Volumetric Analysis of Motor Cortex and Basal Ganglia in Pediatric Celiac Disease Patients Using volBrain: Implications for Neurological Dysfunction-Preliminary Results
Abstract
:1. Introduction
Brain Motor Network
2. Materials and Methods
- Sagittal 3D T1-Weighted (T1W) Sequence: This sequence is crucial for high-resolution anatomical imaging, especially with a 1 mm slice thickness. The thin, isovolumetric slices allow for excellent spatial resolution and make it easier to analyze brain anatomy and volume. The 3D T1W images are ideal for evaluating the brain’s structural details and are particularly helpful in detecting abnormalities in the cortex and white matter.
- Axial and Coronal T2-Weighted (T2W) Sequences: These sequences provide contrast between different types of brain tissues, making it easier to spot lesions, edema, or inflammation. T2W imaging is essential for identifying pathologies like tumors, multiple sclerosis lesions, and areas affected by ischemia.
- Axial BLADE Sequence: This is a motion-compensated sequence, useful for reducing artifacts in patients who may have difficulty remaining still. It helps produce clearer images in cases where patient motion might otherwise degrade image quality.
- Axial T2 GRE or SWI: These sequences are highly sensitive to magnetic susceptibility effects, making them effective for detecting small hemorrhages, calcifications, and vascular malformations. SWI, in particular, is beneficial for evaluating microbleeds and iron deposits.
- DWI and ADC: These sequences are critical for identifying acute ischemic strokes, as they can show changes in water diffusion within minutes of a stroke onset. DWI combined with ADC mapping helps differentiate between acute and chronic ischemic lesions.
2.1. MRI Volumetry
- ○
- Denoising (30 s);
- ○
- Inhomogeneity correction (30 s);
- ○
- Registration into MNI space (2 min);
- ○
- Fine inhomogeneity correction using SPM (3 min);
- ○
- Brain extraction (2 min);
- ○
- Structure labeling (3 min).
2.2. Pipeline Overview
- Denoising: This step improves the quality of the input images by applying the spatially adaptive non-local means (SANLMs) filter to reduce noise. This filter adapts to varying noise levels across the image, making it ideal for processing MRI data with spatially variable noise [21].
- Inhomogeneity correction: Inhomogeneities in MRI images are corrected in two phases. First, the N4 method is applied for coarse correction, followed by fine correction using SPM after the image is registered to MNI space [22].
- Registration to MNI space: for consistent and standardized analysis, volBrain registers images to the Montreal Neurological Institute (MNI152) space using the ANTs software version 1.0. This registration process ensures that all images are spatially normalized, providing a common reference frame for further analysis [23].
- Tissue classification and structure segmentation: volBrain employs a sophisticated segmentation process based on multi-atlas patch-based label fusion to classify various brain tissues (e.g., white matter, gray matter, cerebrospinal fluid) and segment key brain structures. This non-local label fusion method ensures that the segmentation is both accurate and computationally efficient.
- Subcortical structure segmentation: volBrain’s subcortical structure segmentation is particularly noteworthy, as it delivers highly accurate and reproducible results for critical structures such as the hippocampus, thalamus, and caudate nucleus. The platform’s unique approach, which includes modifications to the non-local label fusion algorithm, further enhances the quality and consistency of the segmentation results.
2.3. Performance Evaluation
- Dice coefficient: In terms of segmentation accuracy, volBrain achieves the highest Dice coefficients across multiple structures. For example, volBrain’s Dice score for the hippocampus is 0.953, significantly higher than FreeSurfer’s 0.788 and FIRST’s 0.843. This level of accuracy is critical for clinical and research applications where precise volume measurements are required [24].
- Volume estimation: When comparing automatic volume estimates with manual segmentation (considered the gold standard), volBrain shows a higher correlation with manual measurements than FreeSurfer or FIRST. This consistency in volume estimation is crucial for ensuring reliable and interpretable results across different subjects.
- Reproducibility: volBrain’s reproducibility has been rigorously tested on datasets like the OASIS dataset, which includes multiple scans of the same subjects. volBrain’s reproducibility outperforms both FreeSurfer and FIRST, with a significantly lower failure rate. While FIRST encountered issues in 10% of the cases, volBrain maintained a near-perfect success rate, making it highly suitable for clinical applications [20].
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Verdu, E.F.; Bai, J.C.; Lionetti, E. Coeliac Disease. Lancet 2022, 399, 2413–2426. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.V.; Auricchio, R.; Nanayakkara, M.; Greco, L.; Troncone, R.; Auricchio, S. Pivotal Role of Inflammation in Celiac Disease. Int. J. Mol. Sci. 2022, 23, 7177. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Mousattat, Y.; Lawson, A.; Patel, P. Celiac Disease in a 16-Month-Old Child Presenting as Motor Regression. ACG Case Rep. J. 2019, 6, e00192. [Google Scholar] [CrossRef]
- Giuffrè, M.; Gazzin, S.; Zoratti, C.; Llido, J.P.; Lanza, G.; Tiribelli, C.; Moretti, R. Celiac Disease and Neurological Manifestations: From Gluten to Neuroinflammation. Int. J. Mol. Sci. 2022, 23, 15564. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Pedretti, M.; Sbravati, F.; Allegri, D.; Labriola, F.; Lombardo, V.; Spisni, E.; Zarbo, C.; Alvisi, P. Is the Clinical Pattern of Pediatric Celiac Disease Changing? A Thirty-Years Real-Life Experience of an Italian Center. Ital. J. Pediatr. 2021, 47, 5–11. [Google Scholar] [CrossRef]
- Luostarinen, L.; Himanen, S.L.; Luostarinen, M.; Collin, P.; Pirttilä, T. Neuromuscular and Sensory Disturbances in Patients with Well Treated Coeliac Disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 490–494. [Google Scholar] [CrossRef]
- Zis, P.; Sarrigiannis, P.; Artemiadis, A.; Sanders, D.S.; Hadjivassiliou, M. Gluten Neuropathy: Electrophysiological Progression and HLA Associations. J. Neurol. 2021, 268, 199–205. [Google Scholar] [CrossRef]
- Fisicaro, F.; Lanza, G.; D’agate, C.C.; Ferri, R.; Cantone, M.; Falzone, L.; Pennisi, G.; Bella, R.; Pennisi, M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021, 13, 1530. [Google Scholar] [CrossRef]
- Hwang, F.; Roth, R.H.; Wu, Y.; Sun, Y.; Kwon, D.K.; Liu, Y.; Ding, J.B. Synapses of Motor Engram Neurons. Neuron 2023, 110, 2790–2801. [Google Scholar] [CrossRef] [PubMed]
- Baladron, J.; Vitay, J.; Fietzek, T.; Hamker, F.H. The Contribution of the Basal Ganglia and Cerebellum to Motor Learning: A Neurocomputational Approach. PLoS Comput. Biol. 2023, 19, e1011243. [Google Scholar] [CrossRef]
- Redinbaugh, M.J.; Saalmann, Y.B. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J. Cogn. Neurosci. 2024, 36, 1620–1642. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Kashyap, R.; Abualait, T.; Annabel Chen, S.H.; Yoo, W.K.; Bashir, S. The Role of Primary Motor Cortex: More Than Movement Execution. J. Mot. Behav. 2021, 53, 258–274. [Google Scholar] [CrossRef]
- Sydnor, V.J.; Larsen, B.; Bassett, D.S.; Alexander-Bloch, A.; Fair, D.A.; Liston, C.; Mackey, A.P.; Milham, M.P.; Pines, A.; Roalf, D.R.; et al. Neurodevelopment of the Association Cortices: Patterns, Mechanisms, and Implications for Psychopathology. Neuron 2021, 109, 2820–2846. [Google Scholar] [CrossRef]
- Li, X.; Krol, M.A.; Jahani, S.; Boas, D.A.; Tager-Flusberg, H.; Yücel, M.A. Brain Correlates of Motor Complexity During Observed and Executed Actions. Sci. Rep. 2020, 10, 10965. [Google Scholar] [CrossRef]
- Fine, J.M.; Hayden, B.Y. The Whole Prefrontal Cortex Is Premotor Cortex. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20200524. [Google Scholar] [CrossRef]
- Biagi, F.; Andrealli, A.; Bianchi, P.I.; Marchese, A.; Klersy, C.; Corazza, G.R. A Gluten-Free Diet Score to Evaluate Dietary Compliance in Patients with Coeliac Disease. Br. J. Nutr. 2009, 102, 882–887. [Google Scholar] [CrossRef]
- Manjón, J.V.; Coupé, P. Volbrain: An Online MRI Brain Volumetry System. Front. Neuroinform. 2016, 10, 30. [Google Scholar] [CrossRef]
- Coupé, P.; Mansencal, B.; Clément, M.; Giraud, R.; Denis de Senneville, B.; Ta, V.T.; Lepetit, V.; Manjon, J.V. AssemblyNet: A Large Ensemble of CNNs for 3D Whole Brain MRI Segmentation. NeuroImage 2020, 219, 117026. [Google Scholar] [CrossRef]
- Manjón, J.V.; Coupé, P.; Martí-Bonmatí, L.; Collins, D.L.; Robles, M. Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels. J. Magn. Reson. Imaging 2010, 31, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Avants, B.; Tustison, N.; Johnson, H. Advanced Normalization Tools (ANTS). Insight J. 2009, 2.365, 1–35. [Google Scholar]
- Zijdenbos, A.P.; Dawant, B.M.; Margolin, R.A.; Palmer, A.C. Morphometric Analysis of White Matter Lesions in MR Images: Method and Validation. IEEE Trans. Med. Imaging 1994, 13, 716–724. [Google Scholar] [CrossRef]
- Hadjivassiliou, M.; Sanders, D.S.; Grünewald, R.A.; Woodroofe, N.; Boscolo, S.; Aeschlimann, D. Gluten Sensitivity: From Gut to Brain. Lancet Neurol. 2010, 9, 318–330. [Google Scholar] [CrossRef]
- Tursi, A.; Giorgetti, G.M.; Iani, C.; Arciprete, F.; Brandimarte, G.; Capria, A.; Fontana, L. Peripheral Neurological Disturbances, Autonomic Dysfunction, and Antineuronal Antibodies in Adult Celiac Disease Before and After a Gluten-Free Diet. Dig. Dis. Sci. 2006, 51, 1869–1874. [Google Scholar] [CrossRef]
- Di Martino, A.; O’Connor, D.; Chen, B.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Balsters, J.H.; Baxter, L.; Beggiato, A.; Bernaerts, S.; et al. Enhancing Studies of the Connectome in Autism Using the Autism Brain Imaging Data Exchange II. Sci. Data 2017, 4, 170010. [Google Scholar] [CrossRef]
- Currie, S.; Hadjivassiliou, M.; Clark, M.J.R.; Sanders, D.S.; Wilkinson, I.D.; Griffiths, P.D.; Hoggard, N. Should We Be “nervous” about Coeliac Disease? Brain Abnormalities in Patients with Coeliac Disease Referred for Neurological Opinion. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1216–1221. [Google Scholar] [CrossRef]
- Kieslich, M.; Errázuriz, G.; Posselt, H.G.; Moeller-Hartmann, W.; Zanella, F.; Boehles, H. Brain White-Matter Lesions in Celiac Disease: A Prospective Study of 75 Diet-Treated Patients. Pediatrics 2001, 108, e21. [Google Scholar] [CrossRef]
- Dhawale, A.K.; Wolff, S.B.E.; Ko, R.; Ölveczky, B.P. The basal ganglia control the detailed kinematics of learned motor skills. Nat. Neurosci. 2021, 24, 1256–1269. [Google Scholar] [CrossRef]
- Menozzi, E.; Mulroy, E.; Akbarian-Tefaghi, L.; Bhatia, K.P.; Balint, B. Movement Disorders in Systemic Autoimmune Diseases: Clinical Spectrum, Ancillary Investigations, Pathophysiological Considerations. Park. Relat. Disord. 2021, 88, 116–128. [Google Scholar] [CrossRef]
- Hadjivassiliou, M.; Croall, I.D.; Grünewald, R.A.; Trott, N.; Sanders, D.S.; Hoggard, N. Neurological Evaluation of Patients with Newly Diagnosed Coeliac Disease Presenting to Gastroenterologists: A 7-Year Follow-up Study. Nutrients 2021, 13, 1846. [Google Scholar] [CrossRef]
Non-Compliant to GFD (Biagi I) N = 4 | Compliant to GFD (Biagi III–IV) N = 8 | |
---|---|---|
Girls (N, %) | 2 (50%) | 4 (50%) |
Boys (N, %) | 2 (50%) | 4 (50%) |
Median age at the time of MRI (range), years | 14.6 (12.7–18.5) | 11.5 (6.9–14.8) |
Median duration of GFD (range), years | 6.6 (1.25–14.4) | 4.4 (1–9.9) |
Neurological symptoms | ||
Headache | 4 (100%) | 7 (87.5%) |
Instability | 0 | 0 |
Paresthesias | 0 | 0 |
Tremor | 0 | 1 (12.5%) |
Syncope | 0 | 1 (12.5%) |
Mood swings | 1 (12.5%) | 0 |
Epilepsy | 0 | 0 |
Visual disorders | 0 | 0 |
Hearing disorder | 0 | 0 |
Age | Sex | Cbl | NC | PTM | GLP | FL | OPINFFG | PG | PMG | AG | SMG | MOG | DC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | F | N | N | 0.558 (0.593, 0.752) | 0.200 (0.212, 0.269) | N | N | N | N | N | N | 1.160 (0.758, 1.117) L | Y |
13 | F | N | N | N | N | 0.725 (0.454, 0.717) | N | N | N | N | N | N | |
7 | F | N | N | N | N | N | N | N | 2.319 (1.631, 2.300) R | N | N | Y | |
14 | F | N | 0.201 (0.203, 0.271) R | 0.579 (0.593, 0.753) | 0.102 (0.103, 0.133)R | N | 0.202 (0.207, 0.369) L | N | N | N | N | 0.744 (0.776, 1.129) | Y |
15 | F | N | N | N | 14.236 (14.245, 16.105) | N | N | N | N | N | N | N | |
10 | F | N | 0.264 (0.200, 0.262) L | N | N | N | N | N | N | 1.152 (1.188, 1.701) | N | Y | |
14 | M | N | N | N | 8.148 (7.125, 8.129) R | N | N | 0.263 (0.165, 0.260) R | N | N | N | N | |
19 | M | 11.106 (8.184, 10.247) | N | N | N | N | N | N | N | N | 0.349 (0.388, 0.619) R | N | |
14 | F | 10.536 (8.215, 10.306) | N | N | N | 0.781 (0.434, 0.714) | 1.209 (0.923, 1.191) R | N | N | N | N | Y | |
11 | M | N | N | N | 16.629 (14.539, 16.366) | 0.429 (0.212, 0.400) R | 2.309 (1.853, 2.299) | N | N | N | N | Y | |
10 | F | N | N | N | 0.139 (0.108, 0.136) L | N | N | N | N | N | N | N | Y |
12 | M | 7.811 (8.257, 10.321) | N | N | N | N | N | N | N | N | N | N | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murn, F.; Loncar, L.; Lenicek Krleza, J.; Roic, G.; Hojsak, I.; Misak, Z.; Tripalo Batos, A. Volumetric Analysis of Motor Cortex and Basal Ganglia in Pediatric Celiac Disease Patients Using volBrain: Implications for Neurological Dysfunction-Preliminary Results. Diagnostics 2024, 14, 2559. https://doi.org/10.3390/diagnostics14222559
Murn F, Loncar L, Lenicek Krleza J, Roic G, Hojsak I, Misak Z, Tripalo Batos A. Volumetric Analysis of Motor Cortex and Basal Ganglia in Pediatric Celiac Disease Patients Using volBrain: Implications for Neurological Dysfunction-Preliminary Results. Diagnostics. 2024; 14(22):2559. https://doi.org/10.3390/diagnostics14222559
Chicago/Turabian StyleMurn, Filip, Lana Loncar, Jasna Lenicek Krleza, Goran Roic, Iva Hojsak, Zrinjka Misak, and Ana Tripalo Batos. 2024. "Volumetric Analysis of Motor Cortex and Basal Ganglia in Pediatric Celiac Disease Patients Using volBrain: Implications for Neurological Dysfunction-Preliminary Results" Diagnostics 14, no. 22: 2559. https://doi.org/10.3390/diagnostics14222559
APA StyleMurn, F., Loncar, L., Lenicek Krleza, J., Roic, G., Hojsak, I., Misak, Z., & Tripalo Batos, A. (2024). Volumetric Analysis of Motor Cortex and Basal Ganglia in Pediatric Celiac Disease Patients Using volBrain: Implications for Neurological Dysfunction-Preliminary Results. Diagnostics, 14(22), 2559. https://doi.org/10.3390/diagnostics14222559