Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI
Abstract
:1. Introduction
2. Objectives and Organization of This Review
- -
- Identification of Gaps: This study highlights key gaps in existing methodologies, particularly regarding standardization, reproducibility, and clinical validation;
- -
- Proposed Framework: We propose actionable recommendations for addressing barriers to integrating ML-based approaches into clinical workflows, including the adoption of standardized preprocessing protocols and data-sharing technologies;
- -
- Emerging Technologies: We discuss how federated learning and blockchain can address challenges in data availability and security, enhancing collaborative research in this domain;
- -
- Practical Applications: This review explores practical scenarios, such as pre-surgical planning and therapy response prediction, where RD-DL models can be effectively applied.
- -
- Section 3 details the materials and methods, including search criteria, inclusion and exclusion parameters, and the datasets reviewed;
- -
- Section 4 discusses the findings, including performance metrics, challenges, and potential solutions;
- -
- Section 5 focuses on emerging technologies and actionable recommendations for overcoming barriers to clinical adoption;
- -
- Section 6 concludes this paper, summarizing key findings and outlining directions for future research.
3. Materials and Methods
3.1. Datasets Utilized in Reviewed Studies
3.2. Commonly Used Performance Metrics
- Accuracy: The proportion of correct predictions (both positive and negative) out of the total number of cases. It provides an overall measure of the model’s performance.
- 2.
- Sensitivity: The ability of the model to correctly identify positive cases (e.g., methylated MGMT promoter). It reflects the model’s capacity to minimize false negatives.
- 3.
- Specificity: The ability to correctly identify negative cases (e.g., unmethylated MGMT promoter), highlighting the model’s precision in avoiding false positives.
- 4.
- Precision (Positive Predictive Value): The proportion of true positive predictions out of all positive predictions made by the model, measuring its reliability in identifying positives.
- 5.
- Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A metric evaluating the model’s ability to discriminate between classes across different thresholds. Higher AUC values indicate better model performance.
4. Results
Author | Year | Type of Dataset | Glioma Grades | Used Sequences |
---|---|---|---|---|
Han et al. [27] | 2018 | Public: TCIA and TCGA | HGG | T1WI, T2W2; T2 FLAIR |
Li et al. [16] | 2018 | Public and Private TCIA and three local institutions | HGG | T1W1; T1Gd; T2-FLAIR |
Xi et al. [28] | 2018 | Private | HGG | T1W1; T1Gd; T2WI |
Hajianfar et al. [15] | 2019 | Public: TCIA | HGG | T1Gd; T2 FLAIR |
Jiang et al. [29] | 2019 | Public—The Cancer Genome Atlas Low-Grade Glioma | LGG | T1Gd; T2WI |
Sasaki et al. [30] | 2019 | Private | LGG + HGG | T1WI; T1Gd; T2WI; T2Edge; Gdzscore |
Wei et al. [31] | 2019 | Private | LGG + HGG | T1Gd; T2-FLAIR; ADC |
Calabrese et al. [32] | 2020 | Private | HGG | T1WI; T1Gd; T2-FLAIR; SWI; DWI; ASL; HARDI |
Chen et al. [17] | 2020 | Public: TCIA and TGCA | HGG | T1WI; T1Gd; T2-FLAIR; |
Le et al. [33] | 2020 | Public: TCGA and TCIA | HGG | T1WI; T1Gd; T2-FLAIR; |
Lin et al. [34] | 2020 | Public: TCIA | LGG + HGG | T1WI; T1Gd; T2-FLAIR; |
Lu et al. [35] | 2020 | Private | HGG | T1Gd |
Haubold et al. [36] | 2021 | Private | LGG + HGG | T1WI; T1Gd; T2-FLAIR; |
Huang et al. [37] | 2021 | Private | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Kihira et al. [38] | 2021 | Private | LGG + HGG | T1Gd; T2-FLAIR; DWI |
Pasquini et al. [39] | 2021 | Private | HGG | MPRAGE; T2-FLAIR; DWI; ADC; PWI; |
Sohn et al. [40] | 2021 | Private | HGG | T1WI; T1Gd; T2WI; FLAIR |
Yogananda et al. [41] | 2021 | Public: TCAI and TCGA | LGG + HGG | T2WI |
Zhang et al. [42] | 2021 | Private | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Do et al. [43] | 2022 | Public: TCIA and TGCA | HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
He et al. [44] | 2022 | Private | LGG + HGG | T1WI; T1Gd; T2WI; DWI; ADC |
Kim et al. [45] | 2022 | Public: SNUH and BraTS 2021 | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Pease et al. [46] | 2022 | Public: MDACC and TCGA | HGG | T1Gd; T2WI; T2-FLAIR |
Doniselli et al. [47] | 2023 | Private | HGG | T1Gd—FLAIR |
Faghani et al. [48] | 2023 | Public—BraTS2021 | HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Qureshi et al. [49] | 2023 | Public—BraTS 2021 | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Saeed et al. [50] | 2023 | Public—BraTS 2021 | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Saxena et al. [51] | 2023 | Public—BraTS 2021 | LGG + HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Sha et al. [26] | 2023 | Public: TCGA and TCIA + Private: FHSXMU and SPPH | LGG + HGG | T1Gd; T2-FLAIR |
Zhong et al. [52] | 2023 | Three institutions | HGG | T1WI; T1Gd; T2WI |
Guo et al. [53] | 2024 | Institutional | HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Li et al. [25] | 2024 | Private + Public (TCAI) | HGG | T1WI; T1Gd; T2-FLAIR |
Schimtz et al. [54] | 2024 | Public—TCIA | HGG | T1WI; T1Gd; T2WI; T2-FLAIR |
Zheng et al. [55] | 2024 | Private | HGG | T1WI; T1Gd; T2WI; FLAIR; DWI; ADC |
4.1. Preprocessing Pipeline
4.2. Skull Stripping
4.3. Coregistration
4.4. Normalization
- -
- Intensity normalization. This process adjusts the intensity values of MRI images to account for variations in pulse sequence parameters, magnetic field inhomogeneity, patient positioning, or other factors that can affect image brightness. The purpose is to make intensity values comparable across different scans, which is especially important in multicenter studies where different scanners are used. It usually involves two main steps: (1) convert the DICOM data to another format, with NifTI being the most popular option; (2) choose a normalization technique (N4 bias correction, Batch normalization, Z-score, etc.) to standardize the pixel values. By normalizing the data, inconsistencies in brightness or contrast can be removed, making it easier for the model to focus on the actual patterns in the image, improving the accuracy and performance of the analysis;
- -
- Spatial Normalization. This method involves aligning the images to a standard template or coordinate system, using different registration techniques. The most widely used coordinate systems here are the Montreal Neurological Institute space template (MNI template) and the Talairach space template (Talairach atlas). Spatial normalization is crucial for comparison across subjects or for performing group analyses where scans need to be aligned in a standardized way.
4.5. Segmentation
4.6. Radiomics vs. Deep Learning
5. Discussion
5.1. Radiomics: Current Developments and Challenges
5.2. Clinical Applications and Limitations
5.3. Deep Learning: Enhancing Radiomics
5.4. Real-Life Application of RD-DL Models in Neurosurgery and Neuro-Oncology
5.5. Radiogenomics: Bridging Imaging and Molecular Data
5.6. Key Challenges and Recommendations
5.6.1. Addressing Standardization, Reproducibility, and Clinical Validation Barriers in Radiomics and Deep Learning
- -
- Standardization
- -
- Reproducibility
- -
- Clinical Validation
5.6.2. Emerging Technologies for Data Sharing and Collaboration
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Apparent Diffusion Coefficient |
ANTs | Advanced Normalization Tools |
AUC-ROC | Area Under the Receiver Operating Characteristic Curve |
ASL | Arterial Spin Labeling |
BET | Brain Extraction Tool |
BraTS | Multimodal Brain Tumor Image Segmentation Benchmark |
CNN | Convolutional Neural Networks |
CRNN | Convolutional Recurrent Neural Network |
DL | Deep Learning |
FLAIR | Fluid-Attenuated Inversion Recovery |
GBM | Glioblastoma |
Gd | Gadolinium |
HGG | High-Grade Glioma |
ITK-SNAP | Insight Segmentation and Registration Toolkit |
LGG | Low-Grade Glioma |
MGMT | O6-methylguanine-DNA methyltransferase |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
NIfTI | Neuroimaging Informatics Technology Initiative |
PCR | Polymerase Chain Reaction |
PWI | Perfusion Weighted Imaging |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RF | Random Forest |
RD | Radiomics |
ROI | Region of Interest |
SHAP | Shapley Additive Explanations |
SVM | Support Vector Machine |
SWI | Susceptibility Weighted Imaging |
T1WI | T1 Weighted Images |
T2WI | T2 Weighted Images |
TCGA | The Cancer Genome Atlas |
TRIPOD | Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis |
VAE | Variational Autoencoder |
XGBoost | Extreme Gradient Boosting |
References
- Rivera, A.L.; Pelloski, C.E.; Gilbert, M.R.; Colman, H.; De La Cruz, C.; Sulman, E.P.; Bekele, B.N.; Aldape, K.D. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010, 12, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and Predictive Biomarkers in Gliomas. Int. J. Mol. Sci. 2021, 22, 10373. [Google Scholar] [CrossRef] [PubMed]
- Haque, W.; Teh, C.; Butler, E.B.; Teh, B.S. Prognostic and predictive impact of MGMT promoter methylation status in high risk grade II glioma. J. Neurooncol. 2022, 157, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Pongor, L.; Su, Y.-T.; Xi, L.; Raffeld, M.; Quezado, M.; Trepel, J.; Aldape, K.; Pommier, Y.; Wu, J. MGMT Status as a Clinical Biomarker in Glioblastoma. Trends Cancer 2020, 6, 380–391. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Wang, M.; Aldape, K.D.; Stupp, R.; Hegi, M.E.; Jaeckle, K.A.; Armstrong, T.S.; Wefel, J.S.; Won, M.; Blumenthal, D.T.; et al. Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial. J. Clin. Oncol. 2013, 31, 4085–4091. [Google Scholar] [CrossRef]
- Binabaj, M.M.; Bahrami, A.; ShahidSales, S.; Joodi, M.; Joudi Mashhad, M.; Hassanian, S.M.; Anvari, K.; Avan, A. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell. Physiol. 2018, 233, 378–386. [Google Scholar] [CrossRef]
- Caccese, M.; Simonelli, M.; Villani, V.; Rizzato, S.; Ius, T.; Pasqualetti, F.; Russo, M.; Rudà, R.; Amoroso, R.; Bellu, L.; et al. Definition of the Prognostic Role of MGMT Promoter Methylation Value by Pyrosequencing in Newly Diagnosed IDH Wild-Type Glioblastoma Patients Treated with Radiochemotherapy: A Large Multicenter Study. Cancers 2022, 14, 2425. [Google Scholar] [CrossRef]
- Hench, I.B.; Monica, R.D.; Chiariotti, L.; Bihl, M.; Tolnay, M.; Frank, S.; Hench, J. Fast routine assessment of MGMT promoter methylation. Neuro-Oncol. Adv. 2021, 3, vdaa170. [Google Scholar] [CrossRef]
- Håvik, A.B.; Brandal, P.; Honne, H.; Dahlback, H.-S.S.; Scheie, D.; Hektoen, M.; Meling, T.R.; Helseth, E.; Heim, S.; Lothe, R.A.; et al. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. J. Transl. Med. 2012, 10, 36. [Google Scholar] [CrossRef]
- Verdugo, E.; Puerto, I.; Medina, M.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun. 2022, 42, 1083–1111. [Google Scholar] [CrossRef] [PubMed]
- DeCordova, S.; Shastri, A.; Tsolaki, A.G.; Yasmin, H.; Klein, L.; Singh, S.K.; Kishore, U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front. Immunol. 2020, 11, 1402. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.; Russo, C.; Di Ieva, A. Radiomics in gliomas: Clinical implications of computational modeling and fractal-based analysis. Neuroradiology 2020, 62, 771–790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al. Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef]
- Hajianfar, G.; Shiri, I.; Maleki, H.; Oveisi, N.; Haghparast, A.; Abdollahi, H.; Oveisi, M. Noninvasive O6 Methylguanine-DNA Methyltransferase Status Prediction in Glioblastoma Multiforme Cancer Using Magnetic Resonance Imaging Radiomics Features: Univariate and Multivariate Radiogenomics Analysis. World Neurosurg. 2019, 132, e140–e161. [Google Scholar] [CrossRef]
- Li, Z.-C.; Bai, H.; Sun, Q.; Li, Q.; Liu, L.; Zou, Y.; Chen, Y.; Liang, C.; Zheng, H. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study. Eur. Radiol. 2018, 28, 3640–3650. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, M.; Tong, Y.; Zhang, T.; Fu, Y.; Li, H.; Zhang, Z.; Cheng, Z.; Xu, X.; Yang, R.; et al. Automatic Prediction of MGMT Status in Glioblastoma via Deep Learning-Based MR Image Analysis. BioMed Res. Int. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Naceur, M.B.; Saouli, R.; Akil, M.; Kachouri, R. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Comput. Methods Programs Biomed. 2018, 166, 39–49. [Google Scholar] [CrossRef]
- Rai, H.M.; Yoo, J.; Dashkevych, S. Two-headed UNetEfficientNets for parallel execution of segmentation and classification of brain tumors: Incorporating postprocessing techniques with connected component labelling. J. Cancer Res. Clin. Oncol. 2024, 150, 220. [Google Scholar] [CrossRef]
- Badrigilan, S.; Nabavi, S.; Abin, A.A.; Rostampour, N.; Abedi, I.; Shirvani, A.; Ebrahimi Moghaddam, M. Deep learning approaches for automated classification and segmentation of head and neck cancers and brain tumors in magnetic resonance images: A meta-analysis study. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 529–542. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, L.-F.; Zhang, X.; Han, Y.; Nan, H.-Y.; Hu, Y.-C.; Hu, B.; Yan, S.-L.; Zhang, J.; Cheng, D.-L.; et al. Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning. Front. Neurosci. 2018, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Scarpace, L.; Mikkelsen, L.; Cha, T.; Rao, S.; Tekchandani, S.; Gutman, S.; Pierce, D. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 2016, 11, 1. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- Li, L.; Xiao, F.; Wang, S.; Kuang, S.; Li, Z.; Zhong, Y.; Xu, D.; Cai, Y.; Li, S.; Chen, J.; et al. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis. Sci. Rep. 2024, 14, 16031. [Google Scholar] [CrossRef]
- Sha, Y.; Yan, Q.; Tan, Y.; Wang, X.; Zhang, H.; Yang, G. Prediction of the Molecular Subtype of IDH Mutation Combined with MGMT Promoter Methylation in Gliomas via Radiomics Based on Preoperative MRI. Cancers 2023, 15, 1440. [Google Scholar] [CrossRef]
- Han, L.; Kamdar, M.R. MRI to MGMT: Predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. In Proceedings of the Biocomputing 2018, World Scientific, Kohala Coast, HI, USA, 3–7 January 2018; pp. 331–342. [Google Scholar]
- Xi, Y.; Guo, F.; Xu, Z.; Li, C.; Wei, W.; Tian, P.; Liu, T.; Liu, L.; Chen, G.; Ye, J.; et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J. Magn. Reson. Imaging 2018, 47, 1380–1387. [Google Scholar] [CrossRef]
- Jiang, C.; Kong, Z.; Liu, S.; Feng, S.; Zhang, Y.; Zhu, R.; Chen, W.; Wang, Y.; Lyu, Y.; You, H.; et al. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Eur. J. Radiol. 2019, 121, 108714. [Google Scholar] [CrossRef]
- Sasaki, T.; Kinoshita, M.; Fujita, K.; Fukai, J.; Hayashi, N.; Uematsu, Y.; Okita, Y.; Nonaka, M.; Moriuchi, S.; Uda, T.; et al. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci. Rep. 2019, 9, 14435. [Google Scholar] [CrossRef]
- Wei, J.; Yang, G.; Hao, X.; Gu, D.; Tan, Y.; Wang, X.; Dong, D.; Zhang, S.; Wang, L.; Zhang, H.; et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur. Radiol. 2019, 29, 877–888. [Google Scholar] [CrossRef]
- Calabrese, E.; Villanueva-Meyer, J.E.; Cha, S. A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas. Sci. Rep. 2020, 10, 11852. [Google Scholar] [CrossRef] [PubMed]
- Le, N.Q.K.; Do, D.T.; Chiu, F.-Y.; Yapp, E.K.Y.; Yeh, H.-Y.; Chen, C.-Y. XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma. J. Pers. Med. 2020, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Peng, Y.; Gao, R.; Wei, Y.; Li, X.-J.; Huang, S.-N.; Fang, Y.-Y.; Wei, Z.-X.; Huang, Z.-G.; Yang, H.; et al. Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. J. Cancer Res. Clin. Oncol. 2020, 146, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Patel, M.; Natarajan, K.; Ughratdar, I.; Sanghera, P.; Jena, R.; Watts, C.; Sawlani, V. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Magn. Reson. Imaging 2020, 74, 161–170. [Google Scholar] [CrossRef]
- Haubold, J.; Hosch, R.; Parmar, V.; Glas, M.; Guberina, N.; Catalano, O.A.; Pierscianek, D.; Wrede, K.; Deuschl, C.; Forsting, M.; et al. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers 2021, 13, 6186. [Google Scholar] [CrossRef]
- Huang, H.; Wang, F.F.; Luo, S.; Chen, G.; Tang, G. Diagnostic performance of radiomics using machine learning algorithms to predict MGMT promoter methylation status in glioma patients: A meta-analysis. Diagn. Interv. Radiol. 2021, 27, 716–724. [Google Scholar] [CrossRef]
- Kihira, S.; Tsankova, N.M.; Bauer, A.; Sakai, Y.; Mahmoudi, K.; Zubizarreta, N.; Houldsworth, J.; Khan, F.; Salamon, N.; Hormigo, A.; et al. Multiparametric MRI texture analysis in prediction of glioma biomarker status: Added value of MR diffusion. Neuro-Oncol. Adv. 2021, 3, vdab051. [Google Scholar] [CrossRef]
- Pasquini, L.; Napolitano, A.; Lucignani, M.; Tagliente, E.; Dellepiane, F.; Rossi-Espagnet, M.C.; Ritrovato, M.; Vidiri, A.; Villani, V.; Ranazzi, G.; et al. AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? Front. Oncol. 2021, 11, 601425. [Google Scholar] [CrossRef]
- Sohn, B.; An, C.; Kim, D.; Ahn, S.S.; Han, K.; Kim, S.H.; Kang, S.-G.; Chang, J.H.; Lee, S.-K. Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant. J. Neurooncol. 2021, 155, 267–276. [Google Scholar] [CrossRef]
- Yogananda, C.G.B.; Shah, B.R.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner, B.C.; Mickey, B.; Patel, T.R.; Fei, B.; et al. MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status. Am. J. Neuroradiol. 2021, 42, 845–852. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, H.; Su, X.; Yang, X.; Wang, W.; Wan, X.; Tan, Q.; Chen, N.; Yue, Q.; Gong, Q. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas. J. Magn. Reson. Imaging 2021, 54, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Do, D.T.; Yang, M.-R.; Lam, L.H.T.; Le, N.Q.K.; Wu, Y.-W. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci. Rep. 2022, 12, 13412. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ren, J.; Niu, G.; Liu, A.; Wu, Q.; Xie, S.; Ma, X.; Li, B.; Wang, P.; Shen, J.; et al. Multiparametric MR radiomics in brain glioma: Models comparation to predict biomarker status. BMC Med. Imaging 2022, 22, 137. [Google Scholar] [CrossRef]
- Kim, B.-H.; Lee, H.; Choi, K.S.; Nam, J.G.; Park, C.-K.; Park, S.-H.; Chung, J.W.; Choi, S.H. Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge. Cancers 2022, 14, 4827. [Google Scholar] [CrossRef]
- Pease, M.; Gersey, Z.C.; Ak, M.; Elakkad, A.; Kotrotsou, A.; Zenkin, S.; Elshafeey, N.; Mamindla, P.; Kumar, V.A.; Kumar, A.J.; et al. Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients. J. Neurooncol. 2022, 160, 253–263. [Google Scholar] [CrossRef]
- Doniselli, F.M.; Pascuzzo, R.; Agrò, M.; Aquino, D.; Anghileri, E.; Farinotti, M.; Pollo, B.; Paterra, R.; Cuccarini, V.; Moscatelli, M.; et al. Development of A Radiomic Model for MGMT Promoter Methylation Detection in Glioblastoma Using Conventional MRI. Int. J. Mol. Sci. 2023, 25, 138. [Google Scholar] [CrossRef]
- Faghani, S.; Khosravi, B.; Moassefi, M.; Conte, G.M.; Erickson, B.J. A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI. J. Digit. Imaging 2023, 36, 837–846. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Hussain, L.; Ibrar, U.; Alabdulkreem, E.; Nour, M.K.; Alqahtani, M.S.; Nafie, F.M.; Mohamed, A.; Mohammed, G.P.; Duong, T.Q. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci. Rep. 2023, 13, 3291. [Google Scholar] [CrossRef]
- Saeed, N.; Ridzuan, M.; Alasmawi, H.; Sobirov, I.; Yaqub, M. MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models. Med. Image Anal. 2023, 90, 102989. [Google Scholar] [CrossRef]
- Saxena, S.; Jena, B.; Mohapatra, B.; Gupta, N.; Kalra, M.; Scartozzi, M.; Saba, L.; Suri, J.S. Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation. Comput. Biol. Med. 2023, 153, 106492. [Google Scholar] [CrossRef]
- Zhong, S.; Ren, J.-X.; Yu, Z.-P.; Peng, Y.-D.; Yu, C.-W.; Deng, D.; Xie, Y.; He, Z.-Q.; Duan, H.; Wu, B.; et al. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J. Neurosurg. 2023, 139, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yu, F.; Nasrallah, M.P.; Davatzikos, C. CDPNet: A radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma. In Proceedings of the Medical Imaging 2024: Clinical and Biomedical Imaging, Athens, Greece, 27–30 May 2024; Gimi, B.S., Krol, A., Eds.; SPIE: San Diego, CA, USA, 2024; p. 96. [Google Scholar]
- Schmitz, E.; Guo, Y.; Wang, J. Adaptive fine-tuning based transfer learning for the identification of MGMT promoter methylation status. Biomed. Phys. Eng. Express 2024, 10, 055018. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zhang, L.; Chen, H.; Zang, Y.; Chen, X.; Li, Y. Radiomics for predicting MGMT status in cerebral glioblastoma: Comparison of different MRI sequences. J. Radiat. Res. 2024, 65, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Doniselli, F.M.; Pascuzzo, R.; Mazzi, F.; Padelli, F.; Moscatelli, M.; Akinci D’Antonoli, T.; Cuocolo, R.; Aquino, D.; Cuccarini, V.; Sconfienza, L.M. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: A systematic review and meta-analysis. Eur. Radiol. 2024, 34, 5802–5815. [Google Scholar] [CrossRef]
- Lao, J.; Chen, Y.; Li, Z.-C.; Li, Q.; Zhang, J.; Liu, J.; Zhai, G. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Sci. Rep. 2017, 7, 10353. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Yu, J.; Guo, Y.; Cao, W. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 2017, 7, 5467. [Google Scholar] [CrossRef]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 2011, 54, 2033–2044. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Kong, Z.; Lin, Y.; Jiang, C.; Li, L.; Liu, Z.; Wang, Y.; Dai, C.; Liu, D.; Qin, X.; Wang, Y.; et al. 18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma. Cancer Imaging 2019, 19, 58. [Google Scholar] [CrossRef]
- Goodenberger, M.L.; Jenkins, R.B. Genetics of adult glioma. Cancer Genet. 2012, 205, 613–621. [Google Scholar] [CrossRef]
- Tomar, M.S.; Kumar, A.; Srivastava, C.; Shrivastava, A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta BBA Rev. Cancer 2021, 1876, 188616. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Basu, M.; Karmakar, S.; Ghosh, M.K. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. Biochim. Biophys. Acta BBA—Mol. Cell Res. 2024, 1871, 119673. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Gueble, S.E.; Sundaram, R.K.; Huseman, E.D.; Bindra, R.S.; Herzon, S.B. Mechanism-based design of agents that selectively target drug-resistant glioma. Science 2022, 377, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Colamaria, A.; Blagia, M.; Sacco, M.; Carbone, F. Diffuse vertebral metastases from glioblastoma with vertebroepidural diffusion: A case report and review of the literature. Surg. Neurol. Int. 2021, 12, 437. [Google Scholar] [CrossRef]
- Tixier, F.; Um, H.; Bermudez, D.; Iyer, A.; Apte, A.; Graham, M.S.; Nevel, K.S.; Deasy, J.O.; Young, R.J.; Veeraraghavan, H. Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget 2019, 10, 660–672. [Google Scholar] [CrossRef]
- Robinet, L.; Siegfried, A.; Roques, M.; Berjaoui, A.; Cohen-Jonathan Moyal, E. MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation. Cancers 2023, 15, 2253. [Google Scholar] [CrossRef]
- Usuzaki, T.; Takahashi, K.; Inamori, R.; Morishita, Y.; Shizukuishi, T.; Takagi, H.; Ishikuro, M.; Obara, T.; Takase, K. Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: A multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer. Neuroradiology 2024, 66, 761–773. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Yue, H.; Bai, H.; Pan, Y.; Wang, J. Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 1084–1095. [Google Scholar] [CrossRef]
- Hu, L.S.; D’Angelo, F.; Weiskittel, T.M.; Caruso, F.P.; Fortin Ensign, S.P.; Blomquist, M.R.; Flick, M.J.; Wang, L.; Sereduk, C.P.; Meng-Lin, K.; et al. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat. Commun. 2023, 14, 6066. [Google Scholar] [CrossRef]
- Kinoshita, M.; Sakai, M.; Arita, H.; Shofuda, T.; Chiba, Y.; Kagawa, N.; Watanabe, Y.; Hashimoto, N.; Fujimoto, Y.; Yoshimine, T.; et al. Introduction of High Throughput Magnetic Resonance T2-Weighted Image Texture Analysis for WHO Grade 2 and 3 Gliomas. PLoS ONE 2016, 11, e0164268. [Google Scholar] [CrossRef]
- Arita, H.; Kinoshita, M.; Kawaguchi, A.; Takahashi, M.; Narita, Y.; Terakawa, Y.; Tsuyuguchi, N.; Okita, Y.; Nonaka, M.; Moriuchi, S.; et al. Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Sci. Rep. 2018, 8, 11773. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-F.; Hsu, F.-T.; Hsieh, K.L.-C.; Kao, Y.-C.J.; Cheng, S.-J.; Hsu, J.B.-K.; Tsai, P.-H.; Chen, R.-J.; Huang, C.-C.; Yen, Y.; et al. Machine Learning–Based Radiomics for Molecular Subtyping of Gliomas. Clin. Cancer Res. 2018, 24, 4429–4436. [Google Scholar] [CrossRef] [PubMed]
- Drabycz, S.; Roldán, G.; De Robles, P.; Adler, D.; McIntyre, J.B.; Magliocco, A.M.; Cairncross, J.G.; Mitchell, J.R. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. NeuroImage 2010, 49, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Kanas, V.G.; Zacharaki, E.I.; Thomas, G.A.; Zinn, P.O.; Megalooikonomou, V.; Colen, R.R. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput. Methods Programs Biomed. 2017, 140, 249–257. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Cloughesy, T.F.; Pope, W.B.; Zaw, T.M.; Phillips, H.; Lalezari, S.; Nghiemphu, P.L.; Ibrahim, H.; Naeini, K.M.; Harris, R.J.; et al. Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: A radiographic study in 358 de novo human glioblastomas. NeuroImage 2012, 59, 908–916. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Lai, A.; Harris, R.J.; Selfridge, J.M.; Yong, W.H.; Das, K.; Pope, W.B.; Nghiemphu, P.L.; Vinters, H.V.; Liau, L.M.; et al. Probabilistic Radiographic Atlas of Glioblastoma Phenotypes. Am. J. Neuroradiol. 2013, 34, 533–540. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Abrey, L.E.; Nelson, S.J.; Kaufmann, T.J.; Garcia, J.; Chinot, O.; Saran, F.; Nishikawa, R.; Henriksson, R.; Mason, W.P.; et al. Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma. Neuro-Oncol. 2018, 20, 1240–1250. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Aftab, D.T.; Schwab, G.M.; Hessel, C.; Harris, R.J.; Woodworth, D.C.; Leu, K.; Chakhoyan, A.; Raymond, C.; Drappatz, J.; et al. Volumetric response quantified using T1 subtraction predicts long-term survival benefit from cabozantinib monotherapy in recurrent glioblastoma. Neuro-Oncol. 2018, 20, 1411–1418. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Harris, R.J.; Woodworth, D.C.; Leu, K.; Zaw, O.; Mason, W.P.; Sahebjam, S.; Abrey, L.E.; Aftab, D.T.; Schwab, G.M.; et al. Baseline pretreatment contrast enhancing tumor volume including central necrosis is a prognostic factor in recurrent glioblastoma: Evidence from single and multicenter trials. Neuro-Oncol. 2017, 19, 89–98. [Google Scholar] [CrossRef]
- Samartha, M.V.S.; Dubey, N.K.; Jena, B.; Maheswar, G.; Lo, W.-C.; Saxena, S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: A systematic review with bias analysis. J. Cancer Res. Clin. Oncol. 2024, 150, 57. [Google Scholar] [CrossRef]
- Kickingereder, P.; Burth, S.; Wick, A.; Götz, M.; Eidel, O.; Schlemmer, H.-P.; Maier-Hein, K.H.; Wick, W.; Bendszus, M.; Radbruch, A.; et al. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology 2016, 280, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, R.T.; Sweeney, E.M.; Goldsmith, J.; Shiee, N.; Mateen, F.J.; Calabresi, P.A.; Jarso, S.; Pham, D.L.; Reich, D.S.; Crainiceanu, C.M. Statistical normalization techniques for magnetic resonance imaging. NeuroImage Clin. 2014, 6, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Nyul, L.G.; Udupa, J.K.; Zhang, X. New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 2000, 19, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Reifenberger, G.; Hentschel, B.; Felsberg, J.; Schackert, G.; Simon, M.; Schnell, O.; Westphal, M.; Wick, W.; Pietsch, T.; Loeffler, M.; et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int. J. Cancer 2012, 131, 1342–1350. [Google Scholar] [CrossRef]
- Dunn, J.; Baborie, A.; Alam, F.; Joyce, K.; Moxham, M.; Sibson, R.; Crooks, D.; Husband, D.; Shenoy, A.; Brodbelt, A.; et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br. J. Cancer 2009, 101, 124–131. [Google Scholar] [CrossRef]
- Parker, N.R.; Hudson, A.L.; Khong, P.; Parkinson, J.F.; Dwight, T.; Ikin, R.J.; Zhu, Y.; Cheng, Z.J.; Vafaee, F.; Chen, J.; et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci. Rep. 2016, 6, 22477. [Google Scholar] [CrossRef]
- Wagner, M.W.; Namdar, K.; Biswas, A.; Monah, S.; Khalvati, F.; Ertl-Wagner, B.B. Radiomics, machine learning, and artificial intelligence—What the neuroradiologist needs to know. Neuroradiology 2021, 63, 1957–1967. [Google Scholar] [CrossRef]
- Li, Y.; Wei, D.; Liu, X.; Fan, X.; Wang, K.; Li, S.; Zhang, Z.; Ma, K.; Qian, T.; Jiang, T.; et al. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: Comparison and correlation between radiomics and deep learning. Eur. Radiol. 2022, 32, 747–758. [Google Scholar] [CrossRef]
- Korfiatis, P.; Kline, T.L.; Coufalova, L.; Lachance, D.H.; Parney, I.F.; Carter, R.E.; Buckner, J.C.; Erickson, B.J. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med. Phys. 2016, 43, 2835–2844. [Google Scholar] [CrossRef]
- Lemée, J.-M.; Clavreul, A.; Menei, P. Intratumoral heterogeneity in glioblastoma: Don’t forget the peritumoral brain zone. Neuro-Oncol. 2015, 17, 1322–1332. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tha, K.K.; Terasaka, S.; Yamaguchi, S.; Wang, J.; Kudo, K.; Xing, L.; Shirato, H.; Li, R. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology 2016, 278, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bai, H.; Chen, Y.; Sun, Q.; Liu, L.; Zhou, S.; Wang, G.; Liang, C.; Li, Z.-C. A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme. Sci. Rep. 2017, 7, 14331. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef]
- Pálsson, S.; Cerri, S.; Leemput, K.V. Prediction of MGMT Methylation Status of Glioblastoma using Radiomics and Latent Space Shape Features. arXiv 2021, arXiv:2109.12339. [Google Scholar] [CrossRef]
- Leone, A.; Carbone, F.; Spetzger, U.; Vajkoczy, P.; Raffa, G.; Angileri, F.; Germanó, A.; Engelhardt, M.; Picht, T.; Colamaria, A.; et al. Preoperative mapping techniques for brain tumor surgery: A systematic review. Front. Oncol. 2025, 14, 1481430. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef]
- De Verdier, M.C.; Saluja, R.; Gagnon, L.; LaBella, D.; Baid, U.; Tahon, N.H.; Foltyn-Dumitru, M.; Zhang, J.; Alafif, M.; Baig, S.; et al. The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI. arXiv 2024, arXiv:2405.18368. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Lai, A.; Nghiemphu, P.L.; Kim, H.J.; Phillips, H.S.; Kharbanda, S.; Moftakhar, P.; Lalaezari, S.; Yong, W.; Ellingson, B.M.; et al. Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma. Am. J. Neuroradiol. 2012, 33, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.-J.; Choi, J.W.; Roh, H.G.; Lim, S.D.; Koh, Y.-C. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: The CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 2012, 54, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar] [CrossRef]
- Sohan, M.F.; Basalamah, A. A Systematic Review on Federated Learning in Medical Image Analysis. IEEE Access 2023, 11, 28628–28644. [Google Scholar] [CrossRef]
- Taherdoost, H. The Role of Blockchain in Medical Data Sharing. Cryptography 2023, 7, 36. [Google Scholar] [CrossRef]
- Guan, H.; Yap, P.-T.; Bozoki, A.; Liu, M. Federated Learning for Medical Image Analysis: A Survey. arXiv 2024, arXiv:2306.05980. [Google Scholar] [CrossRef]
- Xi, P.; Zhang, X.; Wang, L.; Liu, W.; Peng, S. A Review of Blockchain-Based Secure Sharing of Healthcare Data. Appl. Sci. 2022, 12, 7912. [Google Scholar] [CrossRef]
- Zhang, R.; Xue, R.; Liu, L. Security and Privacy for Healthcare Blockchains. arXiv 2021, arXiv:2106.06136. [Google Scholar] [CrossRef]
- Zekiye, A.; Özkasap, Ö. Decentralized Healthcare Systems with Federated Learning and Blockchain. arXiv 2023, arXiv:2306.17188. [Google Scholar] [CrossRef]
Author | Segmentation Software/Algorithm | Skull Stripping Software | Coregistration Software | Image Normalization Software/Algorithm |
---|---|---|---|---|
Han et al. [27] | Not specified | Not mentioned | Not mentioned | Batch Normalization |
Li et al. [16] | TensorFlow (https://www.tensorflow.org) accessed on 15 November 2024 | Not specified | Not specified | N4ITK |
Xi et al. [28] | Manual segmentation + MITK (https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit) accessed on 15 November 2024 | FSL (https://fsl.fmrib.ox.ac.uk/fsldownloads_registration/) accessed on 15 November 2024 | FSL | Nyul intensity normalization |
Hajianfar et al. [15] | Manual Segmentation | Manually | Not mentioned | Not specified |
Jiang et al. [29] | Manual segmentation + ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) accessed on 15 November 2024 | Not specified | FSL | Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/) accessed on 15 November 2024 |
Sasaki et al. [30] | MatLab (https://www.mathworks.com/products/matlab.html) accessed on 15 November 2024 | MatLab | FSL | FSL |
Wei et al. [31] | Manual segmentation | Not mentioned | Not mentioned | Not mentioned |
Calabrese et al. [32] | Not specified | BET (https://mangoviewer.com/plugin_jbet.html) accessed on 15 November 2024 | Not mentioned | ANTs |
Chen et al. [17] | BraTS 2018 + VAE | Not mentioned | Not mentioned | Batch Normalization |
Le et al. [33] | BraTS | Not mentioned | Not mentioned | Not mentioned |
Lin et al. [34] | Manual segmentation + GLISTR (https://www.nitrc.org/projects/cbica_glistr/) accessed on 15 November 2024 | BET + MASS method | Not specified | Z-score |
Lu et al. [35] | Manual segmentation + ITK SNAP (for necrosis) | Not mentioned | Not mentioned | CaPTk (https://www.med.upenn.edu/cbica/captk/) accessed on 15 November 2024 |
Haubold et al. [36] | BraTS 2019 pretrained DeepMedic network (https://deepmedic.org) accessed on 15 November 2024 | HD-BET algorithm | SimpleITK extension SimpleElastix (https://simpleelastix.github.io) accessed on 15 November 2024 | Not mentioned |
Huang et al. [37] | Manual Segmentation | Not mentioned | Not mentioned | Z-score |
Kihira et al. [38] | Manual segmentation | Not specified | Olea Sphere (https://www.olea-medical.com/en/) accessed on 15 November 2024 | Olea Sphere |
Pasquini et al. [39] | Manual segmentation | Manual segmentation—3D Slicer (https://www.slicer.org) accessed on 15 November 2024 | FMRIB Linear Image Registration Tool from FSL (https://web.mit.edu/fsl_v5.0.10/fsl/doc/wiki/FLIRT.html) accessed on 15 November 2024 | Python Standard Scaler package (https://www.python.org) accessed on 15 November 2024 |
Sohn et al. [40] | HD-GLIO | HD-GLIO | HD-GLIO | N4 bias correction + Z-score |
Yogananda et al. [41] | Manual segmentation + 3D-IDH Network | BET | ANTs | Advanced Normalization Tools; N4 Bias Field Correction; Intensity Normalization |
Zhang et al. [42] | NiftyNet platform (https://niftynet.io) accessed on 15 November 2024 | BET | FSL | Not mentioned |
Do et al. [43] | Not specified | Not mentioned | Not mentioned | Not specified |
He et al. [44] | Manual Segmentation | Not specified | ITK-SNAP | Z-score |
Kim et al. [45] | FSL | 3D Slicer | 3D Slicer | N4ITK |
Pease et al. [46] | Manual segmentation + 3D Slicer | BET | Not mentioned | Nyul intensity normalization |
Doniselli et al. [47] | Semi-automatic—ITK-SNAP | SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) accessed on 15 November 2024 | ANTs | Z-score |
Faghani et al. [48] | Not specified | Not specified | Not specified | Not specified |
Qureshi et al. [49] | CNN; U-Net; CRFs | CaPTk + FeTS tool | CaPTk + FeTS tool | L2-norm |
Saeed et al. [50] | CNN; U-Net; CRFs | CaPTK | CaPTK | Not mentioned |
Saxena et al. [51] | CNN; U-Net; CRFs | Not mentioned | Not mentioned | N4-bias correction method |
Sha et al. [26] | Manual segmentation + ITK-SNAP | Not mentioned | FSL | Intensity Normalization + Z-Score |
Zhong et al. [52] | BraTS | Not mentioned | Not mentioned | SimpleITK, Z score normalization |
Guo et al. [53] | Not specified | Not mentioned | Not mentioned | Not mentioned |
Li et al. [25] | 3D U Net + ITK-SNAP | Not specified | MatLab | Z-score |
Schimtz et al. [54] | BraTS | Not specified | Not specified | Min-max scaling |
Zheng et al. [55] | Manual segmentation + ITK-SNAP | Not mentioned | FSL | PyRadiomics |
Author | Radiomics Used | Deep Learning Used | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|
Han et al. [27] | Not specified | CRNN | 67% | 67% | 62% |
Li et al. [16] | GLCM; GLRLM; GLSZM; NGTDM | - | - | - | 80%(6f); 70%(8f) |
Xi et al. [28] | Not specified | SVM | 87.50% | 75.00% | 80% |
Hajianfar et al. [15] | Shape—Intensity-Texture | - | - | - | - |
Jiang et al. [29] | 3D-CE-T1 Single Model; T2-weighted Single Model; Linear Combination Model; Fusion Radiomics Model; Clinical Integrated Model | - | 71.4%; 82.1%; 92.9%; 82.1%; 92.9% | 71.4%; 71.4%; 71.4%; 71.4%; 85.7%; 71.4%; | 88.6%; 80%; 88.2%; 88.6%; 88.6% |
Sasaki et al. [30] | Texture and Location analysis | - | - | - | 67% |
Wei et al. [31] | ROI segmentation, feature extraction, feature selection, and model construction | - | - | - | 90.2% |
Calabrese et al. [32] | PyRadiomics 2.2.0 | - | - | - | - |
Chen et al. [17] | - | CNN with VAE | - | - | 82.70% |
Le et al. [33] | Not specified | XGBoost | 88% | 88.7% | 88.70% |
Lin et al. [34] | Not specified | - | - | - | - |
Lu et al. [35] | PyRadiomics | Not specified | - | - | 45–67% |
Haubold et al. [36] | PyRadiomics | HD-BET | 75.6% ± 9.4% | 81.5 ± 9.1% | 78.6 ± 4.4% |
Huang et al. [37] | Radscore | - | GBM: 90.5%, Gliomas: 70.2% | GBM: 72.7%, LGG + HGG: 90.6% | GBM: 78.3%, LGG + HGG: 83% |
Kihira et al. [38] | First-order mean absolute deviation; GLCM | - | 70% | 65% | 67% |
Pasquini et al. [39] | PyRadiomics | - | - | - | 70.8% |
Sohn et al. [40] | PyRadiomics | - | 46.9% BR; 47.7% ECC | 77.7% (BR); 97.6% (ECC) | 65.3% (BR); 76.1% (ECC) |
Yogananda et al. [41] | - | 3D-dense UNets | 96.31% | 91.66% | 94.73% |
Zhang et al. [42] | PyRadiomics 2.0.0 | autoML with TPOT | 81.1% | 94% | 89.40% |
Do et al. [43] | - | XGBoost + GA; RF + GA; SVM + GA | 89.4% (GBM); 78% (LGG) | 96.6% (GMB); 62% (LGG) | 92.5% (RF-GBM); 75% (LGG) |
He et al. [44] | PyRadiomics | - | - | - | - |
Kim et al. [45] | PyRadiomics | EfficientNet-B0 (CNN) | - | - | 54.80% |
Pease et al. [46] | Intensity-level histograms; GLCM; the Maximum Relevance Minimum Redundancy technique | - | 84.60% | 93.30% | 89% |
Doniselli et al. [47] | PyRadiomics 2.2.1 | SVM—RF | 83.5 ± 8.9% | 82.5 ± 11.8% | 83 ± 5.7% (SVM on CE-NEC-HYP) |
Faghani et al. [48] | - | Not specified | (1) 71.2% (2) 55.5%; (3) 65.4% | (1) 58.9%; (2) 48%; (3) 51.5% | (1) 0.65; (2) 0.56; (3) 0.61 |
Qureshi et al. [49] | GLCM; HOG, LBP | DLRFE; HFS | 96.08 ± 0.10% | 97.44 ± 0.14% | 96.84 ± 0.09% |
Saeed et al. [50] | Not specified | ResNet, DenseNet, EfficientNet; ViT; Swin | - | - | - |
Saxena et al. [51] | GLCM), GLRLM, LBP, NGTDM, GLSZM -> CaPTk | ResNet and EfficientNet | -- | 61.33% (ML); 69.26% (DL); 76.18% (Fused Deep Learning) | |
Sha et al. [26] | PyRadiomics | - | 81.10% | 80.80% | 88.60% |
Zhong et al. [52] | PyRadiomics | ResNet and C3D | 64.29% (ResNet); 85.71% (C3D) | - | 86.76% (ResNet); 89.71% (C3D) |
Guo et al. [53] | - | PCA—FLD—Binary Hashing and Blockwise Histograms | - | - | 70% |
Li et al. [25] | uLR-mRMR-LASSO—ComRad | 3D U Net | 65% | 95.70% | 81.40% |
Schimtz et al. [54] | Skewness; Energy; GLCM; GLSZM; GLSZM low gray; NGTDM | MedicalNet | 78% | 84% | 81% |
Zheng et al. [55] | PyRadiomics | XGBoost | - | - | 75.4% |
Step | Description | Challenges and Solutions |
---|---|---|
1. Data Acquisition | Collect multiparametric MRI data (T1, T1-Gd, T2, FLAIR) from public and private datasets. | Challenges: Variability in imaging protocols. Solutions: Use intensity and spatial normalization. |
2. Preprocessing | Prepare MRI data through skull stripping, segmentation, normalization, and bias field correction. | Challenges: Accurate segmentation and error propagation. Solutions: Use automated tools (e.g., HD-BET) and validate manually. |
3. Radiomic Feature Extraction | Extract handcrafted features (e.g., texture, shape, intensity) using PyRadiomics or similar tools. | Challenges: Feature redundancy and segmentation errors. Solutions: Apply feature selection techniques like LASSO. |
4. Deep Learning Feature Extraction | Train CNNs or use transfer learning to extract abstract features from MRI data. | Challenges: Large labeled datasets required. Solutions: Use data augmentation and federated learning. |
5. Feature Fusion | Combine radiomic and deep learning features into a unified representation. | Challenges: Balancing scales and dimensions. Solutions: Normalize features and experiment with fusion strategies. |
6. Model Training | Train hybrid models (e.g., Random Forest with fused features) and validate via cross-validation. | Challenges: Risk of overfitting. Solutions: Regularize models and use explainability tools like SHAP. |
7. Validation and Testing | Test the model on external datasets to ensure generalizability. | Challenges: Dataset shifts and single-metric reliance. Solutions: Use comprehensive metrics and external validation. |
8. Clinical Integration | Deploy the pipeline for non-invasive prediction in clinical workflows. | Challenges: Integration and interpretability. Solutions: Develop user-friendly interfaces and conduct pilot studies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Di Napoli, V.; Fochi, N.P.; Di Perna, G.; Spetzger, U.; Filimonova, E.; Angileri, F.; Carbone, F.; Colamaria, A. Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI. Diagnostics 2025, 15, 251. https://doi.org/10.3390/diagnostics15030251
Leone A, Di Napoli V, Fochi NP, Di Perna G, Spetzger U, Filimonova E, Angileri F, Carbone F, Colamaria A. Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI. Diagnostics. 2025; 15(3):251. https://doi.org/10.3390/diagnostics15030251
Chicago/Turabian StyleLeone, Augusto, Veronica Di Napoli, Nicola Pio Fochi, Giuseppe Di Perna, Uwe Spetzger, Elena Filimonova, Flavio Angileri, Francesco Carbone, and Antonio Colamaria. 2025. "Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI" Diagnostics 15, no. 3: 251. https://doi.org/10.3390/diagnostics15030251
APA StyleLeone, A., Di Napoli, V., Fochi, N. P., Di Perna, G., Spetzger, U., Filimonova, E., Angileri, F., Carbone, F., & Colamaria, A. (2025). Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI. Diagnostics, 15(3), 251. https://doi.org/10.3390/diagnostics15030251