Joint Expedition: Exploring Clinical Medical Imaging and Artificial Intelligence as a Team Integration
1. The Joint Expedition Exploring Clinical Medical Imaging and Artificial Intelligence
2. Conclusive Discoveries: A Closer Look at the Contributions
2.1. An Overview of the Contributions
2.1.1. Pirrera, A. et al. (Co. 1): Exploring the Synergy in Clinical Imaging with Artificial Intelligence
2.1.2. Lin, P.-C. et al. (Co. 2): Machine Learning for Lumbar Disc Height Correlation on X-rays
2.1.3. Stanojević Pirković, M. et al. (Co. 3): Fractional Flow Reserve-Based Patient Risk Classification
2.1.4. Rao, P.K. et al. (Co. 4): Efficient Kidney Tumor Segmentation with UNet-PWP Deep-Learning Model on CT Scan Images
2.1.5. Kaur, M. et al. (Co. 5): ESRNet for Efficient Brain Tumor Classification
2.1.6. Chen, Y.-Y. et al. (Co. 6): Bone Metastases Segmentation on Breast Cancer Bone Scans
2.1.7. Wu, H. et al. (Co. 7): One-Stage Detection for Multi-Type Coronary Lesions with Deep Learning
2.1.8. Jönemo, J. et al. (Co. 8): Augmentation Methods for Autism Classification with 3D CNN
2.1.9. Bhimavarapu, U. et al. (Co. 9): Automatic Diabetic Retinopathy Detection with CNN
2.1.10. Wu, S. et al. (Co. 10): Coarse-to-Fine Fusion Network for Small Liver Tumor Detection
2.1.11. Bragança, C.P. et al. (Co. 11): Advancements in AI for Glaucoma Diagnosis
2.1.12. Giansanti, D. (Co. 12): Umbrella Review of fMRI and AI Fusion in Autism
2.1.13. Giansanti, D. (Co. 13): AI-Enabled Fusion for Enhanced Autism Spectrum Disorder Diagnosis
2.2. Conclusive Global Reflection
3. Common Message, Key Emerging Themes, and Suggestions for a Broader Investigation
3.1. Common Messages
3.2. Suggestions for a Broader Investigation and Key Emerging Themes
4. Conclusions
Conflicts of Interest
List of Contributions
- Pirrera, A.; Giansanti, D. Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence. Diagnostics 2023, 13, 2162. https://doi.org/10.3390/diagnostics13132162.
- Lin, P.-C.; Chang, W.-S.; Hsiao, K.-Y.; Liu, H.-M.; Shia, B.-C.; Chen, M.-C.; Hsieh, P.-Y.; Lai, T.-W.; Lin, F.-H.; Chang, C.-C. Development of a Machine Learning Algorithm to Correlate Lumbar Disc Height on X-rays with Disc Bulging or Herniation. Diagnostics 2024, 14, 134. https://doi.org/10.3390/diagnostics14020134.
- Stanojević Pirković, M.; Pavić, O.; Filipović, F.; Saveljić, I.; Geroski, T.; Exarchos, T.; Filipović, N. Fractional Flow Reserve-Based Patient Risk Classification. Diagnostics 2023, 13, 3349. https://doi.org/10.3390/diagnostics13213349.
- Rao, P.K.; Chatterjee, S.; Janardhan, M.; Nagaraju, K.; Khan, S.B.; Almusharraf, A.; Alharbe, A.I. Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation Using a UNet-PWP Deep-Learning Model with XAI on CT Scan Images. Diagnostics 2023, 13, 3244. https://doi.org/10.3390/diagnostics13203244.
- Kaur, M.; Singh, D.; Roy, S.; Amoon, M. Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification. Diagnostics 2023, 13, 3234. https://doi.org/10.3390/diagnostics13203234.
- Chen, Y.-Y.; Yu, P.-N.; Lai, Y.-C.; Hsieh, T.-C.; Cheng, D.-C. Bone Metastases Lesion Segmentation on Breast Cancer Bone Scan Images with Negative Sample Training. Diagnostics 2023, 13, 3042. https://doi.org/10.3390/diagnostics13193042.
- Wu, H.; Zhao, J.; Li, J.; Zeng, Y.; Wu, W.; Zhou, Z.; Wu, S.; Xu, L.; Song, M.; Yu, Q.; et al. One-Stage Detection without Segmentation for Multi-Type Coronary Lesions in Angiography Images Using Deep Learning. Diagnostics 2023, 13, 3011. https://doi.org/10.3390/diagnostics13183011.
- Jönemo, J.; Abramian, D.; Eklund, A. Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks. Diagnostics 2023, 13, 2773. https://doi.org/10.3390/diagnostics13172773.
- Bhimavarapu, U.; Chintalapudi, N.; Battineni, G. Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network. Diagnostics 2023, 13, 2606. https://doi.org/10.3390/diagnostics13152606.
- Wu, S.; Yu, H.; Li, C.; Zheng, R.; Xia, X.; Wang, C.; Wang, H. A Coarse-to-Fine Fusion Network for Small Liver Tumor Detection and Segmentation: A Real-World Study. Diagnostics 2023, 13, 2504. https://doi.org/10.3390/diagnostics13152504.
- Bragança, C.P.; Torres, J.M.; Macedo, L.O.; Soares, C.P.D.A. Advancements in Glaucoma Diagnosis: The Role of AI in Medical Imaging. Diagnostics 2024, 14, 530.
- Giansanti, D. An Umbrella Review of the Fusion of fMRI and AI in Autism. Diagnostics 2023, 13, 3552. https://doi.org/10.3390/diagnostics13233552.
- Giansanti, D. AI-Enabled Fusion of Medical Imaging, Behavioral Analysis and Other Systems for Enhanced Autism Spectrum Disorder. Comment on Jönemo et al. Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks. Diagnostics 2023, 13, 2773; reprinted in Diagnostics 2023, 13, 3545. https://doi.org/10.3390/diagnostics13233545.
References
- Albano, D.; Galiano, V.; Basile, M.; Di Luca, F.; Gitto, S.; Messina, C.; Cagetti, M.G.; Del Fabbro, M.; Tartaglia, G.M.; Sconfienza, L.M. Artificial intelligence for radiographic imaging detection of caries lesions: A systematic review. BMC Oral Health 2024, 24, 274. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Si, M.; Xue, P.; Qu, Y.; Jiang, Y. Artificial intelligence performance in detecting lymphoma from medical imaging: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 2024, 24, 13. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, M.; Hashimoto, K. Artificial intelligence in gynecologic cancers: Current status and future challenges—A systematic review. Artif. Intell. Med. 2021, 120, 102164. [Google Scholar] [CrossRef] [PubMed]
- Grignaffini, F.; Barbuto, F.; Troiano, M.; Piazzo, L.; Simeoni, P.; Mangini, F.; De Stefanis, C.; Muda, A.O.; Frezza, F.; Alisi, A. The Use of Artificial Intelligence in the Liver Histopathology Field: A Systematic Review. Diagnostics 2024, 14, 388. [Google Scholar] [CrossRef] [PubMed]
- Furriel, B.C.R.S.; Oliveira, B.D.; Prôa, R.; Paiva, J.Q.; Loureiro, R.M.; Calixto, W.P.; Reis, M.R.C.; Giavina-Bianchi, M. Artificial intelligence for skin cancer detection and classification for clinical environment: A systematic review. Front. Med. 2024, 10, 1305954. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.R.N.; Teles, A.S.; Fernandes, T.R.S.; Lima, L.D.B.; Balhara, S.; Gupta, N.; Teixeira, S. Artificial Intelligence on Diagnostic Aid of Leprosy: A Systematic Literature Review. J. Clin. Med. 2023, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.; Kitcher, S.; Attrazic, E.; Hing, W.; Cottrell, M. The Health Economic Impact of Musculoskeletal Physiotherapy Delivered by Telehealth: A Systematic Review. Int. J. Telerehabil. 2022, 14, e6524. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kaur, N.; Prabhu, A. Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review. Curr. Top. Med. Chem. 2024, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
Themes | Description | Studies |
---|---|---|
Spinal and Skeletal Insights | Machine Learning for Lumbar Disc Height Correlation on X-rays. Bone Metastases Segmentation on Breast Cancer Bone Scans. | (Co. 2) (Co. 6) |
Cardiovascular Precision | Fractional Flow Reserve-Based Patient Risk Classification. One-Stage Detection for Multi-Type Coronary Lesions with Deep Learning. | (Co. 3) (Co. 7) |
Renal and Hepatic tumor detection/segmentation | Efficient Kidney Tumor Segmentation with UNet-PWP Deep-Learning Model on CT Scan Images. Coarse-to-Fine Fusion Network for Small Liver Tumor Detection. | (Co. 4) (Co.10) |
Neurological Exploration | ESRNet for Efficient Brain Tumor Classification. Augmentation Methods for Autism Classification with 3D CNN. AI-Enabled Fusion for Enhanced Autism Spectrum Disorder Diagnosis. | (Co. 5) (Co. 8) (Co. 13) |
Ocular Health Focus | Co. 9: Automatic Diabetic Retinopathy Detection with CNN. Co. 11: Advancements in AI for Glaucoma Diagnosis | (Co. 9) (Co. 11) |
AI and fMRI | Umbrella Review of fMRI and AI Fusion in Autism | (Co. 12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giansanti, D. Joint Expedition: Exploring Clinical Medical Imaging and Artificial Intelligence as a Team Integration. Diagnostics 2024, 14, 584. https://doi.org/10.3390/diagnostics14060584
Giansanti D. Joint Expedition: Exploring Clinical Medical Imaging and Artificial Intelligence as a Team Integration. Diagnostics. 2024; 14(6):584. https://doi.org/10.3390/diagnostics14060584
Chicago/Turabian StyleGiansanti, Daniele. 2024. "Joint Expedition: Exploring Clinical Medical Imaging and Artificial Intelligence as a Team Integration" Diagnostics 14, no. 6: 584. https://doi.org/10.3390/diagnostics14060584
APA StyleGiansanti, D. (2024). Joint Expedition: Exploring Clinical Medical Imaging and Artificial Intelligence as a Team Integration. Diagnostics, 14(6), 584. https://doi.org/10.3390/diagnostics14060584