Thoracic Lymphatic Perfusion Patterns Assessed by Magnetic Resonance Imaging and Late Fontan Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation Protocol of the Lymphatic System by Magnetic Resonance Imaging
2.2. Assessment and Classification of the Thoracic Lymphatic Perfusion Patterns
2.3. Statistical Analysis
3. Results
3.1. Clinical–Demographic Characteristics
3.2. Surgical Characteristics
3.3. Early Results
3.4. Follow-Up and Late Fontan Failure
3.5. Thoracic Lymphatic Perfusion Pattern and Late Fontan Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970-2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef]
- Spector, L.G.; Menk, J.S.; Knight, J.H.; McCracken, C.; Thomas, A.S.; Vinocur, J.M.; Oster, M.E.; St Louis, J.D.; Moller, J.H.; Kochilas, L. Trends in Long-Term Mortality After Congenital Heart Surgery. J. Am. Coll. Cardiol. 2018, 71, 2434–2446. [Google Scholar] [CrossRef]
- Mandalenakis, Z.; Giang, K.W.; Eriksson, P.; Liden, H.; Synnergren, M.; Wåhlander, H.; Fedchenko, M.; Rosengren, A.; Dellborg, M. Survival in Children With Congenital Heart Disease: Have We Reached a Peak at 97%? J. Am. Heart Assoc. 2020, 9, e017704. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Colmenero, J.; Cervantes-Salazar, J.L.; Curi-Curi, P.J.; Ramírez-Marroquín, S. Problemática de las cardiopatías congénitas en México. Propuesta de regionalización [Congenital heart disease in Mexico. Regionalization proposal]. Arch. Cardiol. Mex. 2010, 80, 133–140. [Google Scholar] [PubMed]
- Cervantes-Salazar, J.; Calderón-Colmenero, J.; Ramírez-Marroquín, J.; Palacios-Macedo, A.; Bolio-Cerdan, A.; Vizcaíno-Alarcon, A.; Curi-Curi, P.; de la Llata-Romero, R.M.; Erdmenger-Orellana, J.; González-Palacios, J.; et al. El Registro Mexicano de Cirugía Cardíaca Pediátrica. Primer informe. Evid. Med. Investig. Salud 2014, 7, 56–62. [Google Scholar]
- Plappert, L.; Edwards, S.; Senatore, A.; De Martini, A. The Epidemiology of Persons Living with Fontan in 2020 and Projections for 2030: Development of an Epidemiology Model Providing Multinational Estimates. Adv. Ther. 2022, 39, 1004–1015. [Google Scholar] [CrossRef]
- Clift, P.; Celermajer, D. Managing adult Fontan patients: Where do we stand? Eur. Respir. Rev. 2016, 25, 438–450. [Google Scholar] [CrossRef]
- Hosseinpour, A.; González, A.; Adsuar, A. ¿Qué queremos decir con el término univentricular? Cir. Cardiov. 2015, 22, 193–194. [Google Scholar] [CrossRef]
- Fontan, F.; Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971, 26, 240–248. [Google Scholar] [CrossRef]
- Kreutzer, G.; Galíndez, E.; Bono, H.; De Palma, C.; Laura, J.P. An operation for the correction of tricuspid atresia. J. Thorac. Cardiovasc. Surg. 1973, 66, 613–621. [Google Scholar] [CrossRef] [PubMed]
- de Level, M.R.; Kilner, P.; Gewillig, M.; Bull, C. Total cavopulmonary connection: A logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J. Thorac. Cardiovasc. Surg. 1988, 96, 682–695. [Google Scholar] [CrossRef]
- Jonas, R.A.; Castaneda, A.R. Modified Fontan procedure: Atrial baffle and systemic venous to pulmonary artery anastomotic techniques. J. Card. Surg. 1988, 3, 91–96. [Google Scholar] [CrossRef]
- Marcelletti, C.; Corno, A.; Giannico, S.; Marino, B. Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J. Thorac. Cardiovasc. Surg. 1990, 100, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Marcelletti, C.F.; Hanley, F.L.; Mavroudis, C.; McElhinney, D.B.; Abella, R.F.; Marianeschi, S.M.; Seddio, F.; Reddy, V.M.; Petrossian, E.; de la Torre, T.; et al. Revision of previous Fontan connections to total extracardiac cavopulmonary anastomosis: A multicenter experience. J. Thorac. Cardiovasc. Surg. 2000, 119, 340–346. [Google Scholar] [CrossRef]
- de Level, M.R.; Deanfield, J.E. Four decades of Fontan palliation. Nat. Rev. Cardiol. 2010, 7, 520–527. [Google Scholar] [CrossRef]
- Gewillig, M.; Brown, S.C. The Fontan circulation after 45 years: Update in physiology. Heart 2016, 102, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, E.; Lundell, B. Fontan circulation has improved life expectancy for infants born with complex heart disease over the last 50 years but has also resulted in significant morbidity. Acta Paediatr. 2022, 111, 11–16. [Google Scholar] [CrossRef]
- d’Udekem, Y.; Iyengar, A.J.; Galati, J.C.; Forsdick, V.; Weintraub, R.G.; Wheaton, G.R.; Bullock, A.; Justo, R.N.; Grigg, L.E.; Sholler, G.F.; et al. Redefining expectations of long-term survival after the Fontan procedure: Twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation 2014, 130, S32–S38. [Google Scholar] [CrossRef]
- Iyengar, A.J.; Winlaw, D.S.; Galati, J.C.; Celermajer, D.S.; Wheaton, G.R.; Gentles, T.L.; Grigg, L.E.; Weintraub, R.G.; Bullock, A.; Justo, R.N.; et al. Trends in Fontan surgery and risk factors for early adverse outcomes after Fontan surgery: The Australia and New Zealand Fontan Registry experience. J. Thorac. Cardiovasc. Surg. 2014, 148, 566–575. [Google Scholar] [CrossRef]
- Alsaied, T.; Rathod, R.H.; Aboulhosn, J.A.; Budts, W.; Anderson, J.B.; Baumgartner, H.; Brown, D.W.; Cordina, R.; D’udekem, Y.; Ginde, S.; et al. Reaching consensus for unified medical language in Fontan care. ESC. Heart Fail. 2021, 8, 3894–3905. [Google Scholar] [CrossRef] [PubMed]
- Kamsheh, A.M.; O’Connor, M.J.; Rossano, J.W. Management of circulatory failure after Fontan surgery. Front. Pediatr. 2022, 10, 1020984. [Google Scholar] [CrossRef] [PubMed]
- Piran, S.; Veldtman, G.; Siu, S.; Webb, G.D.; Liu, P.P. Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation 2002, 105, 1189–1194. [Google Scholar] [CrossRef]
- Sallmon, H.; Ovroutski, S.; Schleiger, A.; Photiadis, J.; Weber, S.C.; Nordmeyer, J.; Berger, F.; Kramer, P. Late Fontan failure in adult patients is predominantly associated with deteriorating ventricular function. Int. J. Cardiol. 2021, 344, 87–94. [Google Scholar] [CrossRef]
- Buchhorn, R.; Bartmus, D.; Buhre, W.; Bürsch, J. Pathogenetic mechanisms of venous congestion after the Fontan procedure. Cardiol. Young 2001, 11, 161–168. [Google Scholar] [CrossRef] [PubMed]
- De Rita, F.; Crossland, D.; Griselli, M.; Hasan, A. Management of the failing Fontan. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2015, 18, 2–6. [Google Scholar] [CrossRef]
- Book, W.M.; Gerardin, J.; Saraf, A.; Marie Valente, A.; Rodriguez, F., 3rd. Clinical Phenotypes of Fontan Failure: Implications for Management. Congenit. Heart Dis. 2016, 11, 296–308. [Google Scholar] [CrossRef]
- Kreutzer, C.; Kreutzer, G. The Lymphatic System: The Achilles Heel of the Fontan-Kreutzer Circulation. World J. Pediatr. Congenit. Heart Surg. 2017, 8, 613–623. [Google Scholar] [CrossRef]
- Menon, S.; Chennapragada, M.; Ugaki, S.; Sholler, G.F.; Ayer, J.; Winlaw, D.S. The Lymphatic Circulation in Adaptations to the Fontan Circulation. Pediatr. Cardiol. 2017, 38, 886–892. [Google Scholar] [CrossRef]
- Dori, Y.; Keller, M.S.; Fogel, M.A.; Rome, J.J.; Whitehead, K.K.; Harris, M.A.; Itkin, M. MRI of lymphatic abnormalities after functional single-ventricle palliation surgery. AJR Am. J. Roentgenol. 2014, 203, 426–431. [Google Scholar] [CrossRef]
- Biko, D.M.; DeWitt, A.G.; Pinto, E.M.; Morrison, R.E.; Johnstone, J.A.; Griffis, H.; O’Byrne, M.L.; Fogel, M.A.; Harris, M.A.; Partington, S.L.; et al. MRI Evaluation of Lymphatic Abnormalities in the Neck and Thorax after Fontan Surgery: Relationship with Outcome. Radiology 2019, 291, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.M.; Griffis, H.M.; Glatz, A.C.; Rome, J.J.; Smith, C.L.; Gillespie, M.J.; Whitehead, K.K.; O’Byrne, M.L.; Biko, D.M.; Ravishankar, C.; et al. Prevalence and Cause of Early Fontan Complications: Does the Lymphatic Circulation Play a Role? J. Am. Heart Assoc. 2020, 9, e015318. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, S.; Weise, A.; Cesnjevar, R.; Rompel, O.; Rüffer, A.; Schöber, M.; Moosmann, J.; Glöckler, M. Association of Lymphatic Abnormalities with Early Complications after Fontan Operation. Thorac. Cardiovasc. Surg. 2021, 69, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Mohanakumar, S.; Ford, B.; Smith, C.L.; Pinto, E.; Biko, D.M.; Hjortdal, V.E.; Dori, Y. Sequential MRI Evaluation of Lymphatic Abnormalities over the Course of Fontan Completion. Radiol. Cardiothorac. Imaging 2024, 6, e230315. [Google Scholar] [CrossRef]
- AHA Medical/Scientific Statement. 1994 revisions to classification of functional capacity and objective assessment of patients with diseases of the heart. Circulation 1994, 90, 644–645. [Google Scholar]
- Cho, S.; Atwood, J.E. Peripheral edema. Am. J. Med. 2002, 113, 580–586. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Pang, P.S.; Khan, S.; Konstam, M.A.; Fonarow, G.C.; Traver, B.; Maggioni, A.P.; Cook, T.; Swedberg, K.; Burnett, J.C., Jr.; et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: Findings from the EVEREST trial. Eur. Heart J. 2013, 34, 835–843. [Google Scholar] [CrossRef]
- Mertens, L.; Hagler, D.J.; Sauer, U.; Somerville, J.; Gewillig, M. Protein-losing enteropathy after the Fontan operation: An international multicenter study. PLE study group. J. Thorac. Cardiovasc. Surg. 1998, 115, 1063–1073. [Google Scholar] [CrossRef]
- Udink Ten Cate, F.E.; Hannes, T.; Germund, I.; Khalil, M.; Huntgeburth, M.; Apitz, C.; Brockmeier, K.; Sreeram, N. Towards a proposal for a universal diagnostic definition of protein-losing enteropathy in Fontan patients: A systematic review. Heart 2016, 102, 1115–1119. [Google Scholar] [CrossRef]
- Schleiger, A.; Ovroutski, S.; Peters, B.; Schubert, S.; Photiadis, J.; Berger, F.; Kramer, P. Treatment strategies for protein-losing enteropathy in Fontan-palliated patients. Cardiol. Young 2020, 30, 698–709. [Google Scholar] [CrossRef]
- Calderón-Colmenero, J.; Ramírez, S.; Viesca, R.; Ramírez, L.; Casanova, M.; García Montes, J.A.; Patiño, E.; Zabal, C.; Buendía, A. Cirugía de Fontan. Factores de riesgo a corto y mediano plazo [Fontan operation: Short- and long-term risk factors]. Arch. Cardiol. Mex. 2005, 75, 425–434. [Google Scholar] [PubMed]
- Calderón-Colmenero, J.; Cervantes, J.L.; Ramírez Marroquín, S.; Attie, F. Exclusión del ventrículo venoso. Evolución y retos. A propósito de los primeros cien casos del procedimiento de Fontan en el Instituto Nacional de Cardiología “Ignacio Chávez” [Exclusion of venous ventricle. Evolution and challenges]. Arch. Cardiol. Mex. 2006, 76, S102–S110. [Google Scholar] [PubMed]
- Ramirez-Marroquin, S.; Calderón-Colmenero, J.; Curi-Curi, P.; García-Montes, J.A.; Patiño-Bahena, E.; Buendía, A.; Sandoval, J.P.; Cervantes-Salazar, J. Fontan Procedure at 2240 m Above Sea Level. World J. Pediatr. Congenit. Heart Surg. 2012, 3, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, K.R.; Cedars, A.; Allen, K.; Goldberg, D.; Batazzi, A.; Reichle, G.; DiPaola, F.; Selewski, D.; Cousino, M.; Rosenthal, D.N. Achieving Consensus: Severity-Graded Definitions of Fontan-Associated Complications to Characterize Fontan Circulatory Failure. J. Card. Fail. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
Characteristics, n (%) | Total 54 (100) | With Late Failure 19 (35.2) | Without Late Failure 35 (64.8) | p |
---|---|---|---|---|
Sex, n (%) | ||||
Male | 23 (42.6) | 9 (47.4) | 14 (40) | 0.61 |
Female | 31 (57.4) | 10 (52.6) | 21 (60) | |
Age at surgery (years), mean ± SD | 8.8 ± 3.5 | 10.1 ± 3.4 | 8.2 ± 3.4 | 0.06 |
Weight at surgery (kg), median (IQR) | 24 (17.8–37) | 30 (19.2–44.5) | 21 (16.5–36.5) | 0.09 |
BSA at surgery (m2), median (IQR) | 0.9 (0.7–1.2) | 1.05 (0.7–1.4) | 0.85 (0.71–1.2) | 0.26 |
Preoperative NYHA class, n (%) | ||||
I | 2 (3.7) | 1 (5.2) | 1 (2.8) | 0.76 |
II | 42 (77.8) | 14 (73.7) | 28 (80) | |
III | 9 (16.7) | 4 (21.1) | 5 (14.4) | |
IV | 1 (1.8) | 0 (0) | 1 (2.8) | |
Previous surgeries, n (%) | ||||
1 | 48 (88.9) | 16 (84.2) | 32 (91.4) | 0.42 |
2 | 17 (31.5) | 6 (31.6) | 11 (31.4) | 0.99 |
3 | 1 (1.8) | 1 (5.2) | 0 (0) | - |
Pre-Fontan surgical procedures, n (%) | ||||
Systemic-to-pulmonary shunt | 28 (51.8) | 10 (52.6) | 18 (51.4) | 0.93 |
Bidirectional cavopulmonary connection | 29 (53.7) | 9 (47.4) | 20 (57.1) | 0.49 |
Predominant ventricular morphology, n (%) | ||||
Left ventricle | 41 (75.9) | 14 (73.7) | 27 (77.1) | 0.17 |
Right ventricle | 9 (16.7) | 2 (10.5) | 7 (20) | |
Undetermined | 4 (7.4) | 3 (15.8) | 1 (2.8) | |
Pre-operative anatomical/hemodynamic conditions | ||||
Arterial oxygen saturation (%), mean ± SD | 75.4 ± 6.8 | 73.6 ± 6.9 | 76.4 ± 6.6 | 0.15 |
* Systemic ventricular ejection fraction (%), median (IQR) | 61.3 (60–65) | 62 (61–64.2) | 61 (57.6–67) | 0.41 |
Systemic ventricular end-diastolic pressure (mmHg), mean ± SD | 8.4 ± 1.8 | 8.4 ± 2.2 | 8.4 ± 1.5 | 0.96 |
Mean pulmonary artery pressure (mmHg), mean ± SD | 11.7 ± 2.3 | 11.6 ± 2.1 | 11.8 ± 2.4 | 0.79 |
Nakata index (mm2/m2), median (IQR) | 242.5 (200–304) | 239 (203–328) | 246 (183–300) | 0.47 |
McGoon ratio, mean ± SD | 2.1 ± 0.3 | 2.03 ± 0.35 | 2.1 ± 0.3 | 0.65 |
Characteristics, n (%) | Total 54 (100) |
---|---|
Diagnosis n (%) | |
Tricuspid atresia | 27 (50) |
Pulmonary atresia with intact interventricular septum | 12 (22.2) |
DORV | 6 (11.1) |
TGA | 3 (5.6) |
Unbalanced AV channel | 2 (3.7) |
Ebstein’s anomaly | 1 (1.8) |
Others | 3 (5.6) |
Fontan palliative procedures n (%) | |
Systemic-to-pulmonary shunt | 28 (51.8) |
Bidirectional cavopulmonary connection | 29 (53.7) |
Pulmonary artery banding | 6 (11.1) |
Damus-Kaye-Stansel procedure | 1 (1.8) |
Characteristics, n (%) | Total 54 (100) | With Late Failure 19 (35.2) | No Late Failure 35 (64.8) | p |
---|---|---|---|---|
Surgical characteristics | ||||
Surgical approach, n (%) | ||||
With CPB | 28 (51.9) | 13 (68.4) | 15 (42.9) | 0.07 |
Without CPB | 26 (48.1) | 6 (31.6) | 20 (57.1) | |
CPB and aortic clamping | ||||
Time length of CPB (min), median (IQR) | 129 (96–155.5) | 131 (106–199) | 129 (87–153) | 0.38 |
Time length of aortic clamping (min), median (IQR) | 83 (15–110) | 74.5 (31–98) | 90 (14–112) | 0.85 |
Cardioplegia type, n (%) | ||||
Custodiol | 9 (32.1) | 5 (26.3) | 4 (11.4) | 0.77 |
del Nido | 2 (7.1) | 1 (5.2) | 1 (2.8) | |
Fontan type, n (%) | ||||
Extracardiac TCPC | 52 (96.3) | 18 (94.8) | 34 (97.2) | 0.65 |
Intracardiac TCPC | 2 (3.7) | 1 (5.2) | 1 (2.8) | |
Conduit size (mm), mean ± SD | 18.3 ± 1.7 | 18.6 ± 1.3 | 18.1 ± 1.02 | 0.15 |
Fenestra size (mm), mean ± SD | 7.1 ± 1.7 | 6.8 ± 1.8 | 7.2 ± 1.5 | 0.47 |
Stay in PICU (days), median (IQR) | 4.9 (2.9–7.8) | 4.8 (2.8–7.8) | 4.9 (2.9–7.9) | 0.61 |
Mechanical ventilation time length (h), median (IQR) | 29.8 (14–98) | 27.5 (14–75) | 34 (11.6–121.5) | 0.62 |
Maximum lactate (mmol/L), median (IQR) | 3.2 (2.2–4.5) | 3.3 (2.2–4.9) | 3.2 (2.1–4.1) | 0.70 |
Post-operative characteristics | ||||
Post-operative hemodynamic conditions | ||||
Arterial oxygen saturation (%), mean ± SD | 89.1 ± 5.7 | 87.4 ± 5.1 | 90 ± 5.8 | 0.11 |
* Systemic ventricular ejection fraction (%), median (IQR) | 60 (56–61) | 60 (55–62) | 60 (55–61) | 0.08 |
Mean left atrial pressure (mmHg), mean ± SD | 9.9 ± 1.9 | 10.1 ± 2.1 | 9.8 ± 1.9 | 0.53 |
Mean pulmonary artery pressure (mmHg), mean ± SD | 14.4 ± 3.6 | 14.8 ± 2.9 | 14.1 ± 3.9 | 0.48 |
Chest tube drains | ||||
Drainage time (days), median (IQR) | 14.3 (9.9–19.9) | 16.9 (8.9–20.8) | 13.9 (9.8–18.9) | 0.92 |
Volume (mL/day/m2), median (IQR) | 274 (227–376) | 256 (231–376) | 275 (214–387) | 0.59 |
Peritoneal drainage | ||||
Drainage time length (days), median (IQR) | 10.9 (7.9–15.9) | 10.8 (9.8–14.1) | 10.6 (7.9–18.9) | 0.83 |
Volume (mL/day/m2), median (IQR) | 275 (175–411) | 266.5 (194–392) | 280 (164–413) | 0.96 |
Follow-up characteristics | ||||
Age (years) at MRI, mean ± SD | 15.9 ± 2.9 | 20.8 ± 5.9 | 16.8 ± 4.3 | 0.006 |
Weight (kg) at MRI, mean ± SD | 53.2 ± 14.3 | 58.3 ± 14.1 | 50.5 ± 14.1 | 0.05 |
BSA (m2) at MRI, mean ± SD | 1.4 ± 0.2 | 1.5 ± 0.2 | 1.4 ± 0.2 | 0.03 |
NYHA class at follow-up, n (%) | ||||
I | 1 (1.8) | 0 (0) | 1 (2.8) | 0.45 |
II | 53 (98.1) | 19 (100) | 34 (97.2) |
Variable | OR | IC 95% | p | |
---|---|---|---|---|
Low | High | |||
Age at surgery (years) | 1.17 | 0.98 | 1.38 | 0.06 |
Weight at surgery (Kg) | 1.04 | 0.99 | 1.08 | 0.11 |
Predominant ventricular morphology | ||||
Left ventricle | Ref. | - | - | |
Right ventricle | 0.55 | 0.10 | 3.01 | 0.49 |
Undetermined | 5.78 | 0.54 | 60.87 | 0.14 |
Nakata index (mm2/m2) | 1.01 | 0.99 | 1.01 | 0.75 |
McGoon ratio | 0.67 | 0.12 | 3.71 | 0.65 |
Use of CPB | 0.34 | 0.11 | 1.12 | 0.07 |
Use of aortic clamping | 1.71 | 0.37 | 7.91 | 0.49 |
** Systemic ventricular ejection fraction at follow-up (%) | 1.09 | 0.95 | 1.25 | 0.19 |
Thoracic lymphatic perfusion pattern | ||||
Type 1 | Ref. | - | - | |
Type 2 | 0.51 | 0.13 | 2.04 | 0.34 |
Types 3 + 4 | 0.88 | 0.20 | 3.91 | 0.87 |
Variable | OR | IC 95% | p | |
---|---|---|---|---|
Low | High | |||
Age at surgery (years) | 1.23 | 1.02 | 1.48 | 0.02 |
** Systemic ventricular ejection fraction at follow-up (%) | 1.15 | 0.99 | 1.35 | 0.06 |
Thoracic lymphatic perfusion pattern | ||||
Type 1 | Ref. | - | - | |
Type 2 | 0.52 | 0.12 | 2.31 | 0.39 |
Types 3 + 4 | 1.22 | 0.23 | 6.38 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Zhindón, D.B.; Meléndez-Ramírez, G.; Patrón-Chi, S.A.; Rivera-Buendía, F.; Calderón-Colmenero, J.; García-Montes, J.A.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Cervantes-Salazar, J.L. Thoracic Lymphatic Perfusion Patterns Assessed by Magnetic Resonance Imaging and Late Fontan Failure. Diagnostics 2024, 14, 2611. https://doi.org/10.3390/diagnostics14232611
Ortega-Zhindón DB, Meléndez-Ramírez G, Patrón-Chi SA, Rivera-Buendía F, Calderón-Colmenero J, García-Montes JA, Pérez-Hernández N, Rodríguez-Pérez JM, Cervantes-Salazar JL. Thoracic Lymphatic Perfusion Patterns Assessed by Magnetic Resonance Imaging and Late Fontan Failure. Diagnostics. 2024; 14(23):2611. https://doi.org/10.3390/diagnostics14232611
Chicago/Turabian StyleOrtega-Zhindón, Diego B., Gabriela Meléndez-Ramírez, Sergio A. Patrón-Chi, Frida Rivera-Buendía, Juan Calderón-Colmenero, José A. García-Montes, Nonanzit Pérez-Hernández, José Manuel Rodríguez-Pérez, and Jorge L. Cervantes-Salazar. 2024. "Thoracic Lymphatic Perfusion Patterns Assessed by Magnetic Resonance Imaging and Late Fontan Failure" Diagnostics 14, no. 23: 2611. https://doi.org/10.3390/diagnostics14232611
APA StyleOrtega-Zhindón, D. B., Meléndez-Ramírez, G., Patrón-Chi, S. A., Rivera-Buendía, F., Calderón-Colmenero, J., García-Montes, J. A., Pérez-Hernández, N., Rodríguez-Pérez, J. M., & Cervantes-Salazar, J. L. (2024). Thoracic Lymphatic Perfusion Patterns Assessed by Magnetic Resonance Imaging and Late Fontan Failure. Diagnostics, 14(23), 2611. https://doi.org/10.3390/diagnostics14232611