Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Control Group
2.2. Statistical Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panzaru, M.-C.; Florea, A.; Caba, L.; Gorduza, E.V. Classification of Osteogenesis Imperfecta: Importance for Prophylaxis and Genetic Counseling. World J. Clin. Cases 2023, 11, 2604–2620. [Google Scholar] [CrossRef]
- Nadyrshina, D.; Zaripova, A.; Tyurin, A.; Minniakhmetov, I.; Zakharova, E.; Khusainova, R. Osteogenesis Imperfecta: Search for Mutations in Patients from the Republic of Bashkortostan (Russia). Genes 2022, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- El-Gazzar, A.; Högler, W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int. J. Mol. Sci. 2021, 22, 625. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.; Zieba, J.; Csukasi, F.; Martin, J.H.; Wachtell, D.; Barad, M.; Dawson, B.; Fafilek, B.; Jacobsen, C.M.; Ambrose, C.G.; et al. 4-PBA Treatment Improves Bone Phenotypes in the Aga2 Mouse Model of Osteogenesis Imperfecta. J. Bone Miner. Res. 2022, 37, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Morello, R. Osteogenesis Imperfecta and Therapeutics. Matrix Biol. 2018, 71–72, 294–312. [Google Scholar] [CrossRef]
- Deguchi, M.; Tsuji, S.; Katsura, D.; Kasahara, K.; Kimura, F.; Murakami, T. Current Overview of Osteogenesis Imperfecta. Medicina 2021, 57, 464. [Google Scholar] [CrossRef]
- Wu, C.; Xiao, Y.; Jiang, Y. Associations of Blood Trace Elements with Bone Mineral Density: A Population-Based Study in US Adults. J. Orthop. Surg. Res. 2023, 18, 827. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional Intake and Bone Health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An Update on Magnesium and Bone Health. BioMetals 2021, 34, 715–736. [Google Scholar] [CrossRef]
- Skalny, A.V.; Korobeinikova, T.V.; Aschner, M.; Paoliello, M.M.B.; Lu, R.; Skalny, A.A.; Mazaletskaya, A.L.; Tinkov, A.A. Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis. Biol. Trace Elem. Res. 2024, 202, 3886–3899. [Google Scholar] [CrossRef] [PubMed]
- Akhiiarova, K.; Khusainova, R.; Minniakhmetov, I.; Mokrysheva, N.; Tyurin, A. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines 2023, 11, 2982. [Google Scholar] [CrossRef] [PubMed]
- Tyurin, A.; Merkuryeva, E.; Zaripova, A.; Markova, T.; Nagornova, T.; Dantsev, I.; Nadyrshina, D.; Zakharova, E.; Khusainova, R. Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines 2022, 10, 2363. [Google Scholar] [CrossRef] [PubMed]
- Valeeva, D.I.; Khusainova, R.I.; Khusainova, L.N.; Tyurin, A.V. Hereditary Human Diseases with Skeletal Pathology–Molecular Pathogenesis and Clinical Characteristics. Meditsinskiy Sov. 2024, 18, 202–213. [Google Scholar] [CrossRef]
- Merkuryeva, E.; Markova, T.; Tyurin, A.; Valeeva, D.; Kenis, V.; Sumina, M.; Sorokin, I.; Shchagina, O.; Skoblov, M.; Nefedova, M.; et al. Clinical and Genetic Characteristics of Calvarial Doughnut Lesions with Bone Fragility in Three Families with a Reccurent SGMS2 Gene Variant. Int. J. Mol. Sci. 2023, 24, 8021. [Google Scholar] [CrossRef]
- Karita, K.; Takano, T.; Nakamura, S.; Haga, N.; Iwaya, T. A Search for Calcium, Magnesium and Zinc Levels in Fingernails of 135 Patients with Osteogenesis Imperfecta. J. Trace Elem. Med. Biol. 2001, 15, 36–39. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Silina, E.V.; Stupin, V.A.; Zaitsev, O.N.; Sotnikova, T.I.; Tazina, S.I.; Zhang, F.; Guo, X.; Tinkov, A.A. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023, 13, 1006. [Google Scholar] [CrossRef]
- Kwun, I.S.; Cho, Y.E.; Lomeda, R.A.R.; Shin, H.I.; Choi, J.Y.; Kang, Y.H.; Beattie, J.H. Zinc Deficiency Suppresses Matrix Mineralization and Retards Osteogenesis Transiently with Catch-up Possibly through Runx 2 Modulation. Bone 2010, 46, 732–741. [Google Scholar] [CrossRef]
- Park, J.H.; Park, S.A.; Kang, Y.H.; Hwa, S.M.; Koh, E.B.; Hwang, S.C.; Oh, S.H.; Byun, J.H. Zinc Sulfate Stimulates Osteogenic Phenotypes in Periosteum-Derived Cells and Co-Cultures of Periosteum-Derived Cells and Thp-1 Cells. Life 2021, 11, 410. [Google Scholar] [CrossRef]
- Molenda, M.; Kolmas, J. The Role of Zinc in Bone Tissue Health and Regeneration—A Review. Biol. Trace Elem. Res. 2023, 201, 5640–5651. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Mao, X.; Ling, J.; He, Q.; Quan, J. Low Serum Levels of Zinc, Copper, and Iron as Risk Factors for Osteoporosis: A Meta-Analysis. Biol. Trace Elem. Res. 2014, 160, 15–23. [Google Scholar] [CrossRef]
- Arikan, D.C.; Coskun, A.; Ozer, A.; Kilinc, M.; Atalay, F.; Arikan, T. Plasma Selenium, Zinc, Copper and Lipid Levels in Postmenopausal Turkish Women and Their Relation with Osteoporosis. Biol. Trace Elem. Res. 2011, 144, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kajita, Y.; Katsumata, S.I.; Matsuzaki, H.; Suzuki, K. Zinc Deficiency Increases Serum Concentrations of Parathyroid Hormone through a Decrease in Serum Calcium and Induces Bone Fragility in Rats. J. Nutr. Sci. Vitaminol. 2015, 61, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Massie, H.R.; Aiello, V.R.; Shumway, M.E.; Armstrong, T. Calcium, Iron, Copper, Boron, Collagen, and Density Changes in Bone with Aging in C57BL/6J Male Mice. Exp. Gerontol. 1990, 25, 469–481. [Google Scholar] [CrossRef]
- Gallo, J.; Raska, M.; Kriegova, E.; Goodman, S.B. Inflammation and Its Resolution and the Musculoskeletal System. J. Orthop. Transl. 2017, 10, 52–67. [Google Scholar] [CrossRef]
- Lu, W.C.; Pringa, E.; Chou, L. Effect of Magnesium on the Osteogenesis of Normal Human Osteoblasts. Magnes. Res. 2017, 30, 42–52. [Google Scholar] [CrossRef]
- Belluci, M.M.; de Molon, R.S.; Rossa, C.; Tetradis, S.; Giro, G.; Cerri, P.S.; Marcantonio, E.; Orrico, S.R.P. Severe Magnesium Deficiency Compromises Systemic Bone Mineral Density and Aggravates Inflammatory Bone Resorption. J. Nutr. Biochem. 2019, 77, 108301. [Google Scholar] [CrossRef]
- Nieves, J.W. Skeletal Effects of Nutrients and Nutraceuticals, beyond Calcium and Vitamin D. Osteoporos. Int. 2012, 24, 771–786. [Google Scholar] [CrossRef]
- Lanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Kolodziej, L.; Budis, H.; Safranow, K.; Kot, K.; Ciosek, Z.; Tomska, N.; et al. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone. Biomed Res. Int. 2016, 2016, 8340425. [Google Scholar] [CrossRef]
- Kanatani, M.; Sugimoto, T.; Kano, J.; Kanzawa, M.; Chihara, K. Effect of High Phosphate Concentration on Osteoclast Differentiation as Well as Bone-Resorbing Activity. J. Cell. Physiol. 2003, 196, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.M.; Schuch, N.J.; Genaro, P.S.; Ciconelli, R.M.; Ferraz, M.B.; Martini, L.A. Nutrient Intakes Related to Osteoporotic Fractures in Men and Women—The Brazilian Osteoporosis Study (BRAZOS). Nutr. J. 2009, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of Thirty Elements on Bone Metabolism. J. Trace Elem. Med. Biol. 2015, 32, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Roschger, P.; Fratzl-Zelman, N.; Misof, B.M.; Glorieux, F.H.; Klaushofer, K.; Rauch, F. Evidence That Abnormal High Bone Mineralization in Growing Children with Osteogenesis Imperfecta Is Not Associated with Specific Collagen Mutations. Calcif. Tissue Int. 2008, 82, 263–270. [Google Scholar] [CrossRef]
- Wawrzyniak, A.; Balawender, K. Structural and Metabolic Changes in Bone. Animals 2022, 12, 1946. [Google Scholar] [CrossRef]
- Uveges, T.E.; Collin-Osdoby, P.; Cabral, W.A.; Ledgard, F.; Goldberg, L.; Bergwitz, C.; Forlino, A.; Osdoby, P.; Gronowicz, G.A.; Marini, J.C. Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors. J. Bone Miner. Res. 2008, 23, 1983–1994. [Google Scholar] [CrossRef]
- Jovanovic, M.; Guterman-Ram, G.; Marini, J.C. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr. Rev. 2022, 43, 61–90. [Google Scholar] [CrossRef] [PubMed]
- Wekre, L.L.; Eriksen, E.F.; Falch, J.A. Bone Mass, Bone Markers and Prevalence of Fractures in Adults with Osteogenesis Imperfecta. Arch. Osteoporos. 2011, 6, 31–38. [Google Scholar] [CrossRef]
- Campanini, E.H.; Baker, D.; Arundel, P.; Bishop, N.J.; Offiah, A.C.; Keigwin, S.; Cadden, S.; Dall’Ara, E.; Nicolaou, N.; Giles, S.; et al. High Bone Mass Phenotype in a Cohort of Patients with Osteogenesis Imperfecta Caused Due to BMP1 and C-Propeptide Cleavage Variants in COL1A1. Bone Rep. 2021, 15, 101102. [Google Scholar] [CrossRef]
- Weaver, J.S.; Revels, J.W.; Elifritz, J.M.; Whitlow, B.; Retrouvey, M.; Wang, S.S. Clinical Manifestations and Medical Imaging of Osteogenesis Imperfecta: Fetal Through Adulthood. Acta Med. Acad. 2021, 50, 277–291. [Google Scholar] [CrossRef]
- Herdea, A.; Ulici, A.; Qirjako, D.; Toma, A.; Derihaci, R.P.; Lungu, C.N.; Charkaoui, A. Evaluating the Functional Outcomes and the Quality of Life for Pediatric Patients with Osteogenesis Imperfecta after Fracture Treatment with Intramedullary Rodding. Children 2021, 8, 1066. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, S.P.; Casarin, R.C.; Ribeiro, F.V.; Cirano, F.R.; Rovaris, K.; Haiter Neto, F.; Casati, M.Z. Impact of Micronutrients Supplementation on Bone Repair around Implants: MicroCT and Counter-Torque Analysis in Rats. J. Appl. Oral Sci. 2016, 24, 45–51. [Google Scholar] [CrossRef] [PubMed]
I Type OI | III Type OI | IV Type OI | V Type OI | Control | |
---|---|---|---|---|---|
Total, N | 29 | 8 | 5 | 3 | 45 |
Male, N (%) | 14 (48.3) | 3 (37.5) | 2 (40.0) | 1 (33.3) | 17 (37.8) |
Female, N (%) | 15 (51.7) | 5 (62.5) | 3 (60.0) | 2 (66.7) | 28 (62.2) |
Age, y.o. | 32.0 [21.0; 38.0] | 27.5 [23.5; 38.5] | 29.5 [21.3; 37.0] | 30.0 [28.0; 47.0] | 27.0 [21.0; 35.0] |
Height, sm | 164.0 [151.0; 170.0] p = 0.027 | 108.5 [100.0; 127.5] p = 7.7 × 10−6 | 140.0 [139.0; 152.0] p = 6.9 × 10−3 | 136.0 [100.0; 140.0] p = 0.004 | 165.0 [162.0; 178.0] |
Weight, kg | 57.0 [51.0; 2.0] | 36.5 [31.5; 40.5] p = 8.2 × 10−5 | 60.0 [53.0; 61.0] | 43.0 [38.0; 60.0] | 59.0 [53.0; 78.0] |
BMI, kg/m2 | 24.0 [20.5; 26.8] | 29.2 [26.7; 32.4] p = 5.4 × 10−3 | 24.0 [22.9; 30.6] | 32.4 [21.9; 38] p = 0.036 | 21.2 [19.6; 24.3] |
Fractures, N | 11.0 [10.0; 20.0] | 45.0 [30.0; 60.0] | 20.0 [20.0; 40.0] | 30.0 [15.0; 50.0] | 0 |
Blue sclera, N (%) | 27 (93.0) | 8 (100.0) | 4 (80.0) | 2 (66.7) | 0 |
HI, N (%) | 11 (37.9) | 1 (37.5) | 2 (40.0) | 0 | 0 |
JH, N (%) | 21 (72.4) p = 5.6 × 10−5 | 2 (25.0) | 2 (40.0) | 1 (33.3) | 10 (22.2) |
DI, N (%) | 17 (58.6) p = 7.9 × 10−7 | 8 (100.0) p = 4.2 × 10−9 | 4 (80.0) p = 2.6 × 10−5 | 3 (100.0) p = 1.9 × 10−5 | 2 (4.4) |
Micronutrients | Reference Values | OI, N = 45 | Control, N = 45 | p-Value |
---|---|---|---|---|
Calcium | 2.02–2.55 mmol/L | 2.45 [2.37; 2.55] | 2.47 [2.4; 2.53] | 0.488 |
Magnesium | 0.66–1.07 mmol/L | 0.86 ± 0.08 | 0.81 ± 0.06 | 5.4 × 10−4 |
Phosphorus | 0.74–1.52 mmol/L | 1.15 ± 0.24 | 1.31 ± 0.21 | 2.0 × 10−3 |
Zinc | 10.7–19.5 µmol/L | 13 [11.3; 14.5] | 14 [12.2; 15.2] | 0.045 |
Copper | 11.0–24.4 µmol/L | 19.9 [18.5; 21.6] | 17.8 [16.8; 19.5] | 6.9 × 10−4 |
Micronutrients | I Type, N = 29 | III Type, N = 8 | IV Type, N = 5 | V Type, N = 3 | Control, N = 45 |
---|---|---|---|---|---|
Calcium, mmol/L | 2.48 [2.39; 2.56] | 2.50 [2.28; 2.59] | 2.40 [2.35; 2.40] p = 0.026 | 2.45 [2.36; 2.50] | 2.47 [2.40; 2.53] |
Magnesium, mmol/L | 0.87 ± 0.086 p = 3.8 × 10−4 | 0.83 ± 0.06 | 0.85 ± 0.07 | 0.87 ± 0.09 | 0.81 ± 0.06 |
Phosphorus, mmol/L | 1.16 ± 0.23 p = 0.01 | 1.18 ± 0.27 | 1.12 ± 0.26 | 0.98 ± 0.17 p = 0.014 | 1.31 ± 0.21 |
Zinc, µmol/L | 13.10 [12.5; 14.6] | 12.35 [11.0; 13.8] p = 0.048 | 11.4 [10.5; 13.2] | 15.3 [12.0; 17.6] | 14.0 [12.2; 15.2] |
Copper, µmol/L | 20.18 ± 3.38 p = 0.039 | 19.51 ± 1.91 | 21.80 ± 1.75 p = 0.026 | 18.80 ± 0.07 | 18.54 ± 3.09 |
I Type, N = 29 | III Type, N = 8 | IV Type, N = 5 | V Type, N = 3 | Control, N = 45 | |
---|---|---|---|---|---|
BMD (g/sm2) | 1.03 [0.96; 1.11] p = 3 × 10−5 | 0.84 [0.75; 0.89] p = 1 × 10−5 | 0.97 [0.89; 1.11] p = 0.009 | 0.93 [0.79; 1.03] p = 0.006 | 1.182 [1.10; 1.22] |
Z-score | −0.80 [−1.40; −0.10] p = 6 × 10−9 | −2.15 [2.85; 0.35] p = 2 × 10−4 | −0.60 [−1.50; 0.90] | −0.90 [−1.35; −0.75] p = 0.008 | 0.71 [0.08; 1.20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeeva, D.; Akhiiarova, K.; Minniakhmetov, I.; Mokrysheva, N.; Khusainova, R.; Tyurin, A. Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta. Diagnostics 2025, 15, 250. https://doi.org/10.3390/diagnostics15030250
Valeeva D, Akhiiarova K, Minniakhmetov I, Mokrysheva N, Khusainova R, Tyurin A. Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta. Diagnostics. 2025; 15(3):250. https://doi.org/10.3390/diagnostics15030250
Chicago/Turabian StyleValeeva, Diana, Karina Akhiiarova, Ildar Minniakhmetov, Natalia Mokrysheva, Rita Khusainova, and Anton Tyurin. 2025. "Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta" Diagnostics 15, no. 3: 250. https://doi.org/10.3390/diagnostics15030250
APA StyleValeeva, D., Akhiiarova, K., Minniakhmetov, I., Mokrysheva, N., Khusainova, R., & Tyurin, A. (2025). Complex Analysis of Micronutrient Levels and Bone Mineral Density in Patients with Different Types of Osteogenesis Imperfecta. Diagnostics, 15(3), 250. https://doi.org/10.3390/diagnostics15030250