Deep Learning-Based Slice Thickness Reduction for Computer-Aided Detection of Lung Nodules in Thick-Slice CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Patient Population
2.1.2. CT Protocol
2.1.3. Slice Thickness Reduction (STR)
2.1.4. Computer-Aided Detection
2.1.5. Matching Criteria
2.1.6. Statistical Analysis
3. Results
3.1. Quantitative Analysis
3.1.1. Per-Scan Analysis
3.1.2. Per-Nodule Analysis
3.2. Qualitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer. J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Oh, D.; Lee, M.; Lee, S.Y.; Shin, K.M.; Jun, J.S.; Hwang, D. Importance of CT image normalization in radiomics analysis: Prediction of 3-year recurrence-free survival in non-small cell lung cancer. Eur. Radiol. 2022, 32, 8716–8725. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, A.; Beache, G.M.; Gimel’farb, G.; Suzuki, K.; Okada, K.; Elnakib, A.; Soliman, A.; Abdollahi, B. Computer-aided diagnosis systems for lung cancer: Challenges and methodologies. Int. J. Biomed. Imaging 2013, 2013, 942353. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Jang, R.; Chung, M.J.; An, H.J.; Bak, S.; Choi, E.; Hwang, D. Development and validation of a hybrid deep learning-machine learning approach for severity assessment of COVID-19 and other pneumonias. Sci. Rep. 2023, 13, 13420. [Google Scholar] [CrossRef] [PubMed]
- van Riel, S.J.; Jacobs, C.; Scholten, E.T.; Wittenberg, R.; Winkler Wille, M.M.; de Hoop, B.; Sprengers, R.; Mets, O.M.; Geurts, B.; Prokop, M.; et al. Observer variability for Lung-RADS categorisation of lung cancer screening CTs: Impact on patient management. Eur. Radiol. 2019, 29, 924–931. [Google Scholar] [CrossRef]
- Ridge, C.A.; Yildirim, A.; Boiselle, P.M.; Franquet, T.; Schaefer-Prokop, C.M.; Tack, D.; Gevenois, P.A.; Bankier, A.A. Differentiating between Subsolid and Solid Pulmonary Nodules at CT: Inter- and Intraobserver Agreement between Experienced Thoracic Radiologists. Radiology 2016, 278, 888–896. [Google Scholar] [CrossRef]
- Setio, A.A.A.; Traverso, A.; de Bel, T.; Berens, M.S.N.; Bogaard, C.V.D.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef]
- Bankier, A.A.; MacMahon, H.; Goo, J.M.; Rubin, G.D.; Schaefer-Prokop, C.M.; Naidich, D.P. Recommendations for measuring pulmonary nodules at CT: A statement from the Fleischner Society. Radiology 2017, 285, 584–600. [Google Scholar] [CrossRef]
- Henschke, C.I.; Yankelevitz, D.F.; Mirtcheva, R.; McGuinness, G.; McCauley, D.; Miettinen, O.S.; Group, E. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. AJR Am. J. Roentgenol. 2002, 178, 1053–1057. [Google Scholar] [CrossRef]
- Godoy, M.C.; Kim, T.J.; White, C.S.; Bogoni, L.; de Groot, P.; Florin, C.; Obuchowski, N.; Babb, J.S.; Salganicoff, M.; Naidich, D.P.; et al. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT. AJR Am. J. Roentgenol. 2013, 200, 74–83. [Google Scholar] [CrossRef]
- He, L.; Huang, Y.; Ma, Z.; Liang, C.; Liang, C.; Liu, Z. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci. Rep. 2016, 6, 34921. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.M.; Do, K.H.; Lee, J.G.; Bae, W.; Park, H.; Jung, K.H.; Seo, J.B. Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer. Korean J. Radiol. 2019, 20, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.M.; Kim, W.; Park, H.; Jung, K.-H.; Do, K.-H.; Seo, J.B. Computer-aided detection of subsolid nodules at chest CT: Improved performance with deep learning–based CT section thickness reduction. Radiology 2021, 299, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Goo, J.M. Deep Learning-based Super-Resolution Algorithm: Potential in the Management of Subsolid Nodules. Radiology 2021, 299, 220–221. [Google Scholar] [CrossRef]
- Devaraj, A.; van Ginneken, B.; Nair, A.; Baldwin, D. Use of Volumetry for Lung Nodule Management: Theory and Practice. Radiology 2017, 284, 630–644. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Christensen, J.; Prosper, A.E.; Wu, C.C.; Chung, J.; Lee, E.; Elicker, B.; Hunsaker, A.R.; Petranovic, M.; Sandler, K.L.; Stiles, B.; et al. ACR Lung-RADS v2022: Assessment Categories and Management Recommendations. J. Am. Coll. Radiol. 2024, 21, 473–488. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.M.; Kim, S.; Choi, S.; Kim, W.; Do, K.H.; Seo, J.B. Performance of radiomics models for survival prediction in non-small-cell lung cancer: Influence of CT slice thickness. Eur. Radiol. 2021, 31, 2856–2865. [Google Scholar] [CrossRef]
- Petrou, M.; Quint, L.E.; Nan, B.; Baker, L.H. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am. J. Roentgenol. 2007, 188, 306–312. [Google Scholar] [CrossRef]
- Christensen, J.D.; Chiles, C. Low-dose computed tomographic screening for lung cancer. Clin. Chest Med. 2015, 36, 147–160, vii. [Google Scholar] [CrossRef] [PubMed]
- Awai, K.; Murao, K.; Ozawa, A.; Nakayama, Y.; Nakaura, T.; Liu, D.; Kawanaka, K.; Funama, Y.; Morishita, S.; Yamashita, Y. Pulmonary nodules: Estimation of malignancy at thin-section helical CT—Effect of computer-aided diagnosis on performance of radiologists. Radiology 2006, 239, 276–284. [Google Scholar] [CrossRef] [PubMed]
- White, C.S.; Pugatch, R.; Koonce, T.; Rust, S.W.; Dharaiya, E. Lung nodule CAD software as a second reader: A multicenter study. Acad. Radiol. 2008, 15, 326–333. [Google Scholar] [CrossRef]
- Al Mohammad, B.; Brennan, P.C.; Mello-Thoms, C. A review of lung cancer screening and the role of computer-aided detection. Clin. Radiol. 2017, 72, 433–442. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Patients with Nodules | Patients Without Nodules |
---|---|---|
Analyzed Scans * | 500 | 332 |
Sex | ||
Male | 273 | 283 |
Female | 91 | 49 |
Others * | 136 | |
Manufacturer | ||
GE MEDICAL SYSTEMS | 387 | 293 |
SIMENSE | 113 | 39 |
Annotated Nodule Scans | ||
2+ radiologists agreed | 463 | - |
All 3 radiologists agreed | 355 | - |
Image | AUC (95% CI) | p-Value | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
All nodules | |||||
original 5 mm CT scan | 0.850 (0.824–0.875) | - | 0.768 | 0.732 | 0.813 |
refined 1 mm CT scan | 0.879 (0.856–0.902) | 0.002 | 0.799 | 0.795 | 0.805 |
Nodules with <6 mm | |||||
original 5 mm CT scan | 0.823 (0.794–0.851) | - | 0.746 | 0.693 | 0.802 |
refined 1 mm CT scan | 0.860 (0.835–0.885) | <0.001 | 0.784 | 0.768 | 0.800 |
Nodules with ≥6 mm | |||||
original 5 mm CT scan | 0.891 (0.851–0.932) | - | 0.821 | 0.853 | 0.816 |
refined 1 mm CT scan | 0.921 (0.888–0.954) | 0.126 | 0.815 | 0.899 | 0.802 |
Image | AUC (95% CI) | p-Value | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
All nodules | |||||
original 5 mm CT scan | 0.867 (0.843–0.892) | - | 0.787 | 0.758 | 0.809 |
refined 1 mm CT scan | 0.902 (0.881–0.922) | <0.001 | 0.816 | 0.837 | 0.801 |
Nodules with <6 mm | |||||
original 5 mm CT scan | 0.844 (0.816–0.872) | - | 0.776 | 0.714 | 0.812 |
refined 1 mm CT scan | 0.880 (0.857–0.904) | <0.001 | 0.800 | 0.791 | 0.806 |
Nodules with ≥6 mm | |||||
original 5 mm CT scan | 0.946 (0.914–0.978) | - | 0.827 | 0.951 | 0.813 |
refined 1 mm CT scan | 0.972 (0.959–0.985) | 0.049 | 0.821 | 0.976 | 0.804 |
Image | Sensitivity at Specific FPs per Scan | ||||||
---|---|---|---|---|---|---|---|
1/8 | 1/4 | 1/2 | 1 | 2 | 4 | CPM (Average) | |
All nodules (n = 1078) | |||||||
original 5 mm CT scan | 0.328 | 0.414 | 0.520 | 0.615 | 0.675 | 0.704 | 0.543 |
refined 1 mm CT scan | 0.368 | 0.487 | 0.625 | 0.720 | 0.784 | 0.854 | 0.640 |
(+0.040) | (+0.073) | (+0.105) | (+0.105) | (+0.109) | (+0.150) | (+0.097) | |
Nodules with <6 mm (n = 947) | |||||||
original 5 mm CT scan | 0.283 | 0.366 | 0.483 | 0.589 | 0.653 | 0.682 | 0.509 |
refined 1 mm CT scan | 0.320 | 0.439 | 0.591 | 0.697 | 0.767 | 0.845 | 0.610 |
(+0.037) | (+0.073) | (+0.108) | (+0.108) | (+0.114) | (+0.163) | (+0.101) | |
Nodules with ≥6 mm (n = 131) | |||||||
original 5 mm CT scan | 0.649 | 0.756 | 0.802 | 0.817 | 0.847 | 0.863 | 0.789 |
refined 1 mm CT scan | 0.702 | 0.802 | 0.847 | 0.893 | 0.908 | 0.924 | 0.846 |
(+0.053) | (+0.046) | (+0.045) | (+0.076) | (+0.061) | (+0.061) | (+0.057) |
Image | Sensitivity at Specific FPs per Scan | ||||||
---|---|---|---|---|---|---|---|
1/8 | 1/4 | 1/2 | 1 | 2 | 4 | CPM (Average) | |
All nodules (n = 535) | |||||||
original 5 mm CT scan | 0.503 | 0.581 | 0.690 | 0.779 | 0.826 | 0.854 | 0.706 |
refined 1 mm CT scan | 0.555 | 0.677 | 0.789 | 0.854 | 0.916 | 0.953 | 0.791 |
(+0.052) | (+0.096) | (+0.099) | (+0.075) | (+0.090) | (+0.099) | (+0.085) | |
Nodules with <6 mm (n = 447) | |||||||
original 5 mm CT scan | 0.436 | 0.519 | 0.647 | 0.747 | 0.803 | 0.839 | 0.665 |
refined 1 mm CT scan | 0.492 | 0.629 | 0.754 | 0.828 | 0.899 | 0.946 | 0.758 |
(+0.056) | (+0.110) | (+0.107) | (+0.081) | (+0.096) | (+0.107) | (+0.093) | |
Nodules with ≥6 mm (n = 85) | |||||||
original 5 mm CT scan | 0.830 | 0.898 | 0.920 | 0.932 | 0.932 | 0.932 | 0.907 |
refined 1 mm CT scan | 0.886 | 0.955 | 0.977 | 0.989 | 0.989 | 0.989 | 0.964 |
(+0.056) | (+0.057) | (+0.057) | (+0.057) | (+0.057) | (+0.057) | (+0.057) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Park, D.; Kang, J.-H.; Kim, M.; Kim, H.-Y.; Choi, W.; Ham, S.-Y. Deep Learning-Based Slice Thickness Reduction for Computer-Aided Detection of Lung Nodules in Thick-Slice CT. Diagnostics 2024, 14, 2558. https://doi.org/10.3390/diagnostics14222558
Jeong J, Park D, Kang J-H, Kim M, Kim H-Y, Choi W, Ham S-Y. Deep Learning-Based Slice Thickness Reduction for Computer-Aided Detection of Lung Nodules in Thick-Slice CT. Diagnostics. 2024; 14(22):2558. https://doi.org/10.3390/diagnostics14222558
Chicago/Turabian StyleJeong, Jonghun, Doohyun Park, Jung-Hyun Kang, Myungsub Kim, Hwa-Young Kim, Woosuk Choi, and Soo-Youn Ham. 2024. "Deep Learning-Based Slice Thickness Reduction for Computer-Aided Detection of Lung Nodules in Thick-Slice CT" Diagnostics 14, no. 22: 2558. https://doi.org/10.3390/diagnostics14222558
APA StyleJeong, J., Park, D., Kang, J. -H., Kim, M., Kim, H. -Y., Choi, W., & Ham, S. -Y. (2024). Deep Learning-Based Slice Thickness Reduction for Computer-Aided Detection of Lung Nodules in Thick-Slice CT. Diagnostics, 14(22), 2558. https://doi.org/10.3390/diagnostics14222558