Innovative Diagnostic Solutions in Hemostasis
Abstract
:1. Introduction to Hemostasis
2. When Hemostasis Fails—Anticoagulant and Procoagulant Therapy
3. When Hemostasis Is Challenged
4. A Brief Review of Past Innovative Diagnostic Solutions in Hemostasis
5. Contemporary Innovative Diagnostic Solutions in Hemostasis
5.1. INR Testing
5.2. Hemostasis Instrumentation
5.3. Clot Waveform Analysis
5.4. VWF Testing
5.5. Platelet Function Testing for Diagnostics
5.6. Platelet Function Testing for Monitoring of Anti-Platelet Therapy
5.7. Viscoelastic Testing
5.8. Other Global Assays of Hemostasis
5.9. Monitoring Hemophilia Treatment
5.10. Diagnosis of TTP and TTP Treatment Monitoring Innovations
5.11. Lupus Anticoagulant Testing
5.12. Anticoagulant Neutralizers
5.13. Harmonization and Standardization
6. Future Innovative Diagnostic Solutions in Hemostasis
6.1. Anticoagualant Neutralizers
6.2. Emerging Anticoagulants
6.3. Emerging Procoagulants
6.4. Emerging Diagnostic Advancements
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favaloro, E.J.; Gosselin, R.C.; Pasalic, L.; Lippi, G. Hemostasis and Thrombosis: An Overview Focusing on Associated Laboratory Testing to Diagnose and Help Manage Related Disorders. Methods Mol. Biol. 2023, 2663, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J. Evolution of Hemostasis Testing: A Personal Reflection Covering over 40 Years of History. Semin. Thromb. Hemost. 2024, 50, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Von Clauss, A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol. 1957, 17, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Duncan, E.; Rodgers, S. One-Stage Factor VIII Assays. Methods Mol. Biol. 2017, 1646, 247–263. [Google Scholar] [CrossRef]
- Dorgalaleh, A. The History of Factor XIII Deficiency. Semin. Thromb. Hemost. 2024, 50, 34–42. [Google Scholar] [CrossRef]
- Marlar, R.A. Laboratory Evaluation of Thrombophilia. Methods Mol. Biol. 2023, 2663, 177–201. [Google Scholar] [CrossRef] [PubMed]
- Lenting, P.J.; Denis, C.V.; Christophe, O.D. Von Willebrand factor: How unique structural adaptations support and coordinate its complex function. Blood 2024. [Google Scholar] [CrossRef]
- Al-Ghafry, M.; Abou-Ismail, M.Y.; Acharya, S.S. Inherited Disorders of the Fibrinolytic Pathway: Pathogenic Phenotypes and Diagnostic Considerations of Extremely Rare Disorders. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Tripodi, A. Hemostasis from Bench to Bedside: The History of Three Successful Stories of Translational Medicine. Semin. Thromb. Hemost. 2023, 49, 234–241. [Google Scholar] [CrossRef]
- Chandran, R.; Tohit, E.R.M.; Stanslas, J.; Salim, N.; Mahmood, T.M.T.; Rajagopal, M. Shifting Paradigms and Arising Concerns in Severe Hemophilia A Treatment. Semin. Thromb. Hemost. 2024, 50, 695–713. [Google Scholar] [CrossRef]
- Moser, M.M.; Schoergenhofer, C.; Jilma, B. Progress in von Willebrand Disease Treatment: Evolution towards Newer Therapies. Semin. Thromb. Hemost. 2024, 50, 720–732. [Google Scholar] [CrossRef]
- Connell, N.T.; Flood, V.H.; Brignardello-Petersen, R.; Abdul-Kadir, R.; Arapshian, A.; Couper, S.; Grow, J.M.; Kouides, P.; Laffan, M.; Lavin, M.; et al. ASH ISTH NHF WFH 2021 guidelines on the management of von Willebrand disease. Blood Adv. 2021, 5, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; de Vries, T.A.C.; Eikelboom, J.W.; Bhagirath, V.; Chan, N.C. Clinical Studies with Anticoagulants that Have Changed Clinical Practice. Semin. Thromb. Hemost. 2023, 49, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Van Gent, J.M.; Clements, T.W.; Cotton, B.A. Resuscitation and Care in the Trauma Bay. Surg. Clin. N. Am. 2024, 104, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Christoffel, J.; Maegele, M. Guidelines in trauma-related bleeding and coagulopathy: An update. Curr. Opin. Anaesthesiol. 2024, 37, 110–116. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Tukur, M.; Akaba, K. Impacts of COVID-19 on hemostasis: Coagulation abnormalities and management perspectives. Ann. Med. Surg. 2024, 86, 5844–5850. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Obeagu, G.U. Thromboinflammation in COVID-19: Unraveling the interplay of coagulation and inflammation. Medicine 2024, 103, e38922. [Google Scholar] [CrossRef]
- Devreese, K.M.J. COVID-19-related laboratory coagulation findings. Int. J. Lab. Hematol. 2021, 43 (Suppl. S1), 36–42. [Google Scholar] [CrossRef] [PubMed]
- Talasaz, A.H.; McGonagle, B.; HajiQasemi, M.; Ghelichkhan, Z.A.; Sadeghipour, P.; Rashedi, S.; Cuker, A.; Lech, T.; Goldhaber, S.Z.; Jennings, D.L.; et al. Pharmacokinetic and Pharmacodynamic Interactions between Food or Herbal Products and Oral Anticoagulants: Evidence Review, Practical Recommendations, and Knowledge Gaps. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Arnoldussen, I.A.C.; Witkamp, R.F. Effects of Nutrients on Platelet Function: A Modifiable Link between Metabolic Syndrome and Neurodegeneration? Biomolecules 2021, 11, 1455. [Google Scholar] [CrossRef]
- Violi, F.; Pastori, D.; Pignatelli, P.; Carnevale, R. Nutrition, Thrombosis, and Cardiovascular Disease. Circ. Res. 2020, 126, 1415–1442. [Google Scholar] [CrossRef]
- Fitzmaurice, D.A.; Geersing, G.J.; Armoiry, X.; Machin, S.; Kitchen, S.; Mackie, I. ICSH guidance for INR and D-dimer testing using point of care testing in primary care. Int. J. Lab. Hematol. 2023, 45, 276–281. [Google Scholar] [CrossRef]
- Adcock, D.M.; Moore, G.W.; Kershaw, G.W.; Montalvao, S.A.L.; Gosselin, R.C. International Council for Standardization in Haematology (ICSH) recommendations for the performance and interpretation of activated partial thromboplastin time and prothrombin time mixing tests. Int. J. Lab. Hematol. 2024, 46, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.; de Groot, P.G.; de Laat, B.; Erkan, D.; Favaloro, E.J.; Mackie, I.; Martinuzzo, M.; Ortel, T.L.; Pengo, V.; Rand, J.H.; et al. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis: Update of the guidelines for lupus anticoagulant detection and interpretation. J. Thromb. Haemost. 2020, 18, 2828–2839. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, S.; Duncan, E. Chromogenic Factor VIII Assays for Improved Diagnosis of Hemophilia A. Methods Mol. Biol. 2017, 1646, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Platton, S.; Baker, P.; Bowyer, A.; Keenan, C.; Lawrence, C.; Lester, W.; Riddell, A.; Sutherland, M. Guideline for laboratory diagnosis and monitoring of von Willebrand disease: A joint guideline from the United Kingdom Haemophilia Centre Doctors’ Organisation and the British Society for Haematology. Br. J. Haematol. 2024, 204, 1714–1731. [Google Scholar] [CrossRef]
- James, P.D.; Connell, N.T.; Ameer, B.; Di Paola, J.; Eikenboom, J.; Giraud, N.; Haberichter, S.; Jacobs-Pratt, V.; Konkle, B.; McLintock, C.; et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv. 2021, 5, 280–300. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. Laboratory diagnosis of von Willebrand disease in the age of the new guidelines: Considerations based on geography and resources. Res. Pract. Thromb. Haemost. 2023, 7, 102143. [Google Scholar] [CrossRef]
- Brown, J.E.; Bosak, J.O. An ELISA test for the binding of von Willebrand antigen to collagen. Thromb. Res. 1986, 43, 303–311. [Google Scholar] [CrossRef]
- Caron, C.; Mazurier, C.; Goudemand, J. Large experience with a factor VIII binding assay of plasma von Willebrand factor using commercial reagents. Br. J. Haematol. 2002, 117, 716–718. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Hamdam, S.; McDonald, J.; McVicker, W.; Ule, V. Time to think outside the box? Prothrombin time, international normalised ratio, international sensitivity index, mean normal prothrombin time and measurement of uncertainty: A novel approach to standardisation. Pathology 2008, 40, 277–287. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Procedures for Validation of INR and Local Calibration of PT/INR Systems; Approved Guideline; H54-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2005; Volume 25. [Google Scholar]
- Kirkwood, T.B. Calibration of reference thromboplastins and standardisation of the prothrombin time ratio. Thromb. Haemost. 1983, 49, 238–244. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Arunachalam, S.; Chapman, K.; Pasalic, L. Continued Harmonization of the International Normalized Ratio (INR) across a large laboratory network: Evidence of sustained low inter-laboratory variation and bias after a change in instrumentation. Am. J. Clin. Pathol. 2024, aqae090. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, P.I.; Letertre, L.; Juliusson, S.J.; Gudmundsdottir, B.R.; Francis, C.W.; Onundarson, P.T. During warfarin induction, the Fiix-prothrombin time reflects the anticoagulation level better than the standard prothrombin time. J. Thromb. Haemost. 2017, 15, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Onundarson, P.T.; Palsson, R.; Witt, D.M.; Gudmundsdottir, B.R. Replacement of traditional prothrombin time monitoring with the new Fiix prothrombin time increases the efficacy of warfarin without increasing bleeding. A review article. Thromb. J. 2021, 19, 72. [Google Scholar] [CrossRef]
- Austin, J.H.; Stearns, C.R.; Winkler, A.M.; Paciullo, C.A. Use of the chromogenic factor X assay in patients transitioning from argatroban to warfarin therapy. Pharmacotherapy 2012, 32, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Sanfelippo, M.J.; Zinsmaster, W.; Scherr, D.L.; Shaw, G.R. Use of chromogenic assay of factor X to accept or reject INR results in Warfarin treated patients. Clin. Med. Res. 2009, 7, 103–105. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Mohammed, S.; Vong, R.; Pasalic, L. Laboratory Testing for von Willebrand Disease Using a Composite Rapid 3-Test Chemiluminescence-Based von Willebrand Factor Assay Panel. Methods Mol. Biol. 2023, 2663, 647–667. [Google Scholar] [CrossRef]
- Pontis, A.; Delanoe, M.; Schilliger, N.; Carlo, A.; Guéret, P.; Nédélec-Gac, F.; Gouin-Thibault, I. A performance evaluation of sthemO 301 coagulation analyzer and associated reagents. J. Clin. Lab. Anal. 2023, 37, e24929. [Google Scholar] [CrossRef]
- Ng, C.L.; Uy, F.M.; Cheong, M.A.; Wong, W.H.; Lau, Y.H.; Ng, H.J.; Yeo, K.K.; Tan, C.W. Activated partial thromboplastin time-based clot waveform analysis: A potential for application in acute myocardial infarction and its complications. Sci. Rep. 2024, 14, 20917. [Google Scholar] [CrossRef]
- Kadu, A.; Shah, A.M.; Goswami, H. Clot waveform analysis of prolonged activated partial thromboplastin time in various disorders. Indian. J. Pathol. Microbiol. 2024. [Google Scholar] [CrossRef]
- Osuna, M.; Nakajima, Y.; Ogiwara, K.; Nogami, K. Changes in coagulation potential over time after administration of recombinant activated factor VII in an emicizumab-treated hemophilia A patient with inhibitors. Int. J. Hematol. 2024, 120, 639–644. [Google Scholar] [CrossRef]
- Wakui, M.; Fujimori, Y.; Ozaki, Y.; Oka, S.; Ziparo, M.; Osada, E.; Kondo, Y.; Nakagawa, T.; Nakamura, S.; Matsushita, H. Comparison of clot waveform analysis with or without adjustment between prothrombin time and activated partial thromboplastin time assays to assess in vitro effects of direct oral anticoagulants. Clin. Chim. Acta 2024, 562, 119887. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Shiraki, K.; Matsumoto, T.; Shimpo, H.; Sakano, Y.; Nishii, H.; Tamaki, S.; Suzuki, K.; Tawara, I.; Yamashita, Y.; et al. Evaluating Factor VIII Concentrates Using Clot Waveform Analysis. J. Clin. Med. 2024, 13, 3857. [Google Scholar] [CrossRef] [PubMed]
- Seidizadeh, O.; Peyvandi, F. Laboratory Testing for von Willebrand Factor Activity by a Glycoprotein Ib-Binding Assay (VWF:GPIbR): HemosIL von Willebrand Factor Ristocetin Cofactor Activity on ACL TOP®. Methods Mol. Biol. 2023, 2663, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Pasalic, L.; Curnow, J. Monitoring Therapy during Treatment of von Willebrand Disease. Semin. Thromb. Hemost. 2017, 43, 338–354. [Google Scholar] [CrossRef]
- Larsen, J.B.; Hvas, A.M.; Hojbjerg, J.A. Platelet Function Testing: Update and Future Directions. Semin. Thromb. Hemost. 2023, 49, 600–608. [Google Scholar] [CrossRef]
- Fritsma, G.A.; McGlasson, D.L. Whole Blood Platelet Aggregometry. Methods Mol. Biol. 2017, 1646, 333–347. [Google Scholar] [CrossRef]
- Sarkar, M.K.; Hinz, C. Assessment of Platelet Function by Automated Light Transmission Aggregometry. Methods Mol. Biol. 2023, 2663, 611–625. [Google Scholar] [CrossRef]
- Hsu, H.; Chan, M.V.; Armstrong, P.C.; Crescente, M.; Donikian, D.; Kondo, M.; Brighton, T.; Chen, V.; Chen, Q.; Connor, D.; et al. A pilot study assessing the implementation of 96-well plate-based aggregometry (Optimul) in Australia. Pathology 2022, 54, 746–754. [Google Scholar] [CrossRef]
- Chan, M.V.; Lordkipanidzé, M.; Warner, T.D. Assessment of Platelet Function by High-Throughput Screening Light Transmission Aggregometry: Optimul Assay. Methods Mol. Biol. 2023, 2663, 627–636. [Google Scholar] [CrossRef]
- Jourdi, G.; Ramström, S.; Sharma, R.; Bakchoul, T.; Lordkipanidzé, M.; FC-PFT in TP Study Group. Consensus report on flow cytometry for platelet function testing in thrombocytopenic patients: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2023, 21, 2941–2952. [Google Scholar] [CrossRef]
- Davidson, S. Monitoring of Antiplatelet Therapy. Methods Mol. Biol. 2023, 2663, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.K.; Heilmann, E.J.; Sio, R.; Garcia, C.; Davidson, R.M.; Ostgaard, R.A. Description of an in vitro platelet function analyzer-PFA-100™. Semin. Thromb. Hemost. 1995, 21 (Suppl. S2), 106–112. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Pasalic, L.; Lippi, G. Towards 50 years of platelet function analyser (PFA) testing. Clin. Chem. Lab. Med. 2023, 61, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Volod, O.; Runge, A. The TEG 6s System: System Description and Protocol for Measurements. Methods Mol. Biol. 2023, 2663, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Volod, O.; Runge, A. The TEG 5000 System: System Description and Protocol for Measurements. Methods Mol. Biol. 2023, 2663, 725–733. [Google Scholar] [CrossRef]
- Volod, O.; Runge, A. Measurement of Blood Viscoelasticity Using Thromboelastography. Methods Mol. Biol. 2023, 2663, 709–724. [Google Scholar] [CrossRef]
- Volod, O.; Viola, F. The Quantra System: System Description and Protocols for Measurements. Methods Mol. Biol. 2023, 2663, 743–761. [Google Scholar] [CrossRef]
- Volod, O.; Bunch, C.M.; Zackariya, N.; Moore, E.E.; Moore, H.B.; Kwaan, H.C.; Neal, M.D.; Al-Fadhl, M.D.; Patel, S.S.; Wiarda, G.; et al. Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices. J. Clin. Med. 2022, 11, 860. [Google Scholar] [CrossRef]
- Depasse, F.; Binder, N.B.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine. J. Thromb. Haemost. 2021, 19, 2907–2917. [Google Scholar] [CrossRef]
- Kanji, R.; Leader, J.; Memtsas, V.; Gorog, D.A. Measuring Thrombus Stability at High Shear, Together with Thrombus Formation and Endogenous Fibrinolysis: First Experience Using the Global Thrombosis Test 3 (GTT-3). Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231181917. [Google Scholar] [CrossRef]
- Chaireti, R.; Soutari, N.; Holmström, M.; Petrini, P.; Magnusson, M.; Ranta, S.; Pruner, I.; Antovic, J.P. Global Hemostatic Methods to Tailor Treatment With Bypassing Agents in Hemophilia A With Inhibitors- A Single-Center, Pilot Study. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241260053. [Google Scholar] [CrossRef] [PubMed]
- Antovic, A.; Svensson, E.; Lövström, B.; Illescas, V.B.; Nordin, A.; Börjesson, O.; Arnaud, L.; Bruchfeld, A.; Gunnarsson, I. Venous thromboembolism in anti-neutrophil cytoplasmic antibody-associated vasculitis: An underlying prothrombotic condition? Rheumatol. Adv. Pract. 2020, 4, rkaa056. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, O.A.; Duncan, E.M. Chromogenic Factor VIII Assay for Patients with Hemophilia A and on Emicizumab Therapy. Methods Mol. Biol. 2023, 2663, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, G.; Dix, C. Measuring Emicizumab Levels in the Hemostasis Laboratory. Methods Mol. Biol. 2023, 2663, 589–595. [Google Scholar] [CrossRef]
- Abraham, S.; Duncan, E.M. A Review of Factor VIII and Factor IX Assay Methods for Monitoring Extended Half-Life Products in Hemophilia A and B. Methods Mol. Biol. 2023, 2663, 569–588. [Google Scholar] [CrossRef]
- Kershaw, G. Strategies for Performing Factor Assays in the Presence of Emicizumab or Other Novel/Emerging Hemostatic Agents. Semin. Thromb. Hemost. 2024, 50, 1163–1172. [Google Scholar] [CrossRef]
- Pruthi, R.K.; Chen, D. The Use of Bypassing Treatment Strategies in Hemophilia and Their Effect on Laboratory Testing. Semin. Thromb. Hemost. 2023, 49, 651–660. [Google Scholar] [CrossRef]
- Bowyer, A.E.; Gosselin, R.C. Factor VIII and Factor IX Activity Measurements for Hemophilia Diagnosis and Related Treatments. Semin. Thromb. Hemost. 2023, 49, 609–620. [Google Scholar] [CrossRef]
- Woods, A.I.; Paiva, J.; Dos Santos, C.; Alberto, M.F.; Sánchez-Luceros, A. From the Discovery of ADAMTS13 to Current Understanding of Its Role in Health and Disease. Semin. Thromb. Hemost. 2023, 49, 284–294. [Google Scholar] [CrossRef]
- Moore, G.W.; Llusa, M.; Griffiths, M.; Binder, N.B. ADAMTS13 Activity Measurement by ELISA and Fluorescence Resonance Energy Transfer Assay. Methods Mol. Biol. 2023, 2663, 533–547. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Chapman, K.; Mohammed, S.; Vong, R.; Pasalic, L. Automated and Rapid ADAMTS13 Testing Using Chemiluminescence: Utility for Identification or Exclusion of TTP and Beyond. Methods Mol. Biol. 2023, 2663, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Subhan, M.O.; de Groot, R.; Vanhoorelbeke, K.; Zadvydaite, A.; Dragūnaitė, B.; Scully, M. ADAMTS13 activity testing: Evaluation of commercial platforms for diagnosis and monitoring of thrombotic thrombocytopenic purpura. Res. Pract. Thromb. Haemost. 2023, 7, 100108. [Google Scholar] [CrossRef] [PubMed]
- Irsara, C.; Anliker, M.; Egger, A.E.; Harasser, L.; Lhotta, K.; Feistritzer, C.; Griesmacher, A.; Loacker, L. Evaluation of two fully automated ADAMTS13 activity assays in comparison to manual FRET assay. Int. J. Lab. Hematol. 2023, 45, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Vetr, H.; Binder, N.B. ADAMTS13 Antibody and Inhibitor Assays. Methods Mol. Biol. 2023, 2663, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Jones, P.O.; Platton, S.; Hussain, N.; White, D.; Thomas, W.; Rigano, J.; Pouplard, C.; Gray, E.; Devreese, K.M.J. International multicenter, multiplatform study to validate Taipan snake venom time as a lupus anticoagulant screening test with ecarin time as the confirmatory test: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2021, 19, 3177–3192. [Google Scholar] [CrossRef]
- Moore, G.W. Lupus Anticoagulant Testing: Taipan Snake Venom Time with Ecarin Time as Confirmatory Test. Methods Mol. Biol. 2023, 2663, 263–274. [Google Scholar] [CrossRef]
- Ninivaggi, M.; de Laat-Kremers, R.; Tripodi, A.; Wahl, D.; Zuily, S.; Dargaud, Y.; Ten Cate, H.; Ignjatović, V.; Devreese, K.M.J.; de Laat, B. Recommendations for the measurement of thrombin generation: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2021, 19, 1372–1378. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. Lupus anticoagulant testing during anticoagulation, including direct oral anticoagulants. Res. Pract. Thromb. Haemost. 2022, 6, e12676. [Google Scholar] [CrossRef]
- Antihepca™-HRRS Heparin Resistant Recalcifying Solution. Available online: https://www.haematex.com/haematex-products/antihepca-hrrs (accessed on 6 October 2024).
- Frackiewicz, A.; Kalaska, B.; Miklosz, J.; Mogielnicki, A. The methods for removal of direct oral anticoagulants and heparins to improve the monitoring of hemostasis: A narrative literature review. Thromb. J. 2023, 21, 58. [Google Scholar] [CrossRef]
- Exner, T.; Michalopoulos, N.; Pearce, J.; Xavier, R.; Ahuja, M. Simple method for removing DOACs from plasma samples. Thromb. Res. 2018, 163, 117–122. [Google Scholar] [CrossRef]
- Exner, T.; Dangol, M.; Favaloro, E.J. Simplified method for removing DOAC interference in mechanical coagulation test systems—A proof of concept. J. Clin. Med. 2024, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Mohammed, S.; Vong, R.; Pasalic, L. Harmonization of Hemostasis Testing Across a Large Laboratory Network: An Example from Australia. Methods Mol. Biol. 2023, 2663, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Jennings, I.; Meijer, P.; Arunachalam, S.; Marlar, R.A.; Olson, J.D.; Zantek, N.D.; Bon, C.; Dean, E.; Hollestelle, M.J.; Meley, R.; et al. Comparison of Thrombophilia Assay Results for the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Plasma Standard from Different External Quality Assessment Providers-for the External Quality Assurance in Thrombosis and Haemostasis Group. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Reilly-Stitt, C.; Jennings, I.; Kitchen, S.; Makris, M.; Meijer, P.; de Maat, M.; Scully, M.; Bakchoul, T.; Walker, I.D. Anti-PF4 testing for vaccine-induced immune thrombocytopenia and thrombosis (VITT): Results from a NEQAS, ECAT and SSC collaborative exercise in 385 centers worldwide. J. Thromb. Haemost. 2022, 20, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Nolte, C.H. Factor XI inhibitors—Rising stars in anti-thrombotic therapy? J. Neurol. Sci. 2024, 464, 123157. [Google Scholar] [CrossRef]
- Connors, J.M. Factor XI inhibitors: A new class of anticoagulants. Blood Adv. 2024. [Google Scholar] [CrossRef]
- Nappi, F. P2Y12 Receptor Inhibitor for Antiaggregant Therapies: From Molecular Pathway to Clinical Application. Int. J. Mol. Sci. 2024, 25, 7575. [Google Scholar] [CrossRef]
- Harada, K.; Wenlong, W.; Shinozawa, T. Physiological platelet aggregation assay to mitigate drug-induced thrombocytopenia using a microphysiological system. Sci. Rep. 2024, 14, 14109. [Google Scholar] [CrossRef]
- Zhang, Y.; Ramasundara, S.Z.; Preketes-Tardiani, R.E.; Cheng, V.; Lu, H.; Ju, L.A. Emerging Microfluidic Approaches for Platelet Mechanobiology and Interplay with Circulatory Systems. Front. Cardiovasc. Med. 2021, 8, 766513. [Google Scholar] [CrossRef]
- Yoon, I.; Han, J.H.; Jeon, H.J. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules 2024, 14, 714. [Google Scholar] [CrossRef]
- Mangin, P.H.; Neeves, K.B.; Lam, W.A.; Cosemans, J.M.E.M.; Korin, N.; Kerrigan, S.W.; Panteleev, M.A.; Subcommittee on Biorheology. In vitro flow-based assay: From simple toward more sophisticated models for mimicking hemostasis and thrombosis. J. Thromb. Haemost. 2021, 19, 582–587. [Google Scholar] [CrossRef]
- Berger, J.S.; Cornwell, M.G.; Xia, Y.; Muller, M.A.; Smilowitz, N.R.; Newman, J.D.; Schlamp, F.; Rockman, C.B.; Ruggles, K.V.; Voora, D.; et al. A Platelet Reactivity ExpreSsion Score derived from patients with peripheral artery disease predicts cardiovascular risk. Nat. Commun. 2024, 15, 6902. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Bowers, K.A.; Reyes Gil, M. Machine learning in the coagulation and hemostasis arena: An overview and evaluation of methods, review of literature, and future directions. J. Thromb. Haemost. 2023, 21, 728–743. [Google Scholar] [CrossRef]
Test Abbreviation | Test | What the Test Measures | What the Test Is Used For | What Else Is the Test Sensitive to? |
---|---|---|---|---|
PT ** | Prothrombin time | Tissue factor (TF) (also called extrinsic) pathway plus common pathway | Assessment of factor deficiency (I, II, V, VII, X). Monitoring of VKAs (e.g., warfarin) therapy (typically as the INR), and screening for DIC | Various anticoagulants (e.g., UH in excess to heparin neutralizer capacity, DOACs) |
INR | International normalized ratio | Same as PT, but reflective of a normalized ratio | Used to monitor patients on VKA therapy | Same as PT |
APTT | Activated partial thromboplastin time | Contact factor (also called intrinsic) pathway plus common pathway | Assessment of factor deficiency (I, II, V, VIII, IX, X, XI, XII), monitoring of UH therapy, and screening for DIC | Various anticoagulants (e.g., DOACs, LMWH) |
TT | Thrombin Time | Measure of fibrinogen clotting activity | Screen for fibrinogen deficiency. Screen for UH and other anti-II agents (e.g., dabigatran) | Various anticoagulants (e.g., lepirudin, bivalirudin, LMWH) |
D-D | D-dimer | The fibrin degradation product called D-dimer | Screen for venous thrombosis (e.g., deep vein thrombosis [DVT]; pulmonary thrombosis [PE]). Screen for DIC | Depending on the antibody used in assay, potentially variously sensitive to other fibrin or fibrinogen degradation products |
Fib or FGN | Fibrinogen | Fibrinogen level (fibrinogen is the major coagulation protein) | Assessment of congenital or acquired fibrinogen deficiencies or abnormalities. Screen for DIC | Some assays may be affected by very high levels of some anticoagulants (e.g., UFH, dabigatran) |
Test Abbreviation | Test | What the Test Measures | What the Test Is Used For | What Else Is the Test Sensitive to? |
---|---|---|---|---|
AT | Antithrombin | Antithrombin level or activity | Quantitation of antithrombin activity | Depending on how the assay is performed (i.e., based on anti-FXa or anti-FIIa), it may be sensitive to various anticoagulants (e.g., DOACs). |
PC | Protein C | Protein C level or activity | Quantitation of Protein C activity | Clot-based assays may be affected by various anticoagulants, including DOACs and VKAs. |
PS | Protein S | Protein S level or activity | Quantitation of Protein S level or activity | Clot-based assays may be affected by various anticoagulants, including DOACs and VKAs. |
LA | Lupus anticoagulant | Presence or absence of LA | To exclude/identify LA for diagnosis of APS or as a cause of APTT prolongation | Various anticoagulants depending on assays/reagents employed. |
Anti-Xa or anti-FXa | Anti-factor Xa | Level of various anticoagulants depending on test set up | To quantify levels of UH, LMWH, direct and indirect anti-FXa agents (e.g., apixaban, rivaroxaban, edoxaban, fondaparinux) | Each ‘specific’ anti-FXa assay is variously sensitive to other anti-FXa agents. |
DTI or dTT | Direct thrombin inhibitor or dilute thrombin time | Level of various anticoagulants depending on test set up | To quantify levels of anti-FIIa agents (e.g., dabigatran) | Each ‘specific’ anti-FIIa assay potentially sensitive to other anti-FIIa agents. |
FII, FV, FVII, FVIII, FIX, FXI, and FXII | Factors II, V, VII, VIII, IX, XI, and XII | Level and activity of these clotting factors | To quantify these factor levels | All clot-based assays variably sensitive to various clinical anticoagulants. |
FXII | Factor XIII | Level and activity of FXIII | Quantitation of FXIII | May depend on the assay. |
VWF | von Willebrand factor | Level and activity of VWF | To quantify VWF and its various activities | Different functional assays tend to be ‘specific’ for a particular VWF activity. |
ADAMTS-13 | ADAMTS-13 | Level and activity of ADAMTS-13 | To quantify ADAMTS-13 activity | May depend on the assay. |
PFS | Platelet function studies | Platelet activity | To quality platelet activity or diagnose platelet dysfunction | Depends on the assay. |
Test Abbreviation | Test | What the Test Measures | What the Test Is Used For | How Is the Test Performed? |
---|---|---|---|---|
VWF:Ag | VWF antigen | Level of VWF | Quantitation of VWF level | Usually LIA or ELISA; sometimes CLIA |
RIPA | Ristocetin induced platelet agglutination/ aggregation | Activity of VWF binding to GPIb | Qualification of VWF GPIb binding activity | Platelet agglutination assay, usually on a platelet aggregometer |
VWF:RCo | VWF ristocetin cofactor | Activity of VWF binding to GPIb | Quantitation of VWF GPIb binding activity | Platelet agglutination assay, usually on an automated hemostasis analyzer, sometimes on a platelet aggregometer |
VWF:CB | VWF collagen binding | Activity of VWF binding to collagen (a matrix protein exposed by vascular damage) | Quantitation of VWF collagen binding activity | Usually ELISA; sometimes CLIA |
VWFpp | VWF propeptide | Level of VWF propeptide | To quantify VWF propeptide as a marker of VWF clearance | ELISA |
VWF:FVIIIB | VWF factor VIII binding | Activity of VWF binding to FVIII | Quantitation of VWF FVIII binding activity | ELISA |
VWF:GPIbR | VWF GPIb recombinant | Activity of VWF binding to recombinant GPIb | Quantitation of VWF GPIb binding activity | Usually latex agglutination assay on automated hemostasis analyzer; sometimes CLIA |
VWF:GPIbM | VWF GPIb (recombinant) mutant | Activity of VWF binding to recombinant mutated GPIb | Quantitation of VWF GPIb binding activity | Usually latex agglutination assay on automated hemostasis analyzer; sometimes ELISA |
Anti-FXa DOACs | Anti-FIIa DOACs (Dabigatran) | VKAs | Heparins (UH/LMWH) | ||
---|---|---|---|---|---|
Test/Parameter | Monitor or measure with: | Specific anti-FXa assays | Specific anti-FIIa assay (e.g., direct thrombin inhibitor [DTI) assay. Ecarin-based assays | PT/INR | APTT, anti-FXa assay |
Neutralize with: | Activated charcoal (e.g., DOAC-Stop) | Activated charcoal (e.g., DOAC-Stop) | - (mixing studies) | polybrene, hepzyme | |
PT/INR depends on: | -/↑/↑↑ DOAC, [DOAC], reagent | -/↑ [DOAC], reagent | ↑/↑↑/↑↑↑ [VKA], reagent | -/↑ heparin type, [heparin], presence of neutralizers | |
APTT depends on: | -/↑ DOAC, [DOAC], reagent | ↑/↑↑ [DOAC], reagent | ↑/↑↑ [VKA], reagent | ↑/↑↑/↑↑↑ heparin type, [heparin], reagent | |
TT depends on: | - | ↑↑↑ | - | ↑/↑↑/↑↑↑ heparin type, [heparin], reagent | |
D-D | - | - | - | - | |
Fib depends on: | -/↓ [DOAC], reagent | -/↓ [DOAC], reagent | - | -/↓ heparin type, [heparin], reagent | |
Anti-FXa assays depend on: | ↑/↑↑/↑↑↑ [DOAC] | - | - | ↑/↑↑/↑↑↑ [heparin] | |
Factor assays depend on: | ↓/↓↓ [DOAC] | ↓/↓↓ [DOAC] | ↓/↓↓ Factor type, [VKA] | -(/↓) heparin type, [heparin] | |
PC and PS depend on: | -/↑ [DOAC], reagent | -/↑ [DOAC], reagent | ↓/↓↓ [VKA] | -(/↓) heparin type, [heparin], reagent | |
AT depends on: | -/↑ [DOAC], reagent | -/↑ [DOAC], reagent | - | -/↓ heparin type, [heparin], reagent | |
APCR depends on: | -/↑ [DOAC], reagent | -/↑ [DOAC], reagent | -/↑ [VKA], reagent | -/↑ heparin type, [heparin], reagent | |
LA depends on: | -/↓/↑/↑↑ DOAC type/[DOAC], reagent | ↑/↑↑ [DOAC], reagent | -/↓/↑/↑↑ [VKA], reagent | -/↑ heparin type, [heparin], reagent, presence of heparin neutralizers | |
VWF, platelet function | - | - | - | - | |
TGA depends on: | ↓/↓↓/↓↓↓ DOAC type/[DOAC], reagent | ↓/↓↓/↓↓↓ [DOAC], reagent | ↓/↓↓/↓↓↓ [VKA], reagent | ↓/↓↓/↓↓↓ heparin type, [heparin], reagent | |
VEA | ↑/↑↑ [DOAC], reagent, system | ↑/↑↑ [DOAC], reagent, system | -/↑ [VKA], reagent, system | -/↑ heparin type, [heparin], reagent, system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favaloro, E.J.; Pasalic, L. Innovative Diagnostic Solutions in Hemostasis. Diagnostics 2024, 14, 2521. https://doi.org/10.3390/diagnostics14222521
Favaloro EJ, Pasalic L. Innovative Diagnostic Solutions in Hemostasis. Diagnostics. 2024; 14(22):2521. https://doi.org/10.3390/diagnostics14222521
Chicago/Turabian StyleFavaloro, Emmanuel J., and Leonardo Pasalic. 2024. "Innovative Diagnostic Solutions in Hemostasis" Diagnostics 14, no. 22: 2521. https://doi.org/10.3390/diagnostics14222521
APA StyleFavaloro, E. J., & Pasalic, L. (2024). Innovative Diagnostic Solutions in Hemostasis. Diagnostics, 14(22), 2521. https://doi.org/10.3390/diagnostics14222521