 | 1.130 | 0.979 | 1.317 | 0.105 |
Triglyceride (mg/dL) † | 0.999 | 0.997 | 1.000 | 0.111 | 0.997 | 0.994 | 0.999 | 0.040 |
HDL-CROL (mg/dL) † | 0.997 | 0.988 | 1.006 | 0.532 | 1.004 | 0.990 | 1.016 | 0.563 |
LDL-CROL (mg/dL) † | 1.000 | 0.996 | 1.002 | 0.770 | 0.998 | 0.991 | 1.004 | 0.516 |
Platelets | 0.987 | 0.985 | 0.989 | <0.001 | 0.987 | 0.984 | 0.991 | <0.001 |
FIB4 | Total | T2DM | ||||||||||||
Cut-Off | Age Group | AUROC | Acc | Sens | Spec | PPV | NPV | Age Group | AUROC | Acc | Sens | Spec | PPV | NPV |
1.3 | Total | 0.8089 | 0.6993 | 0.8134 | 0.6727 | 0.3667 | 0.9393 | Total | 0.7351 | 0.6035 | 0.8258 | 0.5083 | 0.4183 | 0.872 |
~25 | 0.6325 | 0.9531 | 0.1667 | 0.9918 | 0.5000 | 0.9603 | ~25 | 0.5846 | 0.7778 | 0.2000 | 1.0000 | 1.0000 | 0.7647 | |
26~35 | 0.6642 | 0.9231 | 0.1667 | 0.9640 | 0.2000 | 0.9554 | 26~35 | 0.6094 | 0.7027 | 0.0000 | 0.8125 | 0.0000 | 0.8387 | |
36~45 | 0.6366 | 0.8427 | 0.4483 | 0.8908 | 0.3333 | 0.4483 | 36~45 | 0.6093 | 0.7808 | 0.5000 | 0.8361 | 0.3750 | 0.8947 | |
46~55 | 0.7384 | 0.6469 | 0.6604 | 0.6444 | 0.2574 | 0.9104 | 46~55 | 0.6982 | 0.6077 | 0.6970 | 0.5773 | 0.3594 | 0.8485 | |
56~65 | 0.7804 | 0.5285 | 0.9615 | 0.3319 | 0.3953 | 0.9500 | 56~65 | 0.7754 | 0.5669 | 0.9649 | 0.3400 | 0.4545 | 0.9444 | |
66~75 | 0.7031 | 0.4608 | 1.0000 | 0.1129 | 0.4211 | 1.0000 | 66~75 | 0.6878 | 0.4608 | 1.0000 | 0.0678 | 0.4388 | 1.0000 | |
New Model | Total | T2DM | ||||||||||||
Cut-Off | Age Group | AUROC | Acc | Sens | Spec | PPV | NPV | Age Group | AUROC | Acc | Sens | Spec | PPV | NPV |
715 | Total | 0.8354 | 0.7279 | 0.8134 | 0.708 | 0.3935 | 0.9421 | Total | 0.7710 | 0.6228 | 0.8581 | 0.5221 | 0.4346 | 0.8957 |
~25 | 0.8757 | 0.9531 | 0.3333 | 0.9836 | 0.5000 | 0.9677 | ~25 | 0.7538 | 0.7222 | 0.4000 | 0.8462 | 0.5000 | 0.7857 | |
26~35 | 0.7911 | 0.8590 | 0.4167 | 0.8829 | 0.1613 | 0.9655 | 26~35 | 0.6656 | 0.7027 | 0.6000 | 0.7188 | 0.2500 | 0.9200 | |
36~45 | 0.7867 | 0.7603 | 0.5517 | 0.7857 | 0.2388 | 0.9350 | 36~45 | 0.6995 | 0.6438 | 0.5833 | 0.6557 | 0.2500 | 0.8889 | |
46~55 | 0.7902 | 0.7211 | 0.7170 | 0.7218 | 0.3248 | 0.9318 | 46~55 | 0.7423 | 0.6538 | 0.7879 | 0.6082 | 0.4062 | 0.8939 | |
56~65 | 0.7748 | 0.6096 | 0.8942 | 0.4803 | 0.4387 | 0.9091 | 56~65 | 0.7912 | 0.5987 | 0.9474 | 0.4000 | 0.4737 | 0.9302 | |
66~75 | 0.7345 | 0.5980 | 0.9625 | 0.3629 | 0.4936 | 0.9375 | 66~75 | 0.7217 | 0.5588 | 0.9535 | 0.2712 | 0.4881 | 0.8889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ito, T.; Arai, T.; Atsukawa, M.; Kawanaka, M.; Toyoda, H.; Honda, T.; Yu, M.-L.; Yoon, E.L.; Jun, D.W.; et al. Modified FIB-4 Index in Type 2 Diabetes Mellitus with Steatosis: A Non-Linear Predictive Model for Advanced Hepatic Fibrosis. Diagnostics 2024, 14, 2500. https://doi.org/10.3390/diagnostics14222500
Kim J, Ito T, Arai T, Atsukawa M, Kawanaka M, Toyoda H, Honda T, Yu M-L, Yoon EL, Jun DW, et al. Modified FIB-4 Index in Type 2 Diabetes Mellitus with Steatosis: A Non-Linear Predictive Model for Advanced Hepatic Fibrosis. Diagnostics. 2024; 14(22):2500. https://doi.org/10.3390/diagnostics14222500
Chicago/Turabian StyleKim, Jonghyun, Takanori Ito, Taeang Arai, Masanori Atsukawa, Miwa Kawanaka, Hidenori Toyoda, Takashi Honda, Ming-Lung Yu, Eileen L. Yoon, Dae Won Jun, and et al. 2024. "Modified FIB-4 Index in Type 2 Diabetes Mellitus with Steatosis: A Non-Linear Predictive Model for Advanced Hepatic Fibrosis" Diagnostics 14, no. 22: 2500. https://doi.org/10.3390/diagnostics14222500
APA StyleKim, J., Ito, T., Arai, T., Atsukawa, M., Kawanaka, M., Toyoda, H., Honda, T., Yu, M. -L., Yoon, E. L., Jun, D. W., Cha, K., & Nguyen, M. H. (2024). Modified FIB-4 Index in Type 2 Diabetes Mellitus with Steatosis: A Non-Linear Predictive Model for Advanced Hepatic Fibrosis. Diagnostics, 14(22), 2500. https://doi.org/10.3390/diagnostics14222500