Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Datasets
2.2. 18F-FDG PET/CT Analysis
2.3. PET Radiomics
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. CT Analysis Using Hounsfield Units
3.3. 18F-FDG PET Standardized Uptake Value
3.4. 18F-FDG PET Radiomics and Machine Learning Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. New antibiotics, bleomycin A and B. J. Antibiot. 1966, 19, 200–209. [Google Scholar]
- Yagoda, A.; Mukherji, B.; Young, C.; Etcubanas, E.; Lamonte, C.; Smith, J.R.; Tan, C.T.; Krakoff, I.H. Bleomycin, an antitumor antibiotic. Clinical experience in 274 patients. Ann. Intern. Med. 1972, 77, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Akaza, H. Bleomycin-induced pulmonary toxicity in chemotherapy for testicular cancer. Expert Opin. Drug Saf. 2003, 2, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Azambuja, E.; Fleck, J.F.; Batista, R.G.; Menna Barreto, S.S. Bleomycin lung toxicity: Who are the patients with increased risk? Pulm. Pharmacol. Ther. 2005, 18, 363–366. [Google Scholar] [CrossRef]
- Hay, J.; Shahzeidi, S.; Laurent, G. Mechanisms of bleomycin-induced lung damage. Arch. Toxicol. 1991, 65, 81–94. [Google Scholar] [CrossRef]
- Chianese, M.; Screm, G.; Salton, F.; Confalonieri, P.; Trotta, L.; Barbieri, M.; Ruggero, L.; Mari, M.; Reccardini, N.; Geri, P.; et al. Pirfenidone and Nintedanib in Pulmonary Fibrosis: Lights and Shadows. Pharmaceuticals 2024, 17, 709. [Google Scholar] [CrossRef]
- Man, R.K.; Gogikar, A.; Nanda, A.; Janga, L.S.N.; Sambe, H.G.; Yasir, M.; Ramphall, S. A Comparison of the Effectiveness of Nintedanib and Pirfenidone in Treating Idiopathic Pulmonary Fibrosis: A Systematic Review. Cureus 2024, 16, e54268. [Google Scholar] [CrossRef]
- Padley, S.P.; Adler, B.; Hansell, D.M.; Muller, N.L. High-resolution computed tomography of drug-induced lung disease. Clin. Radiol. 1992, 46, 232–236. [Google Scholar] [CrossRef]
- Schwaiblmair, M.; Behr, W.; Haeckel, T.; Markl, B.; Foerg, W.; Berghaus, T. Drug induced interstitial lung disease. Open Respir. Med. J. 2012, 6, 63–74. [Google Scholar] [CrossRef]
- Buchler, T.; Bomanji, J.; Lee, S.M. FDG-PET in bleomycin-induced pneumonitis following ABVD chemotherapy for Hodgkin’s disease—A useful tool for monitoring pulmonary toxicity and disease activity. Haematologica 2007, 92, e120–e121. [Google Scholar] [CrossRef]
- Batra, S.; Vaid, A.K.; Bhargava, R.; Gupta, S. Lungs on fire. BMJ Case Rep. 2013, 2013, 010388. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Demura, Y.; Mizuno, S.; Ameshima, S.; Ishizaki, T.; Okazawa, H. FDG positron emission tomography imaging of drug-induced pneumonitis. Ann. Nucl. Med. 2008, 22, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Paschali, A.N.; Gnanasegaran, G.; Cook, G.J. FDG PET-CT: Need for Vigilance in Patients Treated with Bleomycin. Indian J. Nucl. Med. 2017, 32, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Von Rohr, L.; Klaeser, B.; Joerger, M.; Kluckert, T.; Cerny, T.; Gillessen, S. Increased pulmonary FDG uptake in bleomycin-associated pneumonitis. Onkologie 2007, 30, 320–323. [Google Scholar] [CrossRef]
- Exarchos, K.P.; Gkrepi, G.; Kostikas, K.; Gogali, A. Recent Advances of Artificial Intelligence Applications in Interstitial Lung Diseases. Diagnostics 2023, 13, 2303. [Google Scholar] [CrossRef]
- Beyhan Sagmen, S.; Comert, S.; Turan Erkek, E.; Küçüköz Uzun, A.; Doğan, C.; Yılmaz, G.; Kiral, N.; Fidan, A.; Yilmaz Haksal, C.; Torun Parmaksız, E. Can we predict bleomycin toxicity with PET-CT? Haematologica 2019, 142, 171–175. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Alderuccio, J.P.; Kuker, R.A.; Yang, F.; Moskowitz, C.H. Quantitative PET-based biomarkers in lymphoma: Getting ready for primetime. Nat. Rev. Clin. Oncol. 2023, 20, 640–657. [Google Scholar] [CrossRef]
- Toyama, Y.; Hotta, M.; Motoi, F.; Takanami, K.; Minamimoto, R.; Takase, K. Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Sci. Rep. 2020, 10, 17024. [Google Scholar] [CrossRef]
- Lugtenburg, P.J.; de Nully Brown, P.; van der Holt, B.; D’Amore, F.A.; Koene, H.R.; de Jongh, E.; Fijnheer, R.; van Esser, J.W.; Bohmer, L.H.; Pruijt, J.F.; et al. Rituximab-CHOP With Early Rituximab Intensification for Diffuse Large B-Cell Lymphoma: A Randomized Phase III Trial of the HOVON and the Nordic Lymphoma Group (HOVON-84). J. Clin. Oncol. 2020, 38, 3377–3387. [Google Scholar] [CrossRef]
- Boellaard, R.; O’Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R. Quantitative oncology molecular analysis suite: ACCURATE. J. Nucl. Med. 2018, 59, 1753. [Google Scholar]
- Pfaehler, E.; Zwanenburg, A.; de Jong, J.R.; Boellaard, R. RaCaT: An open source and easy to use radiomics calculator tool. PLoS ONE 2019, 14, e0212223. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Ypsilantis, P.P.; Siddique, M.; Sohn, H.M.; Davies, A.; Cook, G.; Goh, V.; Montana, G. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS ONE 2015, 10, e0137036. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
Characteristics | HL with DIILD (n = 10) | HL Without DIILD (n = 8) | DLBCL (n = 5) |
---|---|---|---|
Gender (F/M), number | 3/7 | 5/3 | 2/3 |
Age (years), mean (range) | 48.4 (23–69) | 31.8 (18–46) | 57.8 (30–68) |
Injected dose (MBq), mean (SD) | |||
Baseline | 190.8 (27.6) | 274.2 (72.8) | 233.3 (57.6) |
Interim | 195.4 (38.2) | 268.3 (52.1) | 243.6 (34.6) |
Weight (kg), mean (SD) | |||
Baseline | 66.7 (11.2) | 78.8 (17.5) | 73.8 (11.5) |
Interim | 66.3 (11.3) | 78.9 (14.8) | 70.6 (10.2) |
Uptake time (min), mean (range) | |||
Baseline | 70.8 (50–107) | 66.3 (26–120) | 68.7 (64–102) |
Interim | 71.9 (50–104) | 68.7 (49–94) | 65.2 (59–82) |
Interval scans (week), mean (range) | 22.6 (13–39) | 13.8 (8–21) | 10.2 (7–20) |
Feature | Mean Decrease in Gini Index (Interim) | Mean Decrease in Gini Index (Baseline) |
---|---|---|
Zone distance entropy | 0.287 | 1.373 |
Texture strength | 2.703 | 1.351 |
SUVmean | 0.412 | 1.049 |
Volume | 0.797 | 0.971 |
D max Bulk | 0.715 | 0.844 |
Elongation | 0.566 | 0.730 |
Coarseness | 0.822 | 0.726 |
Coefficient of variation | 0.488 | 0.603 |
Small zone emphasis | 1.341 | 0.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, C.L.C.; Zwezerijnen, G.J.C.; Wiegers, S.E.; Jauw, Y.W.S.; Lugtenburg, P.J.; Zijlstra, J.M.; Yaqub, M.; Boellaard, R. Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease. Diagnostics 2024, 14, 2531. https://doi.org/10.3390/diagnostics14222531
Smith CLC, Zwezerijnen GJC, Wiegers SE, Jauw YWS, Lugtenburg PJ, Zijlstra JM, Yaqub M, Boellaard R. Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease. Diagnostics. 2024; 14(22):2531. https://doi.org/10.3390/diagnostics14222531
Chicago/Turabian StyleSmith, Charlotte L. C., Gerben J. C. Zwezerijnen, Sanne E. Wiegers, Yvonne W. S. Jauw, Pieternella J. Lugtenburg, Josée M. Zijlstra, Maqsood Yaqub, and Ronald Boellaard. 2024. "Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease" Diagnostics 14, no. 22: 2531. https://doi.org/10.3390/diagnostics14222531
APA StyleSmith, C. L. C., Zwezerijnen, G. J. C., Wiegers, S. E., Jauw, Y. W. S., Lugtenburg, P. J., Zijlstra, J. M., Yaqub, M., & Boellaard, R. (2024). Feasibility of Using 18F-FDG PET/CT Radiomics and Machine Learning to Detect Drug-Induced Interstitial Lung Disease. Diagnostics, 14(22), 2531. https://doi.org/10.3390/diagnostics14222531