Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Search Strategy
2.2. Eligibility Criteria and Study Selection
- Publication Type: Peer-reviewed journal articles reporting original research studies were included. Conference abstracts, editorials, letters, and reviews were excluded.
- Study Design: Studies employing radiomics methodology for the analysis of medical imaging data in pediatric patients with sarcomas were eligible for inclusion. Both retrospective and prospective studies were considered.
- Population: Studies involving pediatric patients (aged ≤ 18 years) diagnosed with sarcomas of various subtypes, including but not limited to osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, and liposarcoma, were included.
- Outcome Measures: Studies reporting on the application of radiomic features extracted from medical imaging modalities such as MRI, CT, or PET/CT and PET/MRI for the diagnosis, prognosis, treatment response assessment, or predictive modeling of pediatric sarcomas were included.
- Language: Studies published in English were considered for inclusion in this review.
2.3. Data Extraction
2.4. Analysis of the Quality Based on Radiomics Quality Score (RQS)
2.5. Analysis of the Methodological Radiomics Score (METRICS)
- Very Low Quality (0 ≤ score < 20%): Radiomics studies falling within this category exhibit very low methodological quality, indicating significant deficiencies in study methodology.
- Low Quality (20 ≤ score < 40%): Studies categorized as low quality demonstrate an improvement over very low quality but still exhibit notable shortcomings in methodological rigor.
- Moderate Quality (40 ≤ score < 60%): Studies in the moderate quality category indicate a satisfactory level of methodological rigor, with noticeable improvements compared to low-quality studies.
- Good Quality (60 ≤ score < 80%): Studies classified as good quality demonstrate a significantly improved level of methodological rigor, with strong adherence to established guidelines and standards.
- Excellent Quality (80 ≤ score ≤ 100%): Studies achieving excellent quality represent the highest level of methodological rigor, exhibiting exceptional adherence to best practices and standards in radiomics research.
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Quality Assessment Using RQS
3.4. Methodological Rigor Assessment Using METRICS
4. Discussion
4.1. Methodological Transparency
4.2. Primary Investigative Objectives
4.3. Current Landscape, Challenges, and Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandler, G.; Yokoi, A.; Hayes-Jordan, A. An Update in the Management of Pediatric Sarcoma. Curr. Opin. Pediatr. 2019, 31, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.F.; Fernandez-Pineda, I.; Gosain, A. Pediatric Sarcomas. Surg. Clin. N. Am. 2016, 96, 1107–1125. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Fadli, D.; Italiano, A.; Saut, O.; Buy, X.; Kind, M. Systematic Review of Sarcomas Radiomics Studies: Bridging the Gap between Concepts and Clinical Applications? Eur. J. Radiol. 2020, 132, 109283. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Akinci D’Antonoli, T.; Mercaldo, N.; Alberich-Bayarri, A.; Baessler, B.; Ambrosini, I.; Andreychenko, A.E.; Bakas, S.; Beets-Tan, R.G.H.; Bressem, K.; et al. METhodological RadiomICs Score (METRICS): A Quality Scoring Tool for Radiomics Research Endorsed by EuSoMII. Insights Imaging 2024, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Hu, Y.; Si, L.; Jia, G.; Xing, Y.; Zhang, H.; Yao, W. A Systematic Review of Radiomics in Osteosarcoma: Utilizing Radiomics Quality Score as a Tool Promoting Clinical Translation. Eur. Radiol. 2021, 31, 1526–1535. [Google Scholar] [CrossRef]
- Di Salle, G.; Tumminello, L.; Laino, M.E.; Shalaby, S.; Aghakhanyan, G.; Fanni, S.C.; Febi, M.; Shortrede, J.E.; Miccoli, M.; Faggioni, L.; et al. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. Radiol. Artif. Intell. 2023, 6, e220257. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Cuocolo, R.; Huisman, M.; Messina, C.; Albano, D.; Omoumi, P.; Kotter, E.; Maas, M.; Van Ooijen, P.; Sconfienza, L.M. CT and MRI Radiomics of Bone and Soft-Tissue Sarcomas: An Updated Systematic Review of Reproducibility and Validation Strategies. Insights Imaging 2024, 15, 54. [Google Scholar] [CrossRef]
- Fleiss, J.L. Measuring Nominal Scale Agreement among Many Raters. Psychol. Bull. 1971, 76, 378–382. [Google Scholar] [CrossRef]
- Aydos, U.; Balci, E.; Ateş, S.G.; Akdemir, Ü.Ö.; Karadeniz, C.; Atay, L.Ö. Quantitative and Visual Analyses of the Effect of Activity Reduction on Image Metrics and Quality in 18F-FDG PET/MRI in Pediatric Oncology. Turk. J. Med. Sci. 2023, 53, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Aydos, U.; Sever, T.; Vural, Ö.; Topuz Türkcan, B.; Okur, A.; Akdemir, Ü.Ö.; Poyraz, A.; Pinarli, F.G.; Atay, L.Ö.; Karadeniz, C. Prognostic Value of Fluorodeoxyglucose Positron Emission Tomography Derived Metabolic Parameters and Textural Features in Pediatric Sarcoma. Nucl. Med. Commun. 2022, 43, 778–786. [Google Scholar] [CrossRef]
- Bailly, C.; Leforestier, R.; Campion, L.; Thebaud, E.; Moreau, A.; Kraeber-Bodere, F.; Carlier, T.; Bodet-Milin, C. Prognostic Value of FDG-PET Indices for the Assessment of Histological Response to Neoadjuvant Chemotherapy and Outcome in Pediatric Patients with Ewing Sarcoma and Osteosarcoma. PLoS ONE 2017, 12, e0183841. [Google Scholar] [CrossRef] [PubMed]
- Bouhamama, A.; Leporq, B.; Khaled, W.; Nemeth, A.; Brahmi, M.; Dufau, J.; Marec-Bérard, P.; Drapé, J.-L.; Gouin, F.; Bertrand-Vasseur, A.; et al. Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics. Radiol. Imaging Cancer 2022, 4, e210107. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Kim, W.S.; Choi, Y.H.; Ha, J.Y.; Lee, S.; Park, S.J.; Cheon, J.-E.; Kang, H.J.; Shin, H.Y.; Kim, I.-O. Computerized Texture Analysis of Pulmonary Nodules in Pediatric Patients with Osteosarcoma: Differentiation of Pulmonary Metastases from Non-Metastatic Nodules. PLoS ONE 2019, 14, e0211969. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Xu, P.; Ma, Y.; Yao, W.; Li, K.; Gong, Y. MRI-Based Radiomics in Distinguishing Kaposiform Hemangioendothelioma (KHE) and Fibro-Adipose Vascular Anomaly (FAVA) in Extremities: A Preliminary Retrospective Study. J. Pediatr. Surg. 2022, 57, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Giraudo, C.; Fichera, G.; Stramare, R.; Bisogno, G.; Motta, R.; Evangelista, L.; Cecchin, D.; Zucchetta, P. Radiomic Features as Biomarkers of Soft Tissue Paediatric Sarcomas: Preliminary Results of a PET/MR Study. Radiol. Oncol. 2022, 56, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Yang, P.-F.; Chen, S.; Shao, Y.-Y.; Xu, L.; Wu, Y.; Teng, W.; Zhou, X.-Z.; Li, B.-H.; Luo, C.; et al. A Delta-Radiomics Model for Preoperative Evaluation of Neoadjuvant Chemotherapy Response in High-Grade Osteosarcoma. Cancer Imaging 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Sarioglu, F.C.; Sarioglu, O.; Guleryuz, H.; Ozer, E.; Ince, D.; Olgun, H.N. MRI-Based Texture Analysis for Differentiating Pediatric Craniofacial Rhabdomyosarcoma from Infantile Hemangioma. Eur. Radiol. 2020, 30, 5227–5236. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Zhou, C.; Ma, X. Novel Computer Aided Diagnostic Models on Multimodality Medical Images to Differentiate Well Differentiated Liposarcomas from Lipomas Approached by Deep Learning Methods. Orphanet J. Rare Dis. 2022, 17, 158. [Google Scholar] [CrossRef]
- Self, C.; MacQuarrie, K.L.; Cost, C.R. Osteosarcoma/Ewing Sarcoma. Pediatr. Rev. 2022, 43, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Spadarella, G.; Stanzione, A.; Akinci D’Antonoli, T.; Andreychenko, A.; Fanni, S.C.; Ugga, L.; Kotter, E.; Cuocolo, R. Systematic Review of the Radiomics Quality Score Applications: An EuSoMII Radiomics Auditing Group Initiative. Eur. Radiol. 2022, 33, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Akinci D’Antonoli, T.; Cavallo, A.U.; Vernuccio, F.; Stanzione, A.; Klontzas, M.E.; Cannella, R.; Ugga, L.; Baran, A.; Fanni, S.C.; Petrash, E.; et al. Reproducibility of Radiomics Quality Score: An Intra- and Inter-Rater Reliability Study. Eur. Radiol. 2023, 34, 2791–2804. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Title | Study Design # | Sample Size | Tumor Type | Analysis Strategy * | Software | Radiomic Feature | Feature Type | Sequences | Imaging Modality | Segmentation ** | Primary Investigative Objectives |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bailly et al. [13] | 2017 | Prognostic Value of FDG-PET Indices for the Assessment of Histological Response to Neoadjuvant Chemotherapy and Outcome in Pediatric Patients with Ewing Sarcoma and Osteosarcoma | R | 62 | Ewing sarcoma, osteosarcoma | U; M | PLANE-T1Onco-Solution; https://www.dosisoft.com/products/planet-onco/ | 9 | Heterogeneity (GLCM, GLRLM, and GLSZM), Shape features | single | [18F]FDG PET/CT | 3D, A | prognostic |
Cho et al. [15] | 2019 | Computerized Texture Analysis of Pulmonary Nodules in Pediatric Patients with Osteosarcoma: Differentiation of Pulmonary Metastases from Non-Metastatic Nodules | R | 16 | Osteosarcoma | U | MISSTA; in-house software program | 12 | first-order, second-order texture, and morphologic features | single | CT | 2D, M | diagnostic |
Lin et al. [18] | 2020 | A Delta-Radiomics Model for Preoperative Evaluation of Neoadjuvant Chemotherapy Response in High-Grade Osteosarcoma | R | 191 | Osteosarcoma | M | ITK-SNAP; http://www.itksnap.org/pmwiki/pmwiki.php | 68 | Intensity, texture, and wavelet features | single | CT | 3D, M | treatment response |
Sarioglu et al. [19] | 2020 | MRI-Based Texture Analysis for Differentiating Pediatric Craniofacial Rhabdomyosarcoma from Infantile Hemangioma | R | 15 | Craniofacial rhabdomyosarcoma | U | LifeX; https://www.lifexsoft.org | 38 | texture features | multiple | MRI | 2D, M | diagnostic |
Ding et al. [16] | 2020 | MRI-Based Radiomics in Distinguishing Kaposiform Hemangioendothelioma (KHE) and Fibro-Adipose Vascular Anomaly (FAVA) in Extremities: A Preliminary Retrospective Study | R | 30 | Kaposiform hemangioendothelioma | M | 3D Slicer; https://www.slicer.org | 107 | Shape and first- and second-order features | single | MRI | 3D, M | diagnostic |
Giraudo et al. [17] | 2022 | Radiomic Features as Biomarkers of Soft Tissue Paediatric Sarcomas: preliminary results of a PET/MR study | R | 18 | Soft tissue sarcomas (mainly rhabdomyosarcomas) | U | 3D Slicer; https://www.slicer.org | 33 | First- and second-order features | single | [18F]FDG PET/MRI | 3D, M | diagnostic |
Aydos et al. [12] | 2022 | Prognostic Value of Fluorodeoxyglucose Positron Emission Tomography-Derived Metabolic Parameters and Textural Features in Pediatric Sarcoma | R | 43 | Osteosarcoma, Ewing sarcoma, rhabdomyosarcoma | U; M | LifeX; https://www.lifexsoft.org | 15 | Histogram, GLRLM, GLCM, NGLDM, DLZLM | single | [18F]FDG PET/CT | 3D, SA | prognostic |
Bouhamama et al. [14] | 2022 | Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics | R | 176 | Osteosarcoma | ML; DL | ITK-SNAP; http://www.itksnap.org/pmwiki/pmwiki.php | 342 | Size, shape, and texture features | single | MRI | 3D, M | treatment response |
Yang et al. [20] | 2022 | Novel Computer-Aided Diagnostic Models on Multimodality Medical Images to Differentiate Well-Differentiated Liposarcomas from Lipomas Approached by Deep Learning Methods | R | 58 | Well-differentiated liposarcoma | U; M; ML; DL | ITK-SNAP http://www.itksnap.org/pmwiki/pmwiki.php | 851 | First-order; shape and second-order features | multiple | CT; MRI | 3D, M | diagnostic, prognostic |
Aydos et al. [11] | 2023 | Quantitative and Visual Analyses of the Effect of Activity Reduction on Image Metrics and Quality in 18F-FDG PET/MRI in Pediatric Oncology | R | 19 | Sarcoma | U | LifeX; https://www.lifexsoft.org | 32 | Histogram, GLRLM, GLCM, NGLDM, DLZLM | single | [18F]FDG PET/CT | 3D, SA | other (reduced injected tracer activities) |
Reader 1 | Reader 2 | |||
---|---|---|---|---|
First Author | Total METRICS | Quality Category | Total METRICS | Quality Category |
Bailly C (2017) [13] | 43.6 | Moderate | 52.5 | Moderate |
Cho YJ (2019) [15] | 59.6 | Moderate | 55.6 | Moderate |
Lin P (2020) [18] | 68.6 | Good | 71.3 | Good |
Sarioglu FC (2020) [19] | 54.6 | Moderate | 48.8 | Moderate |
Giraudo C (2022) [17] | 53.9 | Moderate | 65.7 | Good |
Ding Y (2022) [16] | 60.5 | Good | 64.9 | Good |
Aydos U (2022) [12] | 55.6 | Moderate | 57.6 | Moderate |
Bouhamama A (2022) [14] | 80.3 | Excellent | 82.4 | Excellent |
Yang Y (2022) [20] | 80.0 | Excellent | 84.7 | Excellent |
Aydos U (2023) [11] | 59.0 | Moderate | 57.6 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghakhanyan, G.; Filidei, T.; Febi, M.; Fanni, S.C.; Marciano, A.; Francischello, R.; Caputo, F.P.; Tumminello, L.; Cioni, D.; Neri, E.; et al. Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS). Diagnostics 2024, 14, 832. https://doi.org/10.3390/diagnostics14080832
Aghakhanyan G, Filidei T, Febi M, Fanni SC, Marciano A, Francischello R, Caputo FP, Tumminello L, Cioni D, Neri E, et al. Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS). Diagnostics. 2024; 14(8):832. https://doi.org/10.3390/diagnostics14080832
Chicago/Turabian StyleAghakhanyan, Gayane, Tommaso Filidei, Maria Febi, Salvatore C. Fanni, Andrea Marciano, Roberto Francischello, Francesca Pia Caputo, Lorenzo Tumminello, Dania Cioni, Emanuele Neri, and et al. 2024. "Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS)" Diagnostics 14, no. 8: 832. https://doi.org/10.3390/diagnostics14080832
APA StyleAghakhanyan, G., Filidei, T., Febi, M., Fanni, S. C., Marciano, A., Francischello, R., Caputo, F. P., Tumminello, L., Cioni, D., Neri, E., & Volterrani, D. (2024). Advancing Pediatric Sarcomas through Radiomics: A Systematic Review and Prospective Assessment Using Radiomics Quality Score (RQS) and Methodological Radiomics Score (METRICS). Diagnostics, 14(8), 832. https://doi.org/10.3390/diagnostics14080832