Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review
Abstract
:1. Introduction
2. Physics and Technology of DECT
3. Applications of DECT
3.1. Iodine Maps and Iodine Quantification
3.2. Virtual Monochromatic Imaging (VMI)
3.3. Spectral Hounsfield Unit Attenuation Curves
3.4. Effective Atomic Number Zeff
3.5. Electron Density (ED)
3.6. Multi-Parameter Evaluation
3.7. Comparative Efficacy of DECT and Other Radiological Modalities
4. Limitation
5. Radiomics and Artificial Intelligence in DECT
6. Conclusions
Funding
Conflicts of Interest
References
- Gillot, L.; Baudin, L.; Rouaud, L.; Kridelka, F.; Noël, A. The Pre-Metastatic Niche in Lymph Nodes: Formation and Characteristics. Cell. Mol. Life Sci. 2021, 78, 5987–6002. [Google Scholar] [CrossRef]
- Li, L.; Cheng, S.N.; Zhao, Y.F.; Wang, X.Y.; Luo, D.H.; Wang, Y. Diagnostic Accuracy of Single-Source Dual-Energy Computed Tomography and Ultrasonography for Detection of Lateral Cervical Lymph Node Metastases of Papillary Thyroid Carcinoma. J. Thorac. Dis. 2019, 11, 5032–5041. [Google Scholar] [CrossRef]
- Wei, Q.; Wu, D.; Luo, H.; Wang, X.; Zhang, R.; Liu, Y. Features of Lymph Node Metastasis of Papillary Thyroid Carcinoma in Ultrasonography and Ct and the Significance of Their Combination in the Diagnosis and Prognosis of Lymph Node Metastasis. J. Buon 2018, 23, 1041–1048. [Google Scholar]
- Yang, S.Y.; Shin, J.H.; Hahn, S.Y.; Lim, Y.; Hwang, S.Y.; Kim, T.H.; Kim, J.S. Comparison of Ultrasonography and Ct for Preoperative Nodal Assessment of Patients with Papillary Thyroid Cancer: Diagnostic Performance According to Primary Tumor Size. Acta Radiol. 2020, 61, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Wei, C.; Wang, C.B.; Li, N.Y.; Zhang, P.; Dong, J.N. Preoperative Prediction of Cervical Nodal Metastasis in Papillary Thyroid Carcinoma: Value of Quantitative Dual-Energy Ct Parameters and Qualitative Morphologic Features. AJR Am. J. Roentgenol. 2021, 216, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, L.S.; Vogl, T.J.; Waldeck, S.S.; Overhoff, D.; D’Angelo, T.; Martin, S.S.; Yel, I.; Gruenewald, L.D.; Koch, V.; Fulisch, F.; et al. Dual-Energy Ct in Cardiothoracic Imaging: Current Developments. Diagnostics 2023, 13, 2116. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, L.; Primak, A.N.; McCollough, C.H. Quantitative Imaging of Element Composition and Mass Fraction Using Dual-Energy Ct: Three-Material Decomposition. Med. Phys. 2009, 36, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Hyun, W.G.; Jin, M.G. Dual-Energy CT: New Horizon in Medical Imaging. Korean J. Radiol. 2017, 18, 555–569. [Google Scholar]
- Rajendran, K.; Petersilka, M.; Henning, A.; Shanblatt, E.R.; Schmidt, B.; Flohr, T.G.; Ferrero, A.; Baffour, F.; Diehn, F.E.; Yu, L.; et al. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022, 303, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Uehara, K.; Ishigaki, S.; Nihashi, T.; Arimoto, A.; Nakamura, H.; Kamiya, T.; Oshiro, T.; Ebata, T.; Nagino, M. Clinical Significance of Dual-Energy Ct-Derived Iodine Quantification in the Diagnosis of Metastatic Ln in Colorectal Cancer. Eur. J. Surg. Oncol. 2015, 41, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Dong, J.; Wang, X.; Fu, X.; Zhang, T. Non-Small Cell Lung Cancer: Spectral Computed Tomography Quantitative Parameters for Preoperative Diagnosis of Metastatic Lymph Nodes. Eur. J. Radiol. 2017, 89, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Ehn, S.; Oechsner, M.; Kopp, F.K.; Pfeiffer, D.; Fingerle, A.A.; Pfeiffer, F.; Combs, S.E.; Wilkens, J.J.; Rummeny, E.J.; et al. Dual-layer spectral computed tomography: Measuring relative electron density. Eur. Radiol. Exp. 2018, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Murty, R.C. Effective Atomic Numbers of Heterogeneous Materials. Nature 1965, 207, 398–399. [Google Scholar] [CrossRef]
- Baxa, J.; Matouskova, T.; Krakorova, G.; Schmidt, B.; Flohr, T.; Sedlmair, M.; Bejcek, J.; Ferda, J. Dual-Phase Dual-Energy Ct in Patients Treated with Erlotinib for Advanced Non-Small Cell Lung Cancer: Possible Benefits of Iodine Quantification in Response Assessment. Eur. Radiol. 2016, 26, 2828–2836. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Chen, X.; Gao, P.; Zhao, K.; Zheng, C.; Zhou, H. Diagnostic Accuracy of Contrast-Enhanced Dual-Energy Computed Tomography for Detecting Metastatic Lymph Nodes in Patients with Malignant Tumors: A Systematic Review and Meta-Analysis. Quant. Imaging Med. Surg. 2023, 13, 3050–3065. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Fang, M.; Li, G.; Duan, X.; Mao, J.; Shen, J. Preoperative Diagnosis of Regional Lymph Node Metastasis of Colorectal Cancer with Quantitative Parameters from Dual-Energy Ct. AJR Am. J. Roentgenol. 2019, 213, W17–W25. [Google Scholar] [CrossRef]
- Toia, G.V.; Mileto, A.; Wang, C.L.; Sahani, D.V. Quantitative dual-energy CT techniques in the abdomen. Abdom. Radiol. 2022, 47, 3003–3018. [Google Scholar] [CrossRef]
- Tatsugami, F.; Higaki, T.; Nakamura, Y.; Honda, Y.; Awai, K. Dual-energy CT: Minimal essentials for radiologists. Jpn. J. Radiol. 2022, 40, 547–559. [Google Scholar] [CrossRef]
- Willard-Mack, C.L. Normal Structure, Function, and Histology of Lymph Nodes. Toxicol. Pathol. 2006, 34, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Hussaini, S.A.; Andola, S.K.; Mahanta, A. Study of Metastasis in Lymphnode Biopsies with Special Reference to Immunohistochemistry (Ihc) in Metastatic Breast Carcinoma. J. Clin. Diagn. Res. 2015, 9, Ec13–Ec16. [Google Scholar] [CrossRef] [PubMed]
- Pastushenko, I.; Van den Eynden, G.G.; Vicente-Arregui, S.; Prieto-Torres, L.; Alvarez-Alegret, R.; Querol, I.; Dirix, L.Y.; Carapeto, F.J.; Vermeulen, P.B.; Van Laere, S.J. Increased Angiogenesis and Lymphangiogenesis in Metastatic Sentinel Lymph Nodes Is Associated with Nonsentinel Lymph Node Involvement and Distant Metastasis in Patients with Melanoma. AJR Am. J. Dermatopathol. 2016, 38, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yan, F.; Pan, Z.; Lin, X.; Luo, X.; Shi, C.; Chen, X.; Wang, B.; Zhang, H. Evaluation of Dual Energy Spectral Ct in Differentiating Metastatic from Non-Metastatic Lymph Nodes in Rectal Cancer: Initial Experience. Eur. J. Radiol. 2015, 84, 228–234. [Google Scholar] [CrossRef]
- Zou, Y.; Zheng, M.; Qi, Z.; Guo, Y.; Ji, X.; Huang, L.; Gong, Y.; Lu, X.; Ma, G.; Xia, S. Dual-Energy Computed Tomography Could Reliably Differentiate Metastatic from Non-Metastatic Lymph Nodes of Less Than 0.5 Cm in Patients with Papillary Thyroid Carcinoma. Quant. Imaging Med. Surg. 2021, 11, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, S.; Sun, J.; Chang, J.; Liu, L.; Li, S. Dual-Source Dual-Energy Thin-Section Ct Combined with Small Field of View Technique for Small Lymph Node in Thyroid Cancer: A Retrospective Diagnostic Study. Gland Surg. 2021, 10, 1347–1358. [Google Scholar] [CrossRef]
- Zhou, Y.; Geng, D.; Su, G.Y.; Chen, X.B.; Si, Y.; Shen, M.P.; Xu, X.Q.; Wu, F.Y. Extracellular Volume Fraction Derived from Dual-Layer Spectral Detector Computed Tomography for Diagnosing Cervical Lymph Nodes Metastasis in Patients with Papillary Thyroid Cancer: A Preliminary Study. Front. Oncol. 2022, 12, 851244. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.K.; Geng, D.; Wang, J.W.; Chen, X.B.; Si, Y.; Shen, M.P.; Su, G.Y.; Xu, X.Q.; Wu, F.Y. Added Value of Arterial Enhancement Fraction Derived from Dual-Energy Computed Tomography for Preoperative Diagnosis of Cervical Lymph Node Metastasis in Papillary Thyroid Cancer: Initial Results. Eur. Radiol. 2023. [Google Scholar] [CrossRef]
- Hu, X.; Gu, Q.; Zhang, K.; Deng, D.; Li, L.; Li, P.; Shen, H. Dual-Energy Computed Tomography for the Diagnosis of Mediastinal Lymph Node Metastasis in Lung Cancer Patients: A Preliminary Study. J. Comput. Assist. Tomogr. 2021, 45, 490–494. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Ozawa, Y.; Hara, M.; Nakagawa, M.; Goto, T.; Shibamoto, Y. Visibility of the Hilar Lymph Nodes Using Advanced Virtual Monoenergetic Low-Kev Images for Preoperative Evaluation of Lung Cancer. Br. J. Radiol. 2019, 92, 20180734. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ren, Y.; Lu, C.; Qian, X.; Liu, Y.; Zhang, J.; Shan, X.; Sun, E. Radiomics Features from Whole Thyroid Gland Tissue for Prediction of Cervical Lymph Node Metastasis in the Patients with Papillary Thyroid Carcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 13005–13016. [Google Scholar] [CrossRef]
- Wang, T.; Fan, Z.; Zou, L.; Hou, Y. Can Quantitative Parameters of Spectral Computed Tomography Predict Lymphatic Metastasis in Lung Cancer? A Systematic Review and Meta-Analysis. Radiother. Oncol. 2023, 183, 109643. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, C.; Yang, Z.; Cheng, Z.; Deng, H.; Chen, M.; Duan, X.; Mao, J.; Shen, J. Axillary Sentinel Lymph Nodes in Breast Cancer: Quantitative Evaluation at Dual-Energy Ct. Radiology 2018, 289, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Chen, G.; Xie, H.; Zhang, R.; Yang, P.; Nie, R.; Zhou, Z.; Gao, F.; Chen, Y.; Xie, C. Preoperative Diagnosis of Metastatic Lymph Nodes by Ct-Histopathologic Matching Analysis in Gastric Adenocarcinoma Using Dual-Layer Spectral Detector Ct. Eur. Radiol. 2023, 33, 8948–8956. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Hu, J.; Weng, Z.; Liu, S.; Jiang, G.; Cai, X. A Prospective Study of Dual-Energy Computed Tomography for Differentiating Metastatic and Non-Metastatic Lymph Nodes of Colorectal Cancer. Quant. Imaging Med. Surg. 2021, 11, 3448–3459. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ouyang, D.; Li, H.; Zhang, R.; Lv, Y.; Yang, A.; Xie, C. Papillary Thyroid Cancer: Dual-Energy Spectral Ct Quantitative Parameters for Preoperative Diagnosis of Metastasis to the Cervical Lymph Nodes. Radiology 2015, 275, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.R.; Yang, Q.H.; Liu, Q.Y.; Min, J.; Li, H.G.; Liu, Z.F.; Li, J.X. Dual Energy Computed Tomography for Detection of Metastatic Lymph Nodes in Patients with Hepatocellular Carcinoma. World J. Gastroenterol. 2019, 25, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, X.; Wen, Z.; Lu, B.; Xiao, X.; Shen, B.; Yu, S. Fat-Suppressed Gadolinium-Enhanced Isotropic High-Resolution 3d-Gre-T1wi for Predicting Small Node Metastases in Patients with Rectal Cancer. Cancer Imaging 2018, 18, 21. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, X.L.; Liu, S.R.; Weng, Z.P.; Chen, X.Q.; Feng, Y.Z.; Cai, X.R.; Guo, C.Y. Role of Quantitative Intravoxel Incoherent Motion Parameters in the Preoperative Diagnosis of Nodal Metastasis in Patients with Rectal Carcinoma. J. Magn. Reson. Imaging 2016, 44, 1031–1039. [Google Scholar] [CrossRef]
- Yoon, J.; Choi, Y.; Jang, J.; Shin, N.Y.; Ahn, K.J.; Kim, B.S. Preoperative Assessment of Cervical Lymph Node Metastases in Patients with Papillary Thyroid Carcinoma: Incremental Diagnostic Value of Dual-Energy Ct Combined with Ultrasound. PLoS ONE 2021, 16, e0261233. [Google Scholar] [CrossRef]
- Kupik, O.; Metin, Y.; Eren, G.; Metin, N.; Arpa, M. A comparison study of dual-energy spectral CT and 18F-FDG PET/CT in primary tumors and lymph nodes of lung cancer. Diagn. Interv. Radiol. 2021, 27, 275–282. [Google Scholar] [CrossRef]
- Nagano, H.; Takumi, K.; Nakajo, M.; Fukukura, Y.; Kumagae, Y.; Jinguji, M.; Tani, A.; Yoshiura, T. Dual-Energy Ct-Derived Electron Density for Diagnosing Metastatic Mediastinal Lymph Nodes in Non-Small Cell Lung Cancer: Comparison with Conventional Ct and Fdg Pet/Ct Findings. AJR Am. J. Roentgenol. 2022, 218, 66–74. [Google Scholar] [CrossRef]
- Al-Najami, I.; Lahaye, M.J.; Beets-Tan, R.G.H.; Baatrup, G. Dual-Energy Ct Can Detect Malignant Lymph Nodes in Rectal Cancer. Eur. J. Radiol. 2017, 90, 81–88. [Google Scholar] [CrossRef]
- Al-Najami, I.; Beets-Tan, R.G.; Madsen, G.; Baatrup, G. Dual-Energy Ct of Rectal Cancer Specimens: A Ct-Based Method for Mesorectal Lymph Node Characterization. Dis. Colon Rectum 2016, 59, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Yalon, M.; Sae-Kho, T.; Khanna, A.; Chang, S.; Andrist, B.R.; Weber, N.M.; Hoodeshena, S.; Ferrero, A.; Glazebrook, K.N.; Mc Collough, C.H.; et al. Staging of breast cancer in the breast and regional lymph nodes using contrast-enhanced photon-counting detector CT: Accuracy and potential impact on patient management. Br. J. Radiol. 2023, 97, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Shi, Q.Q.; Li, Z.M.; Li, Z.Y.; Kang, L.Q. Diagnostic Value of Spiral Ct Energy Spectrum Imaging in Lymph Node Metastasis of Colorectal Cancer. Int. J. Colorectal Dis. 2022, 37, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More Than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A Deep Look into Radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef]
- Parekh, V.S.; Jacobs, M.A. Deep Learning and Radiomics in Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2019, 4, 59–72. [Google Scholar] [CrossRef]
- Chianca, V.; Albano, D.; Messina, C.; Vincenzo, G.; Rizzo, S.; Del Grande, F.; Sconfienza, L.M. An Update in Musculoskeletal Tumors: From Quantitative Imaging to Radiomics. Radiol. Med. 2021, 126, 1095–1105. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.; Desideri, I.; et al. Delta Radiomics: A Systematic Review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, G.Y.; Hu, H.; Ge, Y.Q.; Si, Y.; Shen, M.P.; Xu, X.Q.; Wu, F.Y. Radiomics Analysis of Dual-Energy Ct-Derived Iodine Maps for Diagnosing Metastatic Cervical Lymph Nodes in Patients with Papillary Thyroid Cancer. Eur. Radiol. 2020, 30, 6251–6262. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.Y.; Chu, C.Y.; Hsiung, Y.C.; Chuang, M.T.; Tseng, Y.L.; Yen, Y.T. Extracellular Volume Fraction Measurement Correlates with Lymphocyte Abundance in Thymic Epithelial Tumors. Cancer Imaging 2020, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Su, G.Y.; Hu, H.; Tao, X.W.; Ge, Y.Q.; Si, Y.; Shen, M.P.; Xu, X.Q.; Wu, F.Y. Radiomics from Primary Tumor on Dual-Energy Ct Derived Iodine Maps Can Predict Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Acad. Radiol. 2022, 29, S222–S231. [Google Scholar] [CrossRef]
- Wang, D.; Zhuang, Z.; Wu, S.; Chen, J.; Fan, X.; Liu, M.; Zhu, H.; Wang, M.; Zou, J.; Zhou, Q.; et al. A Dual-Energy Ct Radiomics of the Regional Largest Short-Axis Lymph Node Can Improve the Prediction of Lymph Node Metastasis in Patients with Rectal Cancer. Front. Oncol. 2022, 12, 846840. [Google Scholar] [CrossRef]
- Wang, Y.W.; Chen, C.J.; Wang, T.C.; Huang, H.C.; Chen, H.M.; Shih, J.Y.; Chen, J.S.; Huang, Y.S.; Chang, Y.C.; Chang, R.F. Multi-Energy Level Fusion for Nodal Metastasis Classification of Primary Lung Tumor on Dual Energy Ct Using Deep Learning. Comput. Biol. Med. 2022, 141, 105185. [Google Scholar] [CrossRef]
- Wang, Y.W.; Chen, C.J.; Huang, H.C.; Wang, T.C.; Chen, H.M.; Shih, J.Y.; Chen, J.S.; Huang, Y.S.; Chang, Y.C.; Chang, R.F. Dual Energy Ct Image Prediction on Primary Tumor of Lung Cancer for Nodal Metastasis Using Deep Learning. Comput. Med. Imaging Graph. 2021, 91, 101935. [Google Scholar] [CrossRef]
- An, C.; Li, D.; Li, S.; Li, W.; Tong, T.; Liu, L.; Jiang, D.; Jiang, L.; Ruan, G.; Hai, N.; et al. Deep Learning Radiomics of Dual-Energy Computed Tomography for Predicting Lymph Node Metastases of Pancreatic Ductal Adenocarcinoma. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, D.; Fang, M.; Wang, R.; Tian, J.; Li, H.; Gao, J. Dual-Energy Ct-Based Deep Learning Radiomics Can Improve Lymph Node Metastasis Risk Prediction for Gastric Cancer. Eur. Radiol. 2020, 30, 2324–2333. [Google Scholar] [CrossRef] [PubMed]
- Forghani, R.; Chatterjee, A.; Reinhold, C.; Pérez-Lara, A.; Romero-Sanchez, G.; Ueno, Y.; Bayat, M.; Alexander, J.W.M.; Kadi, L.; Chankowsky, J.; et al. Head and Neck Squamous Cell Carcinoma: Prediction of Cervical Lymph Node Metastasis by Dual-Energy Ct Texture Analysis with Machine Learning. Eur. Radiol. 2019, 29, 6172–6181. [Google Scholar] [CrossRef]
- Li, J.; Fang, M.; Wang, R.; Dong, D.; Tian, J.; Liang, P.; Liu, J.; Gao, J. Diagnostic Accuracy of Dual-Energy Ct-Based Nomograms to Predict Lymph Node Metastasis in Gastric Cancer. Eur. Radiol. 2018, 28, 5241–5249. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Fang, X.; Jiang, H.; Zhu, M.; Yu, J.; Zhao, H.; Zhang, L.; Yao, J.; Lu, L.; et al. Artificial Intelligence to Predict Lymph Node Metastasis at Ct in Pancreatic Ductal Adenocarcinoma. Radiology 2023, 306, 160–169. [Google Scholar] [CrossRef]
Parameter | Explanation |
---|---|
iodine concentration (IC) | quantitative parameters, reflect the iodine content of tissues and indirectly reflect blood supply |
normalized iodine concentration (NIC) | quantitative parameters, NIC = IClymph/ICvessel; avoids the effect of individual differences compared with IC [10]. |
slope of the spectral Hounsfield unit curve (λHu) | quantitative parameters, λHU = CTvalue40keV − CTvalue60keV/60, determined by physical and chemical nature of the substance [11] |
electron density (ED) | quantitative parameters, the average number of electrons in a volume unit (typically expressed in e/cm3) [12], varies with the location of electrons, elemental composition, and structure of tissue |
effective atomic number (Zeff) | quantitative parameters, the interaction cross sections for photoelectric effect and Compton scattering can be approximately expressed as proportional to Zeffn, where n is between 4 and 5 for photoelectric effect and 1 for Compton [13] |
extracellular volume (ECV) fraction | quantitative parameters, quantify the iodine contrast in intravascular and extravascular–extracellular spaces |
arterial enhancement fraction (AEF) | quantitative parameters, iodine uptake in arterial phase (AP)/iodine uptake in venous phase (VP) × 100% [14] |
attenuation value of virtual monochromatic images (VMI) | qualitative parameters, optimizes both image noise and contrast, allows for monoenergetic contrast attenuation measurement |
Post-Processing Techniques | Explanation |
---|---|
iodine maps | material decomposition images, display the attenuation characteristics attributable to iodine, serve not only as quantitative indicators of blood supply to tissues, provide insights into the angiogenesis and hemodynamic status of lesions [15] |
Zeff map | material decomposition images, a quantitative approach used for calculating Zeff, provide not only density but also elemental information of samples [16] |
electron density map | material decomposition images, used by TPS softwares for calculating dose distributions, DECT allows better quantification of ED [12] |
virtual monochromatic imaging (VMI) | also referred to as “monoenergetic imaging”, generated within the 40–190 keV range, renowned for its ability to optimize image noise and contrast while allowing precise monoenergetic contrast attenuation measurements [17] |
spectral Hounsfield unit attenuation curves | serve as a quantitative measure correlating with different energy levels in VMI, represent the energy-dependent changes in attenuation within a region of interest, typically spanning from 40 to 140 keV, varies across different tissues [18] |
virtual non-contrast (VNC) | produced by subtracting the iodine map from the dual-energy enhanced CT image, may replace a pre-contrast scan and substantially reduce radiation exposure [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Jiang, Y.; Zhou, X.; Wu, D.; Xie, Q. Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics 2024, 14, 377. https://doi.org/10.3390/diagnostics14040377
Chen M, Jiang Y, Zhou X, Wu D, Xie Q. Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics. 2024; 14(4):377. https://doi.org/10.3390/diagnostics14040377
Chicago/Turabian StyleChen, Mengting, Yundan Jiang, Xuhui Zhou, Di Wu, and Qiuxia Xie. 2024. "Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review" Diagnostics 14, no. 4: 377. https://doi.org/10.3390/diagnostics14040377
APA StyleChen, M., Jiang, Y., Zhou, X., Wu, D., & Xie, Q. (2024). Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics, 14(4), 377. https://doi.org/10.3390/diagnostics14040377