A New Laboratory Tool for COVID-19 Severity Prediction, CENIL Score
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.-W.; Zhang, D.; Tian, R.-H.; Li, Y.; Wang, Y.-S.; Cao, J.; Tang, Y.; Zhang, N.; Zan, T.; Gao, L.; et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel? Clin. Chim. Acta 2020, 508, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2002, 395, 1054–1062. [Google Scholar] [CrossRef]
- Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 pandemic—A focused review for clinicians. Clin. Microbiol. Infect. 2020, 26, 842–847. [Google Scholar] [CrossRef]
- Ingraham, N.E.; Lotfi-Emran, S.; Thielen, B.K.; Techar, K.; Morris, R.S.; Holtan, S.G.; Dudley, R.A.; Tignanelli, C.J. Immunomodulation in COVID-19. Lancet Respir. Med. 2020, 8, 544–546. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef]
- Zhou, R.; Li, F.; Chen, F.; Liu, H.; Zheng, J.; Lei, C.; Wu, X. Viral dynamics in asymptomatic patients with COVID-19. Int. J. Infect. Dis. 2020, 96, 288–290. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B.; et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020, 50, 332–334. [Google Scholar] [CrossRef]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.-V.; Zaki, N. Prediction of COVID-19 severity using laboratory findings on admission: Informative values, thresholds, ML model performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020. World Health Organization. 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf (accessed on 20 June 2024).
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory biomarkers for diagnosis and prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef]
- Birlutiu, V.; Neamtu, B.; Birlutiu, R.-M. Identification of Factors Associated with Mortality in the Elderly Population with SARS-CoV-2 Infection: Results from a Longitudinal Observational Study from Romania. Pharmaceuticals 2024, 17, 202. [Google Scholar] [CrossRef]
- Skakun, O.; Vandzhura, Y.; Vandzhura, I.; Symchych, K.; Symchych, A. Biomarkers for unfavourable outcomes prediction in COVID-19 patients: A narrative review. J. Emerg. Crit. Care Med. 2024, 8, 23. [Google Scholar] [CrossRef]
- Salton, F.; Confalonieri, P.; Campisciano, G.; Cifaldi, R.; Rizzardi, C.; Generali, D.; Pozzan, R.; Tavano, S.; Bozzi, C.; Lapadula, G.; et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022, 11, 2951. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M. Eosinophil count in severe coronavirus disease 2019. Qjm: Int. J. Med. 2020, 113, 511–512. [Google Scholar] [CrossRef] [PubMed]
- Agresti, N.; Lalezari, J.P.; Amodeo, P.P.; Mody, K.; Mosher, S.F.; Seethamraju, H.; Kelly, S.A.; Pourhassan, N.Z.; Sudduth, C.D.; Bovinet, C.; et al. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. J. Transl. Autoimmun. 2021, 4, 100083. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med. 2020, 14, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef]
- Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.; Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [Google Scholar] [CrossRef]
- Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef]
- Zhu, J.; Pang, J.; Ji, P.; Zhong, Z.; Li, H.; Li, B.; Zhang, J. Elevated interleukin-6 is associated with severity of COVID-19: A meta-analysis. J. Med Virol. 2021, 93, 35. [Google Scholar] [CrossRef]
- Zhu, J.; Pang, J.; Ji, P.; Zhong, Z.; Li, H.; Li, B.; Zhang, J. Interleukin-6 in COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2020, 93, 35–37. [Google Scholar] [CrossRef]
- Macchia, I.; La Sorsa, V.; Urbani, F.; Moretti, S.; Antonucci, C.; Afferni, C.; Schiavoni, G. Eosinophils as potential biomarkers in respiratory viral infections. Front. Immunol. 2023, 14, 1170035. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, S.; Feng, Y.; Wu, W.; Chang, C.; Chen, S.; Zhen, G.; Yi, L. Decreased eosinophil counts and elevated lactate dehydrogenase predict severe COVID-19 in patients with underlying chronic airway diseases. Postgrad. Med. J. 2021, 98, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Cauchois, R.; Pietri, L.; Dalmas, J.-B.; Koubi, M.; Capron, T.; Cassir, N.; Potere, N.; Polidoro, I.; Jean, R.; Jarrot, P.-A.; et al. Eosinopenia as Predictor of Poor Outcome in Hospitalized COVID-19 Adult Patients from Waves 1 and 2 of 2020 Pandemic. Microorganisms 2022, 10, 2423. [Google Scholar] [CrossRef]
- Koc, I.; Ozmen, S.U. Eosinophil levels, neutrophil-lymphocyte ratio, and platelet-lymphocyte ratio in the cytokine storm period of patients with COVID-19. Int. J. Clin. Pract. 2022, 2022, 7450739. [Google Scholar] [CrossRef] [PubMed]
- Denoël, P.; Brousmiche, K.; Castanares-Zapatero, D.; Manara, A.; Yombi, J.C. Role of Eosinopenia as a Prognostic Factor in COVID-19 Patients from Emergency Department During the Second Wave. SN Compr. Clin. Med. 2023, 5, 67. [Google Scholar] [CrossRef]
- Li, Q.; Ding, X.; Xia, G.; Chen, H.-G.; Chen, F.; Geng, Z.; Xu, L.; Lei, S.; Pan, A.; Wang, L.; et al. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine 2020, 23, 100375. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Med. J. 2021, 122, 474–488. [Google Scholar] [CrossRef]
- Keykavousi, K.; Nourbakhsh, F.; Abdollahpour, N.; Fazeli, F.; Sedaghat, A.; Soheili, V.; Sahebkar, A. A Review of Routine Laboratory Biomarkers for the Detection of Severe COVID-19 Disease. Int. J. Anal. Chem. 2022, 2022, 9006487. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Cheng, J.; Yang, J.; Dong, M.; Liao, X.; Kang, Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit. Care 2020, 24, 288. [Google Scholar] [CrossRef]
- Moradi, E.V.; Teimouri, A.; Rezaee, R.; Morovatdar, N.; Foroughian, M.; Layegh, P.; Kakhki, B.R.; Koupaei, S.R.A.; Ghorani, V. Increased age, neutrophil-to-lymphocyte ratio (NLR) and white blood cells count are associated with higher COVID-19 mortality. Am. J. Emerg. Med. 2020, 40, 11–14. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Khalid, A.; Lail, R.A.; Shaheen, A.; Khan, N.; Nawaz, M.; Baset, A.; Ahmad, I.; Ali, M. Evaluation of hematological parameters as an indicator of disease severity in COVID-19 patients: Pakistan’s experience. J. Clin. Lab. Anal. 2021, 35, e23809. [Google Scholar] [CrossRef] [PubMed]
- Smail, S.W.; Babaei, E.; Amin, K. Hematological, Inflammatory, Coagulation, and Oxidative/Antioxidant Biomarkers as Predictors for Severity and Mortality in COVID-19: A Prospective Cohort-Study. Int. J. Gen. Med. 2023, 16, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Outschoorn, U.E.; Prisco, M.; Ertel, A.; Tsirigos, A.; Lin, Z.; Pavlides, S.; Wang, C.; Flomenberg, N.; Knudsen, E.S.; Howell, A.; et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer. Cell Cycle 2011, 10, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef]
- He, Z.; Yan, R.; Liu, J.; Dai, H.; Zhu, Y.; Zhang, F.; Zhang, L.; Yan, S. Lactate dehydrogenase and aspartate aminotransferase levels associated with the severity of COVID-19: A systematic review and meta-analysis. Exp. Ther. Med. 2023, 25, 221. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kokoris, S.; Gavriilaki, E.; Tsoukalas, M.Z.; Houpas, P.; Paneta, M.; Koutzas, A.; Argyropoulos, T.; Alkayem, N.F.; Armaghani, D.J.; et al. Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices. Clin. Immunol. 2023, 246, 109218. [Google Scholar] [CrossRef]
- Wang, J.; Choy, K.W.; Lim, H.Y.; Ho, P. Laboratory markers of severity across three COVID-19 outbreaks in Australia: Has Omicron and vaccinations changed disease presentation? Intern. Emerg. Med. 2022, 18, 43–52. [Google Scholar] [CrossRef]
Characteristic | Non-Severe Group (n = 268) | Severe Group (n = 204) | Total Patients (n = 472) | p-Value |
---|---|---|---|---|
Age mean (±SD) | 62.57 ± 15.92 | 66.25 ± 14.08 | 64 ± 3.1 | 0.009 |
Male n (%) | 123 (45.9) | 119 (58.3) | 242 (51.3) | 0.007 |
Comorbidity n (%) | ||||
≥1 comorbidity | 179 (66.8) | 155 (76) | 334 (70.7) | 0.030 |
Hypertension | 127 (47.4) | 108 (52.9) | 235 (49.8) | 0.232 |
Diabetes mellitus | 87 (32.5) | 75 (36.8) | 165 (35) | 0.329 |
Coronary artery disease | 49 (18.3) | 51 (25) | 100 (21.2) | 0.077 |
COPD | 24 (9) | 41(20.1) | 65 (13.8) | 0.001 |
Hyperlipidemia | 28 (10.4) | 30 (14.7) | 58 (12.3) | 0.163 |
Chronic heart failure | 15 (5.6) | 16 (7.8) | 31 (6.6) | 0.329 |
Chronic kidney disease | 18 (6.7) | 12 (5.9) | 30 (6.4) | 0.713 |
Thyroid gland disease | 14 (5.2) | 12 (5.9) | 26 (5.5) | 0.756 |
Cerebrovascular disease | 11 (4.1) | 11 (5.4) | 22 (4.7) | 0.511 |
Abnormal Chest CT n (%) | ||||
Unilateral involvement | 45 (16.8) | 11 (5.4) | 56 (11.9) | ˂0.001 ˂0.001 |
Bilateral involvement | 178 (66.4) | 191 (93.6) | 369 (78.2) | |
Corticosteroid n (%) | 59 (22) | 179 (87.7) | 472 (58.9) | ˂0.001 |
Oxygen support n (%) | 65 (24.2) | 204 (100) | 348 (73.7) | ˂0.001 |
ICU admission n (%) | 9 (3.4) | 79 (38.7) | 98 (20.8) | ˂0.001 |
Length of hospital stay median(min-max) | 11 (1–46) | 16 (2–57) | 13 (1–57) | ˂0.001 |
Mortality n (%) | 0 (0) | 26 (12.7) | 26 (5.5) | ˂0.001 |
Non-Severe Patient (n = 268) | Severe Patient (n = 204) | Total Patient (n = 472) | p-Value | |
---|---|---|---|---|
Biochemical parameters median (min–max) | ||||
Glucose mg/dL | 116 (66–421) | 131 (63–441) | 122 (63–441) | 0.002 |
Creatinine mg/dL | 0.84 (0.1–11) | 0.93 (0.1–5) | 0.9 (0.1–11) | 0.015 |
Total protein g/L | 63 (43–96) | 61.5 (44–78) | 63 (43–96) | <0.001 |
Albumin g/L | 40 (19–50) | 37 (25–46) | 39 (19–50) | <0.001 |
CPK U/L | 87.5 (11–6819) | 127.5 (11–7600) | 101.5 (11–7600) | <0.001 |
AST U/L | 32 (4–257) | 43.5 (6–412) | 37 (4–412) | <0.001 |
ALT U/L | 28 (3–285) | 35 (7–383) | 30 (3–383) | <0.001 |
Total bilirubin mg/dL | 0.5 (0.1–5) | 0.5 (0.1–3) | 0.5 (0.1–5) | 0.258 |
LDH U/L | 283 (25–900) | 388 (55–1180) | 333 (25–1180) | <0.001 |
Troponin-I ng/L | 5 (2–16,238) | 10 (2–25,000) | 7 (2–25,000) | <0.001 |
Hematologic biomarkers median (min–max) | ||||
White blood cell × 109/L | 6 (1.35–20) | 7 (2–21.5) | 6.5 (1.35–21.5) | <0.001 |
Neutrophil count × 109/L | 4.2 (0.46–15.9) | 5.8 (1.1–19.3) | 4.8 (0.46–19.3) | <0.001 |
Lymphocyte count × 109/L | 0.97 (0.18–5) | 0.69 (0.01–4) | 0.89 (0.01–5) | <0.001 |
Eosinophil count × 109/L | 0.02 (0–0.49) | 0.01 (0–0.53) | 0.02 (0–0.53) | <0.001 |
Monocyte count × 109/L | 0.33 (0.03–1.6) | 0.32 (0.02–1.5) | 0.33 (0.02–1.6) | 0.181 |
Hemoglobin g/dL | 13.1 (7.8–17.2) | 13.2 (7.8–17.5) | 13.2 (7.8–17.5) | 0.587 |
Platelet count × 109/L | 218 (77–589) | 222 (29–720) | 220 (29–720) | 0.570 |
NLR | 4.2 (0.7–36) | 8.3 (1–84.3) | 5.4 (0.7–84.3) | <0.001 |
Coagulation biomarkers median (min–max) | ||||
aPTT s. | 23.8 (17.6–55.8) | 24.4 (16.7–55.9) | 24 (16.7–55.9) | 0.110 |
PTT s. | 12.1 (9.9–39.2) | 12.6 (9.6–39.1) | 12.4 (9.6–39.2) | <0.001 |
INR | 1.05 (0.3–3.5) | 1.08 (0.8–3.5) | 1.06 (0.3–3.5) | <0.001 |
Fibrinogen g/L | 4.5 (0.8–10.1) | 5.2 (1.5–10.1) | 4.8 (0.8–10.1) | <0.001 |
D-dimer µg/ml | 0.7 (0.1–35) | 0.9 (0.2–35.2) | 0.8 (0.1–35.2) | 0.003 |
Inflammatory biomarkers median (min–max) | ||||
CRP mg/L | 37.7 (1–369) | 99 (3–286) | 60 (1–369) | <0.001 |
Procalcitonin µg/L | 0.05 (0.01–11) | 0.09 (0.02–9.7) | 0.06 (0.01–11) | <0.001 |
Ferritin µg/L | 233 (20–3413) | 430 (26–5000) | 308.5 (20–5000) | <0.001 |
IL-6 pg/mL | 15.25 (1–350) | 35.2 (2–2556) | 19.9 (1–2556) | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
CRP | 5.665 | 3.608–8.893 | <0.001 | 2.681 | 1.613–4.456 | <0.001 |
Eosinophil | 2.945 | 1.976–4.389 | <0.001 | 1.959 | 1.243–3.087 | 0.004 |
NLR | 4.740 | 3.134–7.171 | <0.001 | 2.785 | 1.761–4.405 | <0.001 |
IL-6 | 3.059 | 2.078–4.505 | <0.001 | 2.008 | 1.286–3.134 | 0.002 |
LDH | 4.747 | 3.202–7.031 | <0.001 | 2.756 | 1.778–4.724 | <0.001 |
CENIL Score | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|
≥1 | 99 (96.5–99.7) | 20.1 (15.8–25.4) | 48.6 (43.8–53.4) | 96.4 (87.9–99) |
≥2 | 91.7 (87.1–94.7) | 45.9 (0.40–51.9) | 56.3 (50.9–61.6) | 87.9 (81.4–92.3) |
≥3 | 77.9 (71.8–83.1) | 70.1 (64.4–75.3) | 66.5 (60.3–72.2) | 80.7 (75.1–85.2) |
≥4 | 51 (44.2–57.8) | 87.7 (83.2–91.1) | 75.9 (68.1–82.3) | 70.1 (65–74.8) |
≥5 | 14.7 (10.5–20.2) | 97.4 (94.7–98.7) | 81.1 (65.8–90.5) | 60 (55.3–64.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saricaoglu, E.M.; Coskun, B.; Ayhan, M.; Akinci, E.; Kayaaslan, B.; Aypak, A.; Tekce, A.Y.T.; Hasanoglu, I.; Kaya, A.; Eser, F.; et al. A New Laboratory Tool for COVID-19 Severity Prediction, CENIL Score. Diagnostics 2024, 14, 2557. https://doi.org/10.3390/diagnostics14222557
Saricaoglu EM, Coskun B, Ayhan M, Akinci E, Kayaaslan B, Aypak A, Tekce AYT, Hasanoglu I, Kaya A, Eser F, et al. A New Laboratory Tool for COVID-19 Severity Prediction, CENIL Score. Diagnostics. 2024; 14(22):2557. https://doi.org/10.3390/diagnostics14222557
Chicago/Turabian StyleSaricaoglu, Elif Mukime, Belgin Coskun, Muge Ayhan, Esragul Akinci, Bircan Kayaaslan, Adalet Aypak, Ayse Yasemin Tezer Tekce, Imran Hasanoglu, Ayse Kaya, Fatma Eser, and et al. 2024. "A New Laboratory Tool for COVID-19 Severity Prediction, CENIL Score" Diagnostics 14, no. 22: 2557. https://doi.org/10.3390/diagnostics14222557
APA StyleSaricaoglu, E. M., Coskun, B., Ayhan, M., Akinci, E., Kayaaslan, B., Aypak, A., Tekce, A. Y. T., Hasanoglu, I., Kaya, A., Eser, F., Bilir, Y. A., Ozdemir, B., Buzgan, T., & Guner, R. (2024). A New Laboratory Tool for COVID-19 Severity Prediction, CENIL Score. Diagnostics, 14(22), 2557. https://doi.org/10.3390/diagnostics14222557