Comparative Analysis of 3D Cephalometry Provided with Artificial Intelligence and Manual Tracing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. 3D Cephalometric Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, M.; Chai, Y.; Chai, G.; Zheng, X. Fully automatic robot-assisted surgery for mandibular angle split osteotomy. J. Craniofac. Surg. 2020, 31, 336–339. [Google Scholar] [CrossRef]
- Rahimy, E.; Wilson, J.; Tsao, T.; Schwartz, S.; Hubschman, J.-P. Robot-assisted intraocular surgery: Development of the IRISS and feasibility studies in an animal model. Eye 2013, 27, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Galvez, J.M.; Herrera, L.J.; Rojas, F.; Valenzuela, O.; Caba, O.; Prados, J.; Rojas, I. Leukemia multiclass assessment and classification from microarray and RNA-seq technologies integration at gene expression level. PLoS ONE 2019, 14, e0212127. [Google Scholar] [CrossRef] [PubMed]
- Orhan, K.; Belgin, C.A.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Önder, M.; Ezhov, M.; Shamshiev, M.; et al. Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs. Imaging Sci. Dent. 2023, 53, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Urbanová, W.; Novák, B.; Czako, L.; Siebert, T.; Stano, P.; Mareková, S.; Fountoulaki, G.; Kosnáčová, H.; Varga, I. Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare 2022, 10, 1269. [Google Scholar] [CrossRef]
- Ezhov, M.; Gusarev, M.; Golitsyna, M.; Yates, J.M.; Kushnerev, E.; Tamimi, D.; Aksoy, S.; Shumilov, E.; Sanders, A.; Orhan, K. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 2021, 11, 15006. [Google Scholar] [CrossRef]
- Orhan, K.; Shamshiev, M.; Ezhov, M.; Plaksin, A.; Kurbanova, A.; Ünsal, G.; Gusarev, M.; Golitsyna, M.; Aksoy, S.; Mısırlı, M.; et al. AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients. Sci. Rep. 2022, 12, 11863. [Google Scholar] [CrossRef]
- Urban, R.; Haluzová, S.; Strunga, M.; Surovková, J.; Lifková, M.; Tomášik, J.; Thurzo, A. AI-assisted CBCT data management in modern dental practice: Benefits, limitations and innovations. Electronics 2023, 12, 1710. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, L.; Zhang, S.; Zhao, J.; Gu, Y. Deep learning based dental implant failure prediction from periapical and panoramic films. Quant. Imaging Med. Surg. 2023, 13, 935–945. [Google Scholar] [CrossRef]
- Mureșanu, S.; Almășan, O.; Hedeșiu, M.; Dioșan, L.; Dinu, C.; Jacobs, R. Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: A systematic review. Oral Radiol. 2023, 39, 18–40. [Google Scholar] [CrossRef]
- Hwang, H.-W.; Moon, J.-H.; Kim, M.-G.; Donatelli, R.E.; Lee, S.-J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021, 91, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.G.; Palomo, J.M.; Valiathan, M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Farronato, G.; Salvadori, S.; Nolet, F.; Zoia, A.; Farronato, D. Assessment of inter- and intra-operator cephalometric tracings on cone beam CT radiographs: Comparison of the precision of the cone beam CT versus the latero-lateral radiograph tracing. Prog. Orthod. 2014, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Sotsuka, Y.; Kawai, K.; Ishise, H.; Kakibuchi, M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J. Craniofac. Surg. 2019, 30, 91–95. [Google Scholar] [CrossRef]
- Wang, C.W.; Huang, C.T.; Hsieh, M.C.; Li, C.H.; Chang, S.W.; Li, W.C.; Vandaele, R.; Marée, R.; Jodogne, S.; Geurts, P.; et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: A grand challenge. IEEE Trans. Med. Imaging 2015, 34, 1890–1900. [Google Scholar] [CrossRef]
- Arik, S.O.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 2017, 4, 14501. [Google Scholar] [CrossRef]
- Serafin, M.; Baldini, B.; Cabitza, F.; Carrafiello, G.; Baselli, G.; Del Fabbro, M.; Sforza, C.; Caprioglio, A.; Tartaglia, G.M. Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: Systematic review and meta-analysis. Radiol. Med. 2023, 128, 544–555. [Google Scholar] [CrossRef]
- Zamora, N.; Llamas, J.M.; Cibrián, R.; Gandia, J.L.; Paredes, V. A study on the reproducibility of cephalometric landmarks when undertaking a three-dimensional (3D) cephalometric analysis. Med. Oral Patol. Oral Cir. Bucal. 2012, 17, e678–e688. [Google Scholar] [CrossRef]
- Phulari, B. An Atlas on Cephalometric Landmarks; JP Medical Ltd.: London, UK, 2013. [Google Scholar]
- Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge. In Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada, 14 September 2017; pp. 287–297. [Google Scholar]
- Gazimagomedova, A.S.; Vardanyan, M.A.; Drobysheva, N.S. Comparative evaluation of methods for determining the width of the upper jaw in growing patients. Endod. Today 2023, 21, 231–237. (In Russian) [Google Scholar] [CrossRef]
- Sam, A.; Currie, K.; Oh, H.; Flores-Mir, C.; Lagravére-Vich, M. Reliability of different three-dimensional cephalometric landmarks in cone-beam computed tomography: A systematic review. Angle Orthod. 2019, 89, 317–332. [Google Scholar] [CrossRef]
- Zemouri, R.; Zerhouni, N.; Racoceanu, D. Deep learning in the biomedical applications: Recent and future status. Appl. Sci. 2019, 9, 1526. [Google Scholar] [CrossRef]
- Alsubai, S. A critical review on the 3D cephalometric analysis using machine learning. Computers 2022, 11, 154. [Google Scholar] [CrossRef]
- Das, B.R.; Jain, P.; Modi, N.; Soni, P.; Datta, D.; De, A. SNA and SNB measurements: A comparative assessment between measurements in conventional 2D cephalogram and 3D cone-beam computed tomography-generated values. Int. J. Oral Care Res. 2021, 9, 71–75. [Google Scholar] [CrossRef]
- Bazan, A.A.; Drobysheva, N.S. A clinical example of the treatment of a patient using a hybrid device for rapid palatal expansion. Endod Today 2024, 22, 66–73. (In Russian) [Google Scholar] [CrossRef]
- Ariwa, M.; Koizumi, S.; Yamaguchi, T. Factors influencing the differences between three-dimensional measurement with cephalometric analysis and cone-beam computed tomography. J. Kanagawa Shigaku 2022, 57, 98–103. [Google Scholar]
- Maspero, C.; Abate, A.; Bellincioni, F.; Cavagnetto, D.; Lanteri, V.; Costa, A.; Farronato, M. Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: A pilot study in adults. Prog. Orthod. 2019, 20, 40. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, S.; Fan, X.; You, Y.; Ye, G.; Zhou, N. A meta-analysis and systematic review comparing the effectiveness of traditional and virtual surgical planning for orthognathic surgery: Based on randomized clinical trials. J. Oral Maxillofac. Surg. 2021, 79, 471.e1–471.e19. [Google Scholar] [CrossRef] [PubMed]
- Akhare, P.J.; Dagab, A.M.; Alle, R.S.; Shenoyd, U.; Garla, V. Comparison of landmark identification and linear and angular measurements in conventional and digital cephalometry. Int. J. Comput. Dent. 2013, 16, 241–254. [Google Scholar]
- Zamrik, O.M.; Iseri, H. The reliability and reproducibility of an Android cephalometric smartphone application in comparison with the conventional method. Angle Orthod. 2021, 91, 236–242. [Google Scholar] [CrossRef]
- Smołka, P.; Nelke, K.; Struzik, N.; Wiśniewska, K.; Kiryk, S.; Kensy, J.; Dobrzyński, W.; Kiryk, J.; Matys, J.; Dobrzyński, M. Discrepancies in cephalometric analysis results between orthodontists and radiologists and artificial intelligence: A systematic review. Appl. Sci. 2024, 14, 4972. [Google Scholar] [CrossRef]
- Valletta, R.; Rongo, R.; Pango Madariaga, A.C.; Baiano, R.; Spagnuolo, G.; D’Antò, V. Relationship between the condylion-gonion-menton angle and dentoalveolar heights. Int. J. Environ. Res. Public Health 2020, 17, 3309. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, M.A.; Kondylidou-Sidira, A.C.; Papadopoulos, M.A.; Athanasiou, A.E. Are orthodontic landmarks and variables in digital cephalometric radiography taken in fixed and natural head positions reliable? Int. Orthod. 2020, 18, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Titiz, I.; Laubinger, M.; Keller, T.; Hertrich, K.; Hirschfelder, U. Repeatability and reproducibility of landmarks: A three-dimensional computed tomography study. Eur. J. Orthod. 2012, 34, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Nasti, S.; Khan, A.; Srivastava, T.; Nalini, M.; Ahmed, Z.; Tiwari, H. Advancing dental diagnostics: The significance of cone-beam computed tomography (CBCT) in modern dentistry. IP Int. J. Maxillofac. Imaging 2023, 9, 182–185. [Google Scholar] [CrossRef]
- Orhan, K.; Bayrakdar, I.S.; Ezhov, M.; Kravtsov, A.; Özyürek, T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020, 53, 680–689. [Google Scholar] [CrossRef]
- Orhan, K.; Bilgir, E.; Bayrakdar, I.S.; Ezhov, M.; Gusarev, M.; Shumilov, E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 333–337. [Google Scholar] [CrossRef]
- Kurt Bayrakdar, S.; Orhan, K.; Bayrakdar, I.S.; Bilgir, E.; Ezhov, M.; Gusarev, M.; Shumilov, E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med. Imaging 2021, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Kissel, P.; Mah, J.K.; Bumann, A. Modern 3D cephalometry in pediatric orthodontics: Downsizing the FOV and development of a new 3D cephalometric analysis within a minimized large FOV for dose reduction. Clin. Oral Investig. 2021, 25, 4651–4670. [Google Scholar] [CrossRef]
- Antonini, F.; Borba, A.M.; Pagnoncelli, R.M.; Han, M.; Markiewicz, M.R.; Miloro, M. Does a learning curve exist for accuracy in three-dimensional planning for maxillary positioning in bimaxillary orthognathic surgery? Int. J. Oral Maxillofac. Surg. 2020, 49, 787–793. [Google Scholar] [CrossRef]
- de Oro, J.E.C.G.; Koch, P.J.; Krois, J.; Ros, A.G.C.; Patel, J.; Meyer-Lueckel, H.; Schwendicke, F. Hyperparameter tuning and automatic image augmentation for deep learning-based angle classification on intraoral photographs: A retrospective study. Diagnostics 2022, 12, 1526. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martin, M.; Le Clainche, S.; Carro, B. Model-free short-term fluid dynamics estimator with a deep 3D-convolutional neural network. Expert Syst. Appl. 2021, 177, 114924. [Google Scholar] [CrossRef]
Variable | Norm | SD |
---|---|---|
Mandibular plane to SN | 32° | 2 |
Mandibular plane to FH | 9° | 4 |
Gonial angle right | 130° | 7 |
Gonial angle left | 130° | 7 |
Wits | 0 mm | 1 |
SNA | 82° | 2 |
SNB | 80° | 2 |
ANB | 2° | 2 |
Overjet | 3 mm | 1 |
Overbite | 3 mm | 1 |
Upper incisor U1-SN R | 105° | 2 |
Upper incisor U1-SN L | 105° | 2 |
Lower incisor L1-MP R | 90° | 5 |
Lower incisor L1-MP L | 90° | 5 |
Interincisal angle U1-L1(R) | 130° | 6 |
Interincisal angle U1-L1(L) | 130° | 6 |
Variable | Method | Difference | LCL | UCL | p |
---|---|---|---|---|---|
Mandibular plane to SN | parametric | −1.36 | −3.42 | 0.69 | 0.186 |
Mandibular plane to FH | non-parametric | −0.42 | −1.47 | 0.60 | 0.411 |
Gonial angle right | parametric | −7.29 | −9.82 | −4.77 | <0.001 * |
Gonial angle left | parametric | −7.07 | −9.27 | −4.87 | <0.001 * |
Wits right | non-parametric | 0.15 | −0.48 | 0.70 | 0.648 |
SNA | parametric | −0.43 | −0.72 | −0.13 | 0.006 * |
SNB | parametric | −0.55 | −0.87 | −0.23 | 0.001 * |
ANB | non-parametric | 0.08 | −0.09 | 0.25 | 0.347 |
Overjet | non-parametric | 0.01 | −0.27 | 0.34 | 0.945 |
Overbite | parametric | −0.25 | −0.57 | 0.07 | 0.126 |
Upper incisor U1-SN R | non-parametric | −0.49 | −1.91 | 0.69 | 0.447 |
Upper incisor U1-SN L | non-parametric | −1.92 | −2.88 | −0.90 | 0.001 * |
Lower incisor L1-MP R | parametric | 2.77 | 0.03 | 5.51 | 0.048 * |
Lower incisor L1-MP L | parametric | −0.56 | −2.96 | 1.84 | 0.637 |
Interincisal angle U1-L1(R) | parametric | −0.56 | −2.30 | 1.19 | 0.519 |
Interincisal angle U1-L1(L) | parametric | 2.82 | 0.97 | 4.67 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabadze, Z.; Mordanov, O.; Shilyaeva, E. Comparative Analysis of 3D Cephalometry Provided with Artificial Intelligence and Manual Tracing. Diagnostics 2024, 14, 2524. https://doi.org/10.3390/diagnostics14222524
Khabadze Z, Mordanov O, Shilyaeva E. Comparative Analysis of 3D Cephalometry Provided with Artificial Intelligence and Manual Tracing. Diagnostics. 2024; 14(22):2524. https://doi.org/10.3390/diagnostics14222524
Chicago/Turabian StyleKhabadze, Zurab, Oleg Mordanov, and Ekaterina Shilyaeva. 2024. "Comparative Analysis of 3D Cephalometry Provided with Artificial Intelligence and Manual Tracing" Diagnostics 14, no. 22: 2524. https://doi.org/10.3390/diagnostics14222524
APA StyleKhabadze, Z., Mordanov, O., & Shilyaeva, E. (2024). Comparative Analysis of 3D Cephalometry Provided with Artificial Intelligence and Manual Tracing. Diagnostics, 14(22), 2524. https://doi.org/10.3390/diagnostics14222524