Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease
Abstract
:1. Introduction
1.1. Development and Validation of the Minimum Diagnostic Criteria
1.2. How iLFT Works
1.3. iLFT Reference Ranges
1.4. Laboratory Requirements
1.5. The iLFT Pilot
2. iLFT in Action
2.1. Acceptability, Uptake and Requesting Patterns
2.2. Outcomes from the First Three Years of iLFT
3. Evolution of iLFT
3.1. Improving Non-Invasive Fibrosis Assessment: The Addition of ELF
3.2. Identification of Patients with Possible Malignancy
3.3. Adoption of New SLD Nomenclature
3.4. Further Refining the Algorithm
4. Discussion and the Future Direction of Intelligent Laboratory Systems
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, R.; Aspinall, R.; Bellis, M.; Camps-Walsh, G.; Cramp, M.; Dhawan, A.; Ferguson, J.; Forton, D.; Foster, G.; Gilmore, S.I.; et al. Addressing liver disease in the UK: A blueprint for attaining excellence in health care and reducing premature mortality from lifestyle issues of excess consumption of alcohol, obesity, and viral hepatitis. Lancet 2014, 384, 1953–1997. [Google Scholar] [CrossRef] [PubMed]
- British Liver Trust. Liver Disease in Numbers—Key Facts and Statistics. Available online: https://britishlivertrust.org.uk/information-and-support/statistics/ (accessed on 30 March 2024).
- Karlsen, T.H.; Sheron, N.; Zelber-Sagi, S.; Carrieri, P.; Dusheiko, G.; Bugianesi, E.; Pryke, R.; Hutchinson, S.J.; Sangro, B.; Martin, N.K.; et al. The EASL-Lancet Liver Commission: Protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 2022, 399, 61–116. [Google Scholar] [CrossRef] [PubMed]
- Thiele, M.; Kamath, P.S.; Graupera, I.; Castells, A.; de Koning, H.J.; Serra-Burriel, M.; Lammert, F.; Ginès, P. Screening for liver fibrosis: Lessons from colorectal and lung cancer screening. Nat. Rev. Gastroenterol. Hepatol. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL). EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global epidemiology of cirrhosis—aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Flemming, J.A.; Djerboua, M.; Groome, P.A.; Booth, C.M.; Terrault, N.A. NAFLD and Alcohol-Associated Liver Disease Will Be Responsible for Almost All New Diagnoses of Cirrhosis in Canada by 2040. Hepatology 2021, 74, 3330–3344. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017: The Growing Impact of NAFLD. Hepatology 2020, 72, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Krag, A.; Buti, M.; Lazarus, J.V.; Allen, A.M.; Bowman, J.; Burra, P.; Donnini, G.; Duseja, A.; El-Sayed, M.H.; Gastaldelli, A.; et al. Uniting to defeat steatotic liver disease: A global mission to promote healthy livers and healthy lives. J. Hepatol. 2023, 79, 1076–1078. [Google Scholar] [CrossRef]
- Cancer Research, UK. Liver Cancer Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/liver-cancer (accessed on 30 March 2024).
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- Newsome, P.N.; Cramb, R.; Davison, S.M.; Dillon, J.F.; Foulerton, M.; Godfrey, E.M.; Hall, R.; Harrower, U.; Hudson, M.; Langford, A.; et al. Guidelines on the management of abnormal liver blood tests. Gut 2018, 67, 6–19. [Google Scholar] [CrossRef]
- Donnan, P.T.; McLernon, D.; Dillon, J.F.; Ryder, S.; Roderick, P.; Sullivan, F.; Rosenberg, W. Development of a decision support tool for primary care management of patients with abnormal liver function tests without clinically apparent liver disease: A record-linkage population cohort study and decision analysis (ALFIE). Health Technol. Assess. 2009, 13, 1–134. [Google Scholar] [CrossRef] [PubMed]
- Lilford, R.J.; Bentham, L.; Girling, A.; Litchfield, I.; Lancashire, R.; Armstrong, D.; Jones, R.; Marteau, T.; Neuberger, J.; Gill, P.; et al. Birmingham and Lambeth Liver Evaluation Testing Strategies (BALLETS): A prospective cohort study. Health Technol. Assess. 2013, 17, 1–307. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef] [PubMed]
- Haymond, S.; McCudden, C. Rise of the Machines: Artificial Intelligence and the Clinical Laboratory. J. Appl. Lab. Med. 2021, 6, 1640–1654. [Google Scholar] [CrossRef] [PubMed]
- Herman, D.S.; Rhoads, D.D.; Schulz, W.L.; Durant, T.J.S. Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review. Clin. Chem. 2021, 67, 1466–1482. [Google Scholar] [CrossRef] [PubMed]
- Cadamuro, J. Rise of the Machines: The Inevitable Evolution of Medicine and Medical Laboratories Intertwining with Artificial Intelligence—A Narrative Review. Diagnostics 2021, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, K.; Schinkel, M.; Hammer, R.D.; Schouten, B.; Nannan Panday, R.S.; Elbers, P.W.G.; Kramer, M.H.H.; Nanayakkara, P. The Value of Artificial Intelligence in Laboratory Medicine: Current Opinions and Barriers to Implementation. Am. J. Clin. Pathol. 2020, 155, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Pennestrì, F.; Banfi, G. Artificial intelligence in laboratory medicine: Fundamental ethical issues and normative key-points. Clin. Chem. Lab. Med. (CCLM) 2022, 60, 1867–1874. [Google Scholar] [CrossRef]
- Dillon, J.F.; Miller, M.H.; Robinson, E.M.; Hapca, A.; Rezaeihemami, M.; Weatherburn, C.; McIntyre, P.G.; Bartlett, B.; Donnan, P.T.; Boyd, K.A.; et al. Intelligent liver function testing (iLFT): A trial of automated diagnosis and staging of liver disease in primary care. J. Hepatol. 2019, 71, 699–706. [Google Scholar] [CrossRef]
- Macpherson, I.; Nobes, J.H.; Dow, E.; Furrie, E.; Miller, M.H.; Robinson, E.M.; Dillon, J.F. Intelligent Liver Function Testing: Working Smarter to Improve Patient Outcomes in Liver Disease. J. Appl. Lab. Med. 2020, 5, 1090–1100. [Google Scholar] [CrossRef]
- Miller, M.H.; Fraser, A.; Leggett, G.; MacGilchrist, A.; Gibson, G.; Orr, J.; Forrest, E.H.; Dow, E.; Bartlett, W.; Weatherburn, C.; et al. Development and validation of diagnostic triage criteria for liver disease from a minimum data set enabling the ‘intelligent LFT’ pathway for the automated assessment of deranged liver enzymes. Frontline Gastroenterol. 2018, 9, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG clinical guideline: Evaluation of abnormal liver chemistries. Off. J. Am. Coll. Gastroenterol.|ACG 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Prati, D.; Taioli, E.; Zanella, A.; Torre, E.D.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S.; et al. Updated Definitions of Healthy Ranges for Serum Alanine Aminotransferase Levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Pelusi, S.; Bianco, C.; Ceriotti, F.; Berzuini, A.; Iogna Prat, L.; Trotti, R.; Malvestiti, F.; D‘Ambrosio, R.; Lampertico, P.; et al. Definition of Healthy Ranges for Alanine Aminotransferase Levels: A 2021 Update. Hepatol. Commun. 2021, 5, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, I. Improving the Community Diagnosis of Chronic Liver Disease Using an Automated, Real-Time System: Intelligent Liver Function Testing (iLFT); University of Dundee: Dundee, Scotland, 2023. [Google Scholar]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef]
- Loomba, R.; Adams, L.A. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Fossdal, G.; Mjelle, A.B.; Wiencke, K.; Bjørk, I.; Gilja, O.H.; Folseraas, T.; Karlsen, T.H.; Rosenberg, W.; Giil, L.M.; Vesterhus, M. Fluctuating biomarkers in primary sclerosing cholangitis: A longitudinal comparison of alkaline phosphatase, liver stiffness, and ELF. JHEP Rep. 2021, 3, 100328. [Google Scholar] [CrossRef] [PubMed]
- Guha, I.N.; Parkes, J.; Roderick, P.; Chattopadhyay, D.; Cross, R.; Harris, S.; Kaye, P.; Burt, A.D.; Ryder, S.D.; Aithal, G.P.; et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008, 47, 455–460. [Google Scholar] [CrossRef]
- Parkes, J.; Guha, I.N.; Roderick, P.; Harris, S.; Cross, R.; Manos, M.M.; Irving, W.; Zaitoun, A.; Wheatley, M.; Ryder, S.; et al. Enhanced Liver Fibrosis (ELF) test accurately identifies liver fibrosis in patients with chronic hepatitis C. J. Viral Hepat. 2011, 18, 23–31. [Google Scholar] [CrossRef]
- Parkes, J.; Roderick, P.; Harris, S.; Day, C.; Mutimer, D.; Collier, J.; Lombard, M.; Alexander, G.; Ramage, J.; Dusheiko, G.; et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut 2010, 59, 1245. [Google Scholar] [CrossRef]
- Sharma, C.; Cococcia, S.; Ellis, N.; Parkes, J.; Rosenberg, W. Systematic review: Accuracy of the enhanced liver fibrosis test for diagnosing advanced liver fibrosis and cirrhosis. J. Gastroenterol. Hepatol. 2021, 36, 1788–1802. [Google Scholar] [CrossRef]
- Thiele, M.; Madsen, B.S.; Hansen, J.F.; Detlefsen, S.; Antonsen, S.; Krag, A. Accuracy of the Enhanced Liver Fibrosis Test vs FibroTest, Elastography, and Indirect Markers in Detection of Advanced Fibrosis in Patients With Alcoholic Liver Disease. Gastroenterology 2018, 154, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Lichtinghagen, R.; Pietsch, D.; Bantel, H.; Manns, M.P.; Brand, K.; Bahr, M.J. The Enhanced Liver Fibrosis (ELF) score: Normal values, influence factors and proposed cut-off values. J. Hepatol. 2013, 59, 236–242. [Google Scholar] [CrossRef]
- Siemens Healthcare Diagnostics Inc. The Enhanced Liver Fibrosis (ELF) Blood Test—Literature Compendium Volume I; Siemens Healthcare: Forcheim, Germany, 2021. [Google Scholar]
- Pearson, M.; Nobes, J.; Macpherson, I.; Gold, L.; Miller, M.; Dow, E.; Dillon, J.F. The Enhanced Liver Fibrosis (ELF) score predicts hepatic decompensation and mortality. JHEP Rep. 2024, 101062. [Google Scholar] [CrossRef]
- Gold, L.C.; Macpherson, I.; Nobes, J.H.; Dow, E.; Furrie, E.; Jamieson, S.; Dillon, J.F. Thrombocytosis and abnormal liver enzymes: A trigger for investigation of underlying malignancy. PLoS ONE 2022, 17, e0267124. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health & Care Excellence (NICE). NICE Guideline [NG12]: Suspected Cancer: Recognition and Referral; NICE: London, UK, 2023. [Google Scholar]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Stefan, N.; Cusi, K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022, 10, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Ivancovsky Wajcman, D.; Mark, H.E.; Younossi, Z.M.; Kopka, C.J.; Cohen, N.; Bansal, M.B.; Betel, M.; Brennan, P.N. Opportunities and challenges following approval of resmetirom for MASH liver disease. Nat. Med. 2024, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fromme, M.; Schneider, C.V.; Trautwein, C.; Brunetti-Pierri, N.; Strnad, P. Alpha-1 antitrypsin deficiency: A re-surfacing adult liver disorder. J. Hepatol. 2022, 76, 946–958. [Google Scholar] [CrossRef]
- Abeysekera, K.W.; Macpherson, I.; Glyn-Owen, K.; McPherson, S.; Parker, R.; Harris, R.; Yeoman, A.; Rowe, I.A.; Dillon, J.F. Community pathways for the early detection and risk stratification of chronic liver disease: A narrative systematic review. Lancet Gastroenterol. Hepatol. 2022, 7, 770–780. [Google Scholar] [CrossRef]
- Jarvis, H.; Worsfold, J.; Hebditch, V.; Ryder, S. Engagement with community liver disease management across the UK: A cross-sectional survey. BJGP Open 2021, 5, BJGPO.2021.0085. [Google Scholar] [CrossRef] [PubMed]
- British Liver Trust. Make Early Diagnosis of Liver Disease Routine. Available online: https://britishlivertrust.org.uk/soundthealarm/improving-early-diagnosis-of-liver-disease/ (accessed on 30 March 2024).
- Anderson, M.; Pitchforth, E.; Asaria, M.; Brayne, C.; Casadei, B.; Charlesworth, A.; Coulter, A.; Franklin, B.D.; Donaldson, C.; Drummond, M.; et al. LSE–Lancet Commission on the future of the NHS: Re-laying the foundations for an equitable and efficient health and care service after COVID-19. Lancet 2021, 397, 1915–1978. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; O‘Neill, C.; Macleod Clark, J.; Street, A.; Woods, M.; Johnston-Webber, C.; Charlesworth, A.; Whyte, M.; Foster, M.; Majeed, A.; et al. Securing a sustainable and fit-for-purpose UK health and care workforce. Lancet 2021, 397, 1992–2011. [Google Scholar] [CrossRef] [PubMed]
- Health Education and Improvement Wales (HEIW). Horizon Scanning—Strategic Workforce Plan for Primary Care (SWPPC); HEIW: Nantgarw, Wales, UK, 2024. [Google Scholar]
- Health, NI. Health and Wellbeing 2026: Delivering Together; Department of Health: Belfast, Northern Ireland, UK, 2016. [Google Scholar]
- NHS England. Interim NHS People Plan; NHS Improvement: London, UK, 2019. [Google Scholar]
- Scottish Government. The 2018 General Medical Services contract in Scotland; Scottish Government: Edinburgh, Scotland, UK, 2017.
- Council of the European Union. Personalised Medicine for Patients—Council Conclusions; Council of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Nimmesgern, E.; Benediktsson, I.; Norstedt, I. Personalized medicine in Europe. Clin. Transl. Sci. 2017, 10, 61. [Google Scholar] [CrossRef]
- Lin, Y.; Leith, D.; Abbott, M.; Barrett, R.; Bell, S.; Croudace, T.; Cunningham, S.G.; Dillon, J.F.; Donnan, P.T.; Farre, A.; et al. The iDiabetes Platform: Enhanced Phenotyping of Patients with Diabetes for Precision Diagnosis, Prognosis and Treatment- study protocol for a cluster-randomised controlled study. medRxiv 2024. [Google Scholar] [CrossRef]
Assay | Clinical Justification |
Alanine aminotransferase | Initial assessment for identification of liver dysfunction |
Albumin | |
Alkaline phosphatase | |
Bilirubin | |
Gamma-glutamyl transferase | |
Haptoglobin | For exclusion of haemolysis in the diagnosis of Gilbert syndrome |
Direct (conjugated) bilirubin | |
Aspartate aminotransferase | Required for the calculation of fibrosis scores |
Iron | Iron studies—for the diagnosis of haemochromatosis |
Transferrin | |
Percentage saturation of transferrin | |
Alpha-1 antitrypsin | For the identification of alpha-1 antitrypsin deficiency |
Hepatitis B and C serology | For the identification of HBV/HCV infection (confirmatory tests follow) |
Fibrosis-4 index (FIB-4) | Calculated fibrosis score |
NAFLD fibrosis score (NFS) | Calculated fibrosis score (used in the algorithms for presumed MASLD outcomes only) |
Enhanced liver fibrosis (ELF) score | Direct fibrosis score, reflexes if FIB-4/NFS indeterminate or high |
Liver autoantibodies | For the identification of autoimmune hepatitis, systemic lupus erythematosus, or primary biliary cholangitis |
If under 45 years of age: | |
C-reactive protein (CRP) | For the identification of an inflammatory state, if elevated, caeruloplasmin will not be added |
Caeruloplasmin | For the diagnosis of Wilson disease |
Code | Description | Total (n) | Proportion of All Outcomes (%) | Proportion of All iLFT Requests (%) | Liver Clinic Referral Advised? |
---|---|---|---|---|---|
iL15 | Abnormal ALT (<250 U/L) and a negative liver screen without significant fibrosis | 2331 | 23.6 | 21.1 | No |
iL05 | ALD without significant fibrosis | 1208 | 12.2 | 10.9 | No |
iL17 | MASLD, simple steatosis without significant fibrosis | 715 | 7.2 | 6.5 | No |
iL28 | Abnormal ALT and GGT and a negative liver screen without significant fibrosis | 676 | 6.8 | 6.1 | No |
iL16 | MASLD with significant fibrosis | 675 | 6.8 | 6.1 | Yes |
iL01 | Possible alpha-1 antitrypsin deficiency | 550 | 5.6 | 5.0 | Dependent on phenotype |
iL21 | Mild, isolated elevation in ALP | 527 | 5.3 | 4.8 | No |
iL06 | Likely Gilbert syndrome | 413 | 4.2 | 3.7 | No |
iL02 | Abnormal ALT, ALP and GGT and a negative liver screen without significant fibrosis | 405 | 4.1 | 3.7 | No |
iL04 | ALD with significant fibrosis | 404 | 4.1 | 3.7 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobes, J.; Leith, D.; Handjiev, S.; Dillon, J.F.; Dow, E. Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease. Diagnostics 2024, 14, 960. https://doi.org/10.3390/diagnostics14090960
Nobes J, Leith D, Handjiev S, Dillon JF, Dow E. Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease. Diagnostics. 2024; 14(9):960. https://doi.org/10.3390/diagnostics14090960
Chicago/Turabian StyleNobes, Jennifer, Damien Leith, Sava Handjiev, John F. Dillon, and Ellie Dow. 2024. "Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease" Diagnostics 14, no. 9: 960. https://doi.org/10.3390/diagnostics14090960
APA StyleNobes, J., Leith, D., Handjiev, S., Dillon, J. F., & Dow, E. (2024). Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease. Diagnostics, 14(9), 960. https://doi.org/10.3390/diagnostics14090960