Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images
Abstract
:1. Introduction
2. Backgrounds and Related Techniques
3. Methodology
3.1. System Architecture Overview
3.2. Image Dataset Collection
3.3. Image Preprocessing and Data Augmentation
3.4. U-Net-Based Lesion Detection and Semantic Segmentation
3.5. Ensemble Methods
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021.
- Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019.
- Chest Radiography in Tuberculosis Detection; World Health Organization: Geneva, Switzerland, 2016.
- Chandra, T.B.; Verma, K.; Singh, B.K.; Jain, D.; Netam, S.S. Automatic detection of tuberculosis related abnormalities in Chest X-ray images using hierarchical feature extraction scheme. Expert Syst. Appl. 2020, 158, 113514. [Google Scholar] [CrossRef]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Siegelman, J.; Folio, L.; Antani, S.; Thoma, G.; McDonald, C.J. Automatic screening for tuberculosis in chest radiographs a survey. Quant. Imaging Med. Surg. 2013, 3, 89–99. [Google Scholar] [CrossRef]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al. Automatic Tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [Google Scholar] [CrossRef]
- Murphy, K.; Habib, S.S.; Zaidi, S.M.A.; Khowaja, S.; Khan, A.; Melendez, J.; Scholten, E.T.; Amad, F.; Schalekamp, S.; Verhagen, M.; et al. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci. Rep. 2020, 10, 5492. [Google Scholar] [CrossRef]
- Khan, F.A.; Pande, T.; Tessema, B.; Song, R.; Benedetti, A.; Pai, M.; Lönnroth, K.; Denkinger, C.M. Computer-aided reading of tuberculosis chest radiography—Moving the research agenda forward to inform policy. Eur. Respir. J. 2017, 50, 1700953. [Google Scholar] [CrossRef]
- Maduskar, P.; Muyoyeta, M.; Ayles, H.; Hogeweg, L.; Peters-Bax, L.; Ginneken, B.V. Detection of tuberculosis using digital chest radiography automated reading vs. interpretation by clinical officers. Int. J. Tuberc. Lung Dis. 2013, 17, 1613–1620. [Google Scholar] [CrossRef]
- Santosh, K.; Allu, S.; Rajaraman, S.; Antani, S. Advances in deep learning for Tuberculosis screening using chest X-rays: The last 5 years review. J. Med. Syst. 2022, 46, 82. [Google Scholar] [CrossRef]
- Zaidi, S.Y.; Akram, M.U.; Jameel, A.; Alghamdi, N.S. A deep learning approach for the classification of TB from NIH CXR dataset. IET Image Process. 2021, 16, 787–796. [Google Scholar] [CrossRef]
- Rajaraman, S.; Yang, F.; Zamzmi, G.; Xue, Z.; Antani, S.K. A systematic evaluation of ensemble learning methods for fine-grained semantic segmentation of Tuberculosis-consistent lesions in chest radiographs. Bioengineering 2022, 9, 413. [Google Scholar] [CrossRef]
- Islam, M.T.; Aowal, M.A.; Minhaz, A.T.; Ashraf, K. Abnormality detection and localization in chest X-Rays using deep convolutional neural networks. arXiv 2017, arXiv:1705.09850. [Google Scholar] [CrossRef]
- Nijiati, M.; Ma, J.; Hu, C.; Tuersun, A.; Abulizi, A.; Kelimu, A.; Zhang, D.; Li, G.; Zou, X. Artificial intelligence assisting the early detection of active pulmonary Tuberculosis from chest X-Rays: A population-based study. Front. Mol. Biosci. 2022, 9, 874475. [Google Scholar] [CrossRef]
- Tang, Y.-X.; Tang, Y.-B.; Peng, Y.; Yan, K.; Bagheri, M.; Redd, B.A.; Brandon, C.J.; Lu, Z.; Han, M.; Xiao, J.; et al. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit. Med. 2020, 3, 70. [Google Scholar] [CrossRef]
- Qin, C.; Yao, D.; Shi, Y.; Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: A survey. Biomed. Eng. OnLine 2018, 17, 113. [Google Scholar] [CrossRef]
- Lakhani, P.; Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017, 284, 574–582. [Google Scholar] [CrossRef]
- Puttagunta, M.K.; Ravi, S. Detection of Tuberculosis based on deep learning based methods. J. Phys. Conf. Ser. 2021, 1767, 012004. [Google Scholar] [CrossRef]
- Koide, Y.; Aoyama, T.; Shimizu, H.; Kitagawa, T.; Miyauchi, R.; Tachibana, H.; Kodaira, T. Development of a deep learning model for chest X-ray model for cardiac dose prediction in left-sided breast cancer radiotherapy. Sci. Rep. 2022, 12, 13706. [Google Scholar] [CrossRef]
- Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient deep network architectures for fast chest X-ray Tuberculosis screening and visualization. Sci. Rep. 2019, 9, 6268. [Google Scholar] [CrossRef]
- Rajaraman, S.; Folio, L.R.; Dimperio, J.; Alderson, P.O.; Antani, S.K. Improved semantic segmentation of Tuberculosis—Consistent findings in chest X-rays using augmented training of modality-specific U-Net models with weak localizations. Diagnostics 2021, 11, 616. [Google Scholar] [CrossRef]
- Alcantara, M.F.; Caoa, Y.; Liu, C.; Liu, B.; Brunette, M.; Zhang, N.; Sun, T.; Zhang, P.; Chen, Q.; Li, Y.; et al. Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor communities in Perú. Smart Health 2017, 1–2, 66–76. [Google Scholar] [CrossRef]
- Rajaraman, S.; Antani, S.K. Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs. IEEE Access 2020, 8, 27318–27326. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Mahbub, Z.B.; Ayari, M.A.; et al. Reliable Tuberculosis detection using chest X-ray with deep learning segmentation and visualization. IEEE Access 2020, 8, 191586–191601. [Google Scholar] [CrossRef]
- Nafisah, S.I.; Muhammad, G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput. Appl. 2022, 19, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Passi, K.; Jain, C.K. Tuberculosis diagnostics and localization in chest X-rays via deep learning models. Front. Artif. Intell. 2020, 3, 583427. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.U.; Ghafoor, M.; Munir, K.; Saqib, M. Uncertainty assisted robust Tuberculosis identification with Bayesian convolutional neural networks. IEEE Access 2020, 8, 22812–22825. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3462–3471. Available online: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.369 (accessed on 23 April 2024).
- Liu, J.; Lian, J.; Yu, Y. ChestX-Det10: Chest x-ray dataset on detection of thoracic abnormalities. arXiv 2020, arXiv:2006.10550. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Abedalla, A.; Abdullah, M.; Al-Ayyoub, M.; Benkhelifa, E. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. PeerJ Comput. Sci. 2021, 7, e607. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Zhang, D.; Liu, J.; Cheng, C. MSU-Net: Multi-scale U-Net for 2D medical image segmentation. Frontiers 2021, 12, 639930. [Google Scholar] [CrossRef]
- Gaál, G.; Maga, B.; Lukács, A. Attention U-Net based adversarial architectures for chest X-ray lung segmentation. arXiv 2003, arXiv:2003.10304. [Google Scholar] [CrossRef]
- Kamil, M.; Hashem, S. Segmentation of Chest X-Ray Images Using U-Net Model. MENDEL 2022, 28, 49–53. [Google Scholar] [CrossRef]
- Wen, S.; Liu, J.; Xu, W. A novel lesion segmentation algorithm based on U-Net network for Tuberculosis CT image. In Proceedings of the 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 14–17 October 2021; pp. 909–914. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar] [CrossRef]
- Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.X.; Lu, P.X.; Thoma, G. Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.H.; Ban, Y.; Wang, H.; Cheng, M.M. Rethinking computer-aided tuberculosis diagnosis. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2643–2652. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Z.; Han, X.; Wang, H.; Wu, Y.; Cui, L.; Feng, J.; Zhu, Z.; Chen, Z. Computer-aided system for the detection of multicategory pulmonary tuberculosis in radiographs. J. Healthc. Eng. 2020, 2020, 9205082. [Google Scholar] [CrossRef] [PubMed]
- Raoof, S.; Feigin, D.; Sung, A.; Raoof, S.; Irugulpati, L.; Rosenow, E.C. Interpretation of plain chest roentgenogram. Chest 2012, 141, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Milliron, B.; Henry, T.S.; Veeraraghavan, S.; Little, B.P. Bronchiectasis: Mechanisms and imaging clues of associated common and uncommon diseases. RadioGraphics 2015, 35, 1011–1030. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. arXiv 2019, arXiv:1912.05074. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Li, C.; Tan, Y.; Chen, W.; Luo, X.; Gao, Y.; Jia, X.; Wang, Z. Attention Unet++: A nested attention-aware u-net for liver ct image segmentation. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 345–349. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar] [CrossRef]
- Selvan, R.; Dam, E.B.; Detlefsen, N.S.; Rischel, S.; Sheng, K.; Nielsen, M.; Pai, A. Lung segmentation from chest x-rays using variational data imputation. arXiv 2005, arXiv:2005.10052. [Google Scholar] [CrossRef]
- Rajaraman, S.; Zamzmi, G.; Folio, L.; Alderson, P.; Antani, S. Chest x-ray bone suppression for improving classification of tuberculosis-consistent findings. Diagnostics 2021, 11, 840. [Google Scholar] [CrossRef]
- Gündel, S.; Setio, A.A.A.; Grbic, S.; Maier, A.; Comaniciu, D. Extracting and leveraging nodule features with lung inpainting for local feature augmentation. In Machine Learning in Medical Imaging; Liu, C.M., Yan, P., Lian, C., Cao, X., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 504–512. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press Professional, Inc.: Cambridge, MA, USA, 1994; pp. 474–485. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. Available online: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243 (accessed on 23 April 2024).
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792. [Google Scholar] [CrossRef]
- Sharif, M.S.; Abbod, M.; Al-Bayatti, A.; Amira, A.; Alfakeeh, A.S.; Sanghera, B. An accurate ensemble classifier for medical volume analysis: Phantom and clinical pet study. IEEE Access 2020, 8, 37482–37494. [Google Scholar] [CrossRef]
- Sharma, P.; Balabantaray, B.K.; Bora, K.; Mallik, S.; Kasugai, K.; Zhao, Z. An ensemble-based deep convolutional neural network for computer-aided polyps identification from colonoscopy. Front. Genet. 2022, 13, 844391. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980v9. [Google Scholar] [CrossRef]
- Murphy, K. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; ISBN 978-0262018029. [Google Scholar]
- Abraham, N.; Khan, N.M. A novel focal tversky loss function with improved attention u-net for lesion segmentation. arXiv 2018, arXiv:1810.07842. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 2018, 46, 576–589. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R. UNet 3+: A full-scale connected UNet for medical image segmentation. arXiv 2020, arXiv:2004.08790. [Google Scholar] [CrossRef]
Network Architecture | Weblink to Source Code |
---|---|
U-Net | https://github.com/yingkaisha/keras-unet-collection/blob/main/keras_unet_collection/_model_unet_2d.py, accessed on 30 April 2024 |
U-Net++ [42] | https://github.com/MrGiovanni/UNetPlusPlus/blob/master/pytorch/nnunet/network_architecture/generic_UNetPlusPlus.py, accessed on 30 April 2024 |
Attention U-Net [43] | https://github.com/sfczekalski/attention_unet/blob/master/model.py, accessed on 30 April 2024 |
Attention U-Net++ [44] | Based on U-Net++ [42] & use Attention gate function proposed in Ref. [44]. A similar version can be found in https://github.com/kushalchordiya216/Attention-UNet-plus/blob/master/unetplus.ipynb, accessed on 30 April 2024 |
PSP Attention U-Net++ [45] | https://github.com/hszhao/PSPNet/tree/master/src/caffe, accessed on 30 April 2024 |
TB Lesion Types | Number of Images |
---|---|
Infiltration/Bronchiectasis | 41 |
Opacity/Consolidation | 31 |
Both TB lesions | 70 |
Normal | 80 |
Total | 222 |
Dataset | Number of Images |
---|---|
Training Set | 110→880 |
Validation Set | 14 |
Test Set | 18 w/ + 80 w/o TB lesions |
Abbreviation | Included Methods |
---|---|
R | Lung ROI extraction |
RC | Lung ROI extraction and CLAHE |
RB | Lung ROI extraction and bone suppression |
RBC | Lung ROI extraction, bone suppression, and CLAHE |
RS | Lung ROI extraction and lung segmentation |
RSC | Lung ROI extraction, lung segmentation, and CLAHE |
RBS | Lung ROI extraction, bone suppression, and lung segmentation |
RBSC | Lung ROI extraction, bone suppression, lung segmentation, and CLAHE |
Model | Backbone | Loss Function | Best Preprocessing Scheme | MIoU | MF1 | Acc | Parameter Count | Selected in Ensemble Method? |
---|---|---|---|---|---|---|---|---|
U-Net | ResNet50 | IFL | R | 0.64 | 0.75 | 0.99 | 33 M | No |
Unet++ | ResNet50 | IFL | RC | 0.65 | 077 | 0.99 | 36 M | No |
Attention U-Net | ResNet50 | DFL | RC | 0.66 | 0.78 | 0.98 | 38 M | No |
Attention U-Net++ | ResNet50 | FTL | RB | 0.64 | 0.78 | 1.0 | 43 M | M1 |
PSP Attention U-Net++ | ResNet50 | DFL | RS | 0.65 | 0.79 | 0.99 | 48 M | No |
U-Net | DenseNet121 | DFL | R | 0.62 | 0.73 | 0.98 | 12 M | No |
U-Net++ | DenseNet121 | DFL | RS | 0.67 | 0.78 | 0.99 | 14 M | M2 |
IFL | RBS | 0.67 | 0.78 | 0.98 | 14 M | M3 | ||
Attention U-Net | DenseNet121 | FTL | RC | 0.62 | 0.74 | 0.99 | 15 M | M4 |
Attention U-Net++ | DenseNet121 | DFL | RBSC | 0.61 | 0.73 | 0.99 | 18 M | No |
PSP Attention U-Net++ | DenseNet121 | CCL | R | 0.63 | 0.75 | 0.99 | 21 M | M5 |
Ensemble Method | MIoU | Mean Precision Rate | Mean Recall Rate | MF1 | Acc |
---|---|---|---|---|---|
AND | 0.53 | 0.94 | 0.54 | 0.64 | 0.99 |
OR | 0.69 | 0.90 | 0.73 | 0.80 | 1.0 |
Logistic regression | 0.69 | 0.85 | 0.75 | 0.79 | 1.0 |
Stacking using dense layer | 0.70 | 0.88 | 0.75 | 0.81 | 1.0 |
Selected Models in the Ensemble Method | Performance Metrics | ||||||||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | MIoU | Mean Precision Rate | Mean Recall Rate | MF1 | Acc |
√ | √ | √ | √ | √ | 0.70 | 0.88 | 0.75 | 0.81 | 1.0 |
× | √ | √ | √ | √ | 0.68 | 0.88 | 0.73 | 0.79 | 0.98 |
√ | × | √ | √ | √ | 0.69 | 0.88 | 0.75 | 0.81 | 1.0 |
√ | √ | × | √ | √ | 0.68 | 0.87 | 0.74 | 0.79 | 1.0 |
√ | √ | √ | × | √ | 0.69 | 0.88 | 0.74 | 0.79 | 0.99 |
√ | √ | √ | √ | × | 0.70 | 0.89 | 0.76 | 0.81 | 0.99 |
Reference | Target Lesion and Classification | Lesion Visualization Method | Dataset |
---|---|---|---|
[12] | TB-consistent lesions w/o classification | Semantic mask | Shenzhen TB CXR |
[21] | TB-consistent lesions w/o classification | GT 1: Rectangular bounding box Predicted: ROI mask | TBX11K CXR Shenzhen TB CXR Montgomery TB CXR |
[39] | Multicategory TB lesion w/classification | Rectangular bounding box | Shenzhen TB CXR Montgomery TB CXR Local (First Affiliated Hospital of Xi’an Jiao Tong University) |
Ours | Infiltration/bronchiectasis and opacity/consolidation w/classification | Semantic mask | Local (National Cheng Kung University Hospital Douliu Branch) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, C.-Y.; Chen, I.-Y.; Chang, H.-T.; Wei, C.-Y.; Li, D.-Y.; Chen, Y.-K.; Chang, C.-Y. Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images. Diagnostics 2024, 14, 952. https://doi.org/10.3390/diagnostics14090952
Ou C-Y, Chen I-Y, Chang H-T, Wei C-Y, Li D-Y, Chen Y-K, Chang C-Y. Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images. Diagnostics. 2024; 14(9):952. https://doi.org/10.3390/diagnostics14090952
Chicago/Turabian StyleOu, Chih-Ying, I-Yen Chen, Hsuan-Ting Chang, Chuan-Yi Wei, Dian-Yu Li, Yen-Kai Chen, and Chuan-Yu Chang. 2024. "Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images" Diagnostics 14, no. 9: 952. https://doi.org/10.3390/diagnostics14090952
APA StyleOu, C. -Y., Chen, I. -Y., Chang, H. -T., Wei, C. -Y., Li, D. -Y., Chen, Y. -K., & Chang, C. -Y. (2024). Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images. Diagnostics, 14(9), 952. https://doi.org/10.3390/diagnostics14090952