The Possible Role of Rosuvastatin Therapy in HFpEF Patients—A Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.2.1. Laboratory Tests
2.2.2. Echocardiography
2.2.3. Coronary Angiography
2.3. Statistical Analysis
2.4. Bioethics Committee Approval
3. Results
3.1. Coronary Angiography
3.2. Uni- and Multivariable Models for Diastolic Dysfunction Prediction
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borlaug, B.A.; Sharma, K.; Shah, S.J.; Ho, J.E. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Sorimachi, H.; Harada, T.; Kagami, K.; Saito, Y.; Ishii, H. Epidemiology, Pathophysiology, Diagnosis, and Therapy of Heart Failure With Preserved Ejection Fraction in Japan. J. Card. Fail. 2023, 29, 375–388. [Google Scholar] [CrossRef]
- Cassar, A.; Holmes, D.R., Jr.; Rihal, C.S.; Gersh, B.J. Chronic coronary artery disease: Diagnosis and management. Mayo Clin. Proc. 2009, 84, 1130–1146. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Huang, J.; Levit, R.D.; Malas, W.; Waheed, N.; Bairey Merz, C.N. Ischemia and no obstructive coronary arteries (INOCA): A narrative review. Atherosclerosis 2022, 363, 8–21. [Google Scholar] [CrossRef]
- Almeida, A.G. MINOCA and INOCA: Role in Heart Failure. Curr. Heart Fail. Rep. 2023, 20, 139–150. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A repurposed drug to fight cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241–274. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Tavana, E.; Fanni, G.; Bo, S.; Banach, M.; Pirro, M.; von Haehling, S.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on mitochondrial pathways. J. Cachexia Sarcopenia Muscle. 2021, 12, 237–251. [Google Scholar] [CrossRef]
- Cortese, F.; Gesualdo, M.; Cortese, A.; Carbonara, S.; Devito, F.; Zito, A.; Ricci, G.; Scicchitano, P.; Ciccone, M.M. Rosuvastatin: Beyond the cholesterol-lowering effect. Pharmacol. Res. 2016, 107, 1–18. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H.; Wang, Y.; Li, Z.; Hu, B.; Li, X.; Fu, L.; Hu, H.; Nie, Z.; Zhao, B.; et al. Rosuvastatin Slows Progression of Carotid Intima-Media Thickness: The METEOR-China Randomized Controlled Study. Stroke 2022, 53, 3004–3013. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Z.; Jia, J.; Chen, A.; Gao, Y.; Qian, J.; Ge, J. Rosuvastatin Alleviates Coronary Microembolization-Induced Cardiac Injury by Suppressing Nox2-Induced ROS Overproduction and Myocardial Apoptosis. Cardiovasc. Toxicol. 2022, 22, 341–351. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, Y.; Li, Y.; Zhao, L.; Gong, Y.; Wang, M.; Wang, M.; Fu, G.; Zhang, W. Rosuvastatin Reverses Hypertension-Induced Changes in the Aorta Structure and Endothelium-Dependent Relaxation in Rats Through Suppression of Apoptosis and Inflammation. J. Cardiovasc. Pharmacol. 2020, 75, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Ma, P.; Stein, E.A.; Gotto, A.M., Jr.; Raza, A.; Chitra, R.; Hutchinson, H. Comparison of effects on low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with rosuvastatin versus atorvastatin in patients with type IIa or IIb hypercholesterolemia. Am. J. Cardiol. 2002, 89, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Mostaza, J.M.; Escobar, C. Rosuvastatin-Based Lipid-Lowering Therapy for the Control of LDL Cholesterol in Patients at High Vascular Risk. J. Clin. Med. 2024, 13, 1894. [Google Scholar] [CrossRef]
- Lee, Y.J.; Hong, S.J.; Kang, W.C.; Hong, B.K.; Lee, J.Y.; Lee, J.B.; Cho, H.J.; Yoon, J.; Lee, S.J.; Ahn, C.M.; et al. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: Secondary analysis of the randomised LODESTAR trial. BMJ 2023, 383, e075837. [Google Scholar] [CrossRef]
- Berne, C.; Siewert-Delle, A.; URANUS study investigators. Comparison of rosuvastatin and atorvastatin for lipid lowering in patients with type 2 diabetes mellitus: Results from the URANUS study. Cardiovasc. Diabetol. 2005, 4, 7–18. [Google Scholar] [CrossRef] [PubMed]
- McKenney, J.M.; Jones, P.H.; Adamczyk, M.A.; Cain, V.A.; Bryzinski, B.S.; Blasetto, J.W.; STELLAR Study Group. Comparison of the efficacy of rosuvastatin versus atorvastatin, simvastatin, and pravastatin in achieving lipid goals: Results from the STELLAR trial. Curr. Med. Res. Opin. 2003, 19, 689–698. [Google Scholar] [CrossRef]
- Strandberg, T.E.; Feely, J.; Sigurdsson, E.L. Twelve-week, multicenter, randomized, open-label comparison of the effects of rosuvastatin 10 mg/d and atorvastatin 10 mg/d in high-risk adults: A DISCOVERY study. Clin. Ther. 2004, 26, 1821–1833. [Google Scholar] [CrossRef]
- Karlson, B.W.; Palmer, M.K.; Nicholls, S.J.; Lundman, P.; Barter, P.J. Doses of rosuvastatin, atorvastatin and simvastatin that induce equal reductions in LDL-C and non-HDL-C: Results from the VOYAGER meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 744–747. [Google Scholar] [CrossRef]
- Singh, S.; Tantry, U.; Bliden, K.; Ishaq, S.M.M.; Abuzahra, M.; Gurbel, P.A. Meta-analysis of rosuvastatin vs atorvastatin in patients with cardiovascular disease. J. Am. Coll. Cardiol. 2024, 83, 1225. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020, 22, 391–412. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Cikes, M.; Prasad, N.; Li, G.; Getchevski, S.; Claggett, B.; Rizkala, A.; Lukashevich, I.; O’Meara, E.; Ryan, J.J.; et al. Echocardiographic Features of Patients With Heart Failure and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2019, 74, 2858–2873. [Google Scholar] [CrossRef] [PubMed]
- Płońska-Gościniak, E. (Ed.) Standardy Kardiologiczne 2022 Okiem Echokardiografisty; Medical Tribune Polska: Warszawa, Poland, 2022. [Google Scholar]
- Nagueh, S.F. Heart failure with preserved ejection fraction: Insights into diagnosis and pathophysiology. Cardiovasc. Res. 2021, 117, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Kasiczak, M.; Bielecka-Dabrowa, A.; von Haehling, S.; Anker, S.D.; Rysz, J.; Banach, M. Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: An overview. Arch. Med. Sci. 2018, 4, 890–909. [Google Scholar] [CrossRef]
- Kubicius, A.; Bałys, M.; Ciampi, Q.; Picano, E.; Gąsior, Z.; Haberka, M. Diastolic stress echocardiography and biomarkers in patients with preserved left ventricle ejection fraction and heart failure symptoms. Kardiol. Pol. 2022, 80, 560–566. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Solomon, S.D.; Shah, A.M.; Desai, A.S.; Groarke, J.D.; Osborne, M.T.; Hainer, J.; Bibbo, C.F.; Dorbala, S.; Blankstein, R.; et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 2018, 39, 840–849. [Google Scholar] [CrossRef]
- Playford, D.; Strange, G.; Celermajer, D.S.; Evans, G.; Scalia, G.M.; Stewart, S.; Prior, D.; NEDA Investigators. Diastolic dysfunction and mortality in 436 360 men and women: The National Echo Database Australia (NEDA). Eur. Heart J. Cardiovasc. Imaging. 2021, 22, 505–515. [Google Scholar] [CrossRef] [PubMed]
- van Ommen, A.M.L.N.; Canto, E.D.; Cramer, M.J.; Rutten, F.H.; Onland-Moret, N.C.; Ruijter, H.M.D. Diastolic dysfunction and sex-specific progression to HFpEF: Current gaps in knowledge and future directions. BMC Med. 2022, 20, 496–512. [Google Scholar] [CrossRef]
- Pandey, A.; Omar, W.; Ayers, C.; LaMonte, M.; Klein, L.; Allen, N.B.; Kuller, L.H.; Greenland, P.; Eaton, C.B.; Gottdiener, J.S.; et al. Sex and Race Differences in Lifetime Risk of Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Circulation 2018, 137, 1814–1823. [Google Scholar] [CrossRef]
- Stewart, S.; Playford, D.; Scalia, G.M.; Currie, P.; Celermajer, D.S.; Prior, D.; Codde, J.; Strange, G.; NEDA Investigators. Ejection fraction and mortality: A nationwide register-based cohort study of 499 153 women and men. Eur. J. Heart Fail. 2021, 23, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.G.; Worthington, A.; Huang, C.C.; Aranki, S.F.; Muehlschlegel, J.D. Sex differences in the prevalence of diastolic dysfunction in cardiac surgical patients. J. Card. Surg. 2015, 30, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Gautam, M.P.; Baral, Y.N.; Poudel, R.; Adhikari, K.R.; Yadav, R.K.; Baral, S. Prevalence of Left Ventricular Diastolic Dysfunction in Patients with Essential Hypertension. J. Nepal. Health Res. Counc. 2023, 20, 659–663. [Google Scholar]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef]
- Lawson, C.A.; Zaccardi, F.; Squire, I.; Ling, S.; Davies, M.J.; Lam, C.S.P.; Mamas, M.A.; Khunti, K.; Kadam, U.T. 20-year trends in cause-specific heart failure outcomes by sex, socioeconomic status, and place of diagnosis: A population-based study. Lancet Public Health 2019, 4, e406–e420. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis With Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Biter, H.I.; Cakal, S.; Cakal, B.; Aapaydin, Z.; Kilinc, A.Y.; Oguz, H.; Yildiz, S.; Ogur, H.; Belen, E.; Simsek, E. The impact of using SGLT-2 inhibitor on left ventricular longitudinal strain and NT-proBNP levels during six-month follow-up in diabetic patients with and without coronary artery disease with preserved ejection fraction. Kardiol. Pol. 2024, 82, 640–646. [Google Scholar] [CrossRef]
- Takei, Y.; Tomiyama, H.; Higashi, Y.; Yamashina, A.; Chikamori, T. Association Between Endothelial Dysfunction and Left Ventricular Diastolic Stiffness—Subanalysis of the Flow-Mediated Dilation Japan (FMD-J) Study. Circ. J. 2023, 87, 1203–1211. [Google Scholar] [CrossRef]
- Nair, N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Rev. Cardiovasc. Med. 2020, 21, 531–540. [Google Scholar]
- Leggat, J.; Bidault, G.; Vidal-Puig, A. Lipotoxicity: A driver of heart failure with preserved ejection fraction? Clin. Sci. 2021, 135, 2265–2283. [Google Scholar] [CrossRef]
- Wei, J.; Nelson, M.D.; Szczepaniak, E.W.; Smith, L.; Mehta, P.K.; Thomson, L.E.; Berman, D.S.; Li, D.; Bairey Merz, C.N.; Szczepaniak, L.S. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H14–H19. [Google Scholar] [CrossRef] [PubMed]
- Daneii, P.; Neshat, S.; Mirnasiry, M.S.; Moghimi, Z.; Dehghan Niri, F.; Farid, A.; Shekarchizadeh, M.; Heshmat-Ghahdarijani, K. Lipids and diastolic dysfunction: Recent evidence and findings. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Dienda, Y.M.; On’kin, J.K.L.; Natuhoyila, A.N.; Lubenga, Y.; Swambulu, T.M.; M’buyamba-Kabangu, J.R.; Longo-Mbenza, B.; Phanzu, B.K. Correlations of Serum Lipid Parameters and Atherogenic Indices With Left Ventricular Diastolic Dysfunction Among Apparently Healthy Patients With Type 2 Diabetes Mellitus: A Multicenter In-Hospital Cross-Sectional Study. J. Diabetes Res. 2024, 2024, 4078281. [Google Scholar] [CrossRef] [PubMed]
- Nachar, W.; Merlet, N.; Maafi, F.; Shi, Y.; Mihalache-Avram, T.; Mecteau, M.; Ferron, M.; Rhéaume, E.; Tardif, J.C. Cardiac inflammation and diastolic dysfunction in hypercholesterolemic rabbits. PLoS ONE 2019, 14, e0220707. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Z.; Lee, C.H.; Chen, Y.; Yu, S.Y.; Yu, Y.J.; Ren, Q.W.; Fong, H.C.; Wong, P.F.; Tse, H.F.; Lam, S.K.; et al. Association between adipocyte fatty acid-binding protein with left ventricular remodelling and diastolic function in type 2 diabetes: A prospective echocardiography study. Cardiovasc. Diabetol. 2020, 19, 197–208. [Google Scholar] [CrossRef]
- Atar, D.; Munkhaugen, J.; Sverre, E. Statin discontinuation: How can we improve on the multiple pathways that contribute to suboptimal statin adherence? Kardiol. Pol. 2024. epub ahead of print. [Google Scholar] [CrossRef]
- Kardas, P.; Kwiatek, A.; Włodarczyk, P.; Urbański, F.; Ciabiada-Bryła, B. Is the KOS-Zawał coordinated care program effective in reducing long-term cardiovascular risk in coronary artery disease patients in Poland? Insights from analysis of statin persistence in a nationwide cohort. Kardiol. Pol. 2024. epub ahead of print. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Komosa, A.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Tykarski, A.; Jemielity, M. Predictive value of systemic inflammatory response index (SIRI) for complex coronary artery disease occurrence in patients presenting with angina equivalent symptoms. Cardiol. J. 2024, 31, 583–595. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Olasińska-Wiśniewska, A.; Michalak, M.; Perek, B.; Al-Imam, A.; Rodzki, M.; Witkowska, A.; Straburzyńska-Migaj, E.; Bociański, M.; Misterski, M.; et al. Pre-operative systemic inflammatory response index influences long-term survival rate in off-pump surgical revascularization. PLoS ONE 2022, 17, e0276138. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Tsioufis, K.P. Residual cardiovascular disease risk in heart failure patients. What is the real role of lipid-lowering therapy? Arch. Med. Sci. 2024, 20, 1358–1362. [Google Scholar] [CrossRef]
- Kjekshus, J.; Apetrei, E.; Barrios, V.; Böhm, M.; Cleland, J.G.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, V.; Karnib, M.; Selvaganesan, P. Statin Therapy in Heart Failure With Preserved Ejection Fraction: The Need for Randomized Evidence. JACC Adv. 2024, 3, 100872–100874. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1231–1239. [Google Scholar] [PubMed]
- Rogers, J.K.; Jhund, P.S.; Perez, A.C.; Böhm, M.; Cleland, J.G.; Gullestad, L.; Kjekshus, J.; van Veldhuisen, D.J.; Wikstrand, J.; Wedel, H.; et al. Effect of rosuvastatin on repeat heart failure hospitalizations: The CORONA Trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). JACC Heart Fail. 2014, 2, 289–297. [Google Scholar] [CrossRef]
- Erbs, S.; Beck, E.B.; Linke, A.; Adams, V.; Gielen, S.; Kränkel, N.; Möbius-Winkler, S.; Höllriegel, R.; Thiele, H.; Hambrecht, R.; et al. High-dose rosuvastatin in chronic heart failure promotes vasculogenesis, corrects endothelial function, and improves cardiac remodeling--results from a randomized, double-blind, and placebo-controlled study. Int. J. Cardiol. 2011, 146, 56–63. [Google Scholar] [CrossRef]
- Orkaby, A.R.; Goyal, P.; Charest, B.; Qazi, S.; Sheikh, S.; Shah, S.; Gaziano, J.M.; Djousse, L.; Gagnon, D.; Joseph, J. Initiation of Statins for Primary Prevention in Heart Failure With Preserved Ejection Fraction. JACC Adv. 2024, 3, 100869–100879. [Google Scholar] [CrossRef]
Parameters | Study Group n = 81 | Group 1 Non-Rosuvastatin Therapy n = 27 | Group 2 Rosuvastatin Therapy n = 54 | p 1 vs. 2 |
---|---|---|---|---|
Demographic: | ||||
Sex (M/F) (n (%)) | 33 (41)/48 (59) | 9 (33)/19 (70) | 24 (44)/30 (56) | 0.343 |
Age (years) (median (Q1–Q3)) | 70 (62–75) | 70 (64–75) | 70 (62–75) | 0.92 |
BMI (median (Q1–Q3)) | 27.8 (25.0–31.7) | 27 (24.4–29.6) | 28.5 (25.5–32.4) | 0.085 |
BMI > 30 (n (%)) (mm) (n (%)) | 29 (36) | 6 (22) | 23 (43) | 0.065 |
Functional status: | ||||
CCS class (median (Q1–Q3)) | 1.5 (1.1) | 1.5 (1.0) | 1.5 (1.1) | 0.095 |
NYHA class (median (Q1–Q3)) | 1.5 (0.2) | 1.5 (0.3) | 1.5 (0.2) | 0.84 |
Co-morbidities: | ||||
Arterial hypertension (n (%)) | 73 (90) | 22 (82) | 51 (94) | 0.068 |
Dyslipidemia (n (%)) | 76 (94) | 24 (89) | 52 (96) | 0.327 |
Diabetes mellitus (n (%)) | 9 (11) | 2 (7) | 7 (13) | 0.462 |
COPD (n (%)) | 8 (10) | 1 (4) | 7 (13) | 0.194 |
Active smoking (n (%)) | 22 (27) | 5 (19) | 17 (32) | 0.292 |
Therapy prior to admission: | ||||
B-blockers (n (%)) | 64 (79) | 23 (85) | 41 (76) | 0.341 |
ARB (n (%)) | 20 (25) | 6 (22) | 14 (26) | 0.722 |
ACE-I (n (%)) | 61 (75) | 21 (78) | 40 (74) | 0.722 |
Loop diuretic (n (%)) | 17 (21) | 7 (26) | 10 (19) | 0.447 |
MRA (n (%)) | 14 (17) | 5 (19) | 9 (17) | 0.842 |
Rosuvastatin (n (%)) | 54 (67) | 0 (0) | 54 (100) | <0.001 |
Other statin (n (%)) | 27 (33) | 27 (100) | 0 (0) | <0.001 |
Ezetimibe (n (%)) | 27 (33) | 7 (26) | 21 (39) | 0.253 |
Parameters | Group 1 Non-Rosuvastatin Therapy n = 27 | Group 2 Rosuvastatin Therapy n = 54 | p |
---|---|---|---|
Laboratory test results on admission: | |||
WBC (109/L) (median (Q1–Q3)) | 7.01 (4.79–8.13) | 6.74 (5.92–7.93) | 0.378 |
Hb (mmol/L) (median (Q1–Q3)) | 8.7 (8.1–9.6) | 8.9 (8.3–9.3) | 0.952 |
Hct (%) (median (Q1–Q3)) | 43 (40–45) | 42 (41–45) | 0.782 |
Plt (103/dL) (median (Q1–Q3)) | 221 (190–244) | 244 (202–292) | 0.039 |
ALAT (IU/L) (median (Q1–Q3)) | 27 (22–38) | 25 (19–39) | 0.499 |
Creatinine (umol/L) (median (Q1–Q3)) | 86 (80–108) | 79 (71–108) | 0.145 |
Glu (mmol/L) (median (Q1–Q3)) | 5.7 (5.5–6.2) | 5.6 (5.2–6.0) | 0.397 |
Hb1Ac (%) (median (Q1–Q3)) | 5.7 (5.5–6.0) | 5.7 (5.4–5.9) | 0.958 |
Lipoprotein (a) (mg/dL) (median (Q1–Q3)) | 9.0 (3.7–37.5) | 10.1 (2.5–22.0) | 0.951 |
Total cholesterol (mmol/L) (median (Q1–Q3)) | 4.41 (3.90–5.51) | 4.04 (3.42–5.07) | 0.109 |
HDL (mmol/L) (median (Q1–Q3)) | 1.35 (1.16–1.77) | 1.55 (1.26–1.84) | 0.764 |
LDL (mmol/L) (median (Q1–Q3)) | 2.40 (1.89–3.51) | 1.90 (1.55–2.98) | 0.077 |
LDL/HDL (median (Q1–Q3)) | 1.76 (1.02–2.34) | 1.40 (0.99–1.90) | 0.176 |
TG (mmol/L) (median (Q1–Q3)) | 1.01 (0.90–1.47) | 1.24 (0.96–1.62) | 0.188 |
UA (umol/L) (median (Q1–Q3)) | 398 (322–439) | 352 (305–388) | 0.058 |
BNP (pg/mL) (median (Q1–Q3)) | 178 (101–234) | 163 (112–205) | 0.127 |
Angiographic results: | |||
Normal angiograms (n (%)) | 14 (52) | 38 (70) | 0.14 |
Any angiographic disease (n (%)) | 13 (48) | 16 (30) | 0.14 |
Significant stenosis requiring PCI (n (%)) | 7 (26) | 8 (15) | 0.24 |
Parameters | Group 1 Non-Rosuvastatin Therapy n = 28 | Group 2 Rosuvastatin Therapy n = 54 | p |
---|---|---|---|
Dimensions: | |||
LVED (mm) (median (Q1–Q3)) | 44 (42–49) | 48 (42–50) | 0.488 |
LVES (mm) (median (Q1–Q3)) | 33 (31–38) | 34 (30–38) | 0.588 |
LVEDV (mm) (median (Q1–Q3)) | 48.9 (44.7–59.6) | 54.7 (41.9–65.0) | 0.627 |
LVESV (mm) (median (Q1–Q3)) | 30.0 (22.9–33.0) | 26.1 (20.6–31.1) | 0.304 |
LV performance: | |||
LVEF (%) (median (Q1–Q3)) | 54 (51–58) | 56 (51–60) | 0.189 |
Functional parameters: | |||
E velocity (mm) (median (Q1–Q3)) | 0.59 (0.55–0.78) | 0.63 (0.55–0.77) | 0.98 |
E/A (mm) (median (Q1–Q3)) | 0.91 (0.73–1.24) | 0.85 (0.74–1.01) | 0.375 |
Septal e’ (m/s) (median (Q1–Q3)) | 0.06 (0.05–0.07) | 0.07 (0.06–0.08) | 0.018 * |
Lateral e’ (m/s) (median (Q1–Q3)) | 0.07 (0.06–0.09) | 0.08 (0.06–0.09) | 0.53 |
LV GLS (%) (median (Q1–Q3)) | 16 (13–19) | 17.0 (15–19) | 0.668 |
Structural parameters: | |||
LAVI (mL/m2) (median (Q1–Q3)) | 26.2 (22–35.4) | 25.4 (19.3–32.4) | 0.462 |
LVM index (g/m2) (median (Q1–Q3)) | 89.4 (79.2–117.1) | 90.3 (72.1–115.8) | 0.538 |
RWT (median (Q1–Q3)) | 0.52 (0.41–0.58) | 0.42 (0.36–0.48) | 0.010 * |
Echocardiographic criteria for HFpEF (n (%)) (septal < 0.07 m/s + lateral < 0.10 m/s + LAVI > 34 mL/m2) | 6 (21) | 1 (2) | 0.006 * |
Parameters | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Demographical: | ||||||
Sex (male) | 0.56 | 0.12–1.10 | 0.073 | 0.19 | 0.04–0.83 | 0.027 |
Age | 1 | 0.94–1.06 | 0.955 | |||
BMI > 30 | 2.85 | 1.01–8.07 | 0.048 * | 12.78 | 2.19–74.50 | 0.005 |
NYHA | 1.34 | 0.01–2.37 | 0.238 | |||
Clinical: | ||||||
HA | 1.06 | 0.29–5.84 | 0.95 | |||
Dyslipidemia | 0.5 | 0.08–3.22 | 0.466 | |||
DM | 0.8 | 0.15–4.18 | 0.788 | |||
COPD | 5.8 | 0.78–10.31 | 0.19 | |||
Nicotine active | 1.1 | 0.36–3.33 | 0.866 | |||
Angiogram results: | ||||||
Any CAD | 0.41 | 0.12–1.36 | 0.144 | |||
Lipids: | ||||||
HDL | ||||||
LDL | 1.01 | 0.35–3.53 | 0.86 | |||
Lipoprotein | 1.22 | 0.86–1.72 | 0.268 | |||
Hb1Ac | 1.01 | 0.99–1.02 | 0.413 | |||
Echocardiography: | ||||||
LVM index | 1.01 | 0.99–1.02 | 0.278 | |||
LVEF | 0.98 | 0.92–1.03 | 0.367 | |||
Pharmacotherapy: | ||||||
B-blockers | 1.83 | 0.47–7.12 | 0.386 | |||
ARB/ACE-I | 0.42 | 0.11–1.62 | 0.208 | |||
Loop diuretic | 1.78 | 0.56–5.63 | 0.325 | |||
MRA | 1.77 | 0.52–6.05 | 0.362 | |||
Rosuvastatin | 0.25 | 0.09–0.71 | 0.009 * | 0.09 | 0.02–0.51 | 0.007 |
Ezetimibe | 0.93 | 0.32–2.66 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Spasenenko, I.; Banaszkiewicz, M.; Olasińska-Wiśniewska, A.; Krasińska-Płachta, A.; Tykarski, A.; Filipiak, K.J.; Krasiński, Z.; Krasińska, B. The Possible Role of Rosuvastatin Therapy in HFpEF Patients—A Preliminary Report. Diagnostics 2024, 14, 2579. https://doi.org/10.3390/diagnostics14222579
Urbanowicz T, Spasenenko I, Banaszkiewicz M, Olasińska-Wiśniewska A, Krasińska-Płachta A, Tykarski A, Filipiak KJ, Krasiński Z, Krasińska B. The Possible Role of Rosuvastatin Therapy in HFpEF Patients—A Preliminary Report. Diagnostics. 2024; 14(22):2579. https://doi.org/10.3390/diagnostics14222579
Chicago/Turabian StyleUrbanowicz, Tomasz, Ievgen Spasenenko, Marta Banaszkiewicz, Anna Olasińska-Wiśniewska, Aleksandra Krasińska-Płachta, Andrzej Tykarski, Krzysztof J. Filipiak, Zbigniew Krasiński, and Beata Krasińska. 2024. "The Possible Role of Rosuvastatin Therapy in HFpEF Patients—A Preliminary Report" Diagnostics 14, no. 22: 2579. https://doi.org/10.3390/diagnostics14222579
APA StyleUrbanowicz, T., Spasenenko, I., Banaszkiewicz, M., Olasińska-Wiśniewska, A., Krasińska-Płachta, A., Tykarski, A., Filipiak, K. J., Krasiński, Z., & Krasińska, B. (2024). The Possible Role of Rosuvastatin Therapy in HFpEF Patients—A Preliminary Report. Diagnostics, 14(22), 2579. https://doi.org/10.3390/diagnostics14222579