The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects
Abstract
:1. Introduction
1.1. Definition and Scope
1.2. Historical Perspective
1.3. Objectives of the Review
2. Chapter 1: AI Fundamentals and Techniques
2.1. Basic Concepts of AI
2.2. Key AI Techniques Used in Medicine
2.3. AI in Medical Imaging
3. Chapter 2: AI in Diagnosis and Screening
3.1. Clinical Evaluation and AI
3.2. Imaging and Diagnostic Techniques
3.3. Predictive Analytics
4. Chapter 3: AI in Treatment and Management
4.1. Personalized Treatment Plans
4.2. Surgical Interventions
4.3. Pharmacological Management
5. Chapter 4: AI in Patient Monitoring and Follow-Up
5.1. Remote Monitoring Tools
5.2. Telemedicine and AI
5.3. Predictive Maintenance of Health
6. Chapter 5: Quality of Life and Psychosocial Impact
6.1. Improving Patient Outcomes
6.2. Ethical and Psychosocial Considerations
7. Chapter 6: AI in Research and Development
7.1. Accelerating Research
7.2. Clinical Trials and AI
7.3. Innovative Research Methodologies
8. Chapter 7: Challenges and Limitations
8.1. Technical Challenges
8.2. Clinical Integration
8.3. Regulatory and Ethical Issues
9. Chapter 8: Case Studies and Real-World Applications
Successful Implementations
10. Conclusions
10.1. Summary of Key Findings
10.2. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef]
- Mota, J.; Almeida, M.J.; Mendes, F.; Martins, M.; Ribeiro, T.; Afonso, J.; Cardoso, P.; Cardoso, H.; Andrade, P.; Ferreira, J.; et al. From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy? Diagnostics 2024, 14, 291. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.; Mendes, F.; Martins, M.; Cardoso, P.; Macedo, G.; Mascarenhas, T.; Saraiva, M.M. Revolutionizing Women’s Health: A Comprehensive Review of Artificial Intelligence Advancements in Gynecology. J. Clin. Med. 2024, 13, 1061. [Google Scholar] [CrossRef]
- Basu, K.; Sinha, R.; Ong, A.; Basu, T. Artificial Intelligence: How is It Changing Medical Sciences and Its Future? Indian J. Dermatol. 2020, 65, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, P.; Kuijpers, M.V.; Khayyat, A.; Iftikhar, A.; De Sa, M.D. Artificial Intelligence: A New Paradigm in Obstetrics and Gynecology Research and Clinical Practice. Cureus 2020, 12, e7124. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.; Alencoão, I.; Carinhas, M.J.; Martins, M.; Cardoso, P.; Mendes, F.; Fernandes, J.; Ferreira, J.; Macedo, G.; Zulmira Macedo, R. Artificial Intelligence and Colposcopy: Automatic Identification of Cervical Squamous Cell Carcinoma Precursors. J. Clin. Med. 2024, 13, 3003. [Google Scholar] [CrossRef] [PubMed]
- Kurdoğlu, M.; Khaki, A. The Use of Artificial Intelligence in Urogynecology. Int. J. Women’s Health Reprod. Sci. 2023, 12, 1–2. [Google Scholar] [CrossRef]
- Shrestha, P.; Poudyal, B.; Yadollahi, S.; Wright, D.E.; Gregory, A.V.; Warner, J.D.; Korfiatis, P.; Green, I.C.; Rassier, S.L.; Mariani, A.; et al. A systematic review on the use of artificial intelligence in gynecologic imaging—Background, state of the art, and future directions. Gynecol. Oncol. 2022, 166, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Shao, Z.; Zhao, R.; Yuan, S.; Ding, M.; Wang, Y. Tracing the evolution of AI in the past decade and forecasting the emerging trends. Expert Syst. Appl. 2022, 209, 118221. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H. Artificial Intelligence in healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Jayatilake, S.M.D.A.C.; Ganegoda, G.U. Involvement of Machine Learning Tools in Healthcare Decision Making. J. Healthc. Eng. 2021, 2021, 6679512. [Google Scholar] [CrossRef] [PubMed]
- Daykan, Y.; O’Reilly, B.A. The role of artificial intelligence in the future of urogynecology. Int. Urogynecol. J. 2023, 34, 1663–1666. [Google Scholar] [CrossRef]
- Seval, M.M.; Varlı, B. Current developments in artificial intelligence from obstetrics and gynecology to urogynecology. Front. Med. 2023, 10, 1098205. [Google Scholar] [CrossRef] [PubMed]
- Girmay, S.; Samsom, F.; Khattak, A.M. AI based Login System using Facial Recognition. In Proceedings of the 5th Cyber Security in Networking Conference (CSNet), Abu Dhabi, United Arab Emirates, 12–14 October 2021; pp. 107–109. Available online: https://ieeexplore.ieee.org/document/9614281 (accessed on 30 July 2024).
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.-D.; Fournier, L.; Smaïl-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 2020, 158, 76–94.e2. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.; Afonso, J.; Andrade, P.; Cardoso, H.; Macedo, G. Artificial intelligence and capsule endoscopy: Unravelling the future. Ann. Gastroenterol. 2021, 34, 300–309. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. RadioGraphics 2017, 37, 505–515. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, G.; Vakalopolou, M.; Paragios, N.; Revel, M.-P. Deep learning: Definition and perspectives for thoracic imaging. Eur. Radiol. 2020, 30, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Okagawa, Y.; Abe, S.; Yamada, M.; Oda, I.; Saito, Y. Artificial Intelligence in Endoscopy. Dig. Dis. Sci. 2022, 67, 1553–1572. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.; Jang, G.J.; Lee, M. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Neural Netw. 2017, 87, 109–121. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trindade, A.J.; Watson, R.R.; Maple, J.T.; et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE 2020, 5, 598–613. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial intelligence and machine learning in pathology:the present landscape of supervised methods. Acad. Pathol. 2019, 6, 1–17. [Google Scholar] [CrossRef]
- Cleret de Langavant, L.; Bayen, E.; Yaffe, K. Unsupervised machine learning to identify high likelihood of dementia in population-based surveys: Development and validation study. J. Med. Internet Res. 2018, 20, e10493. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery. Ann. Surg. 2018, 268, 70–76. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995666/ (accessed on 8 August 2024). [CrossRef] [PubMed]
- Soguero-Ruiz, C.; Hindberg, K.; Rojo-Alvarez, J.L.; Skrøvseth, S.O.; Godtliebsen, F.; Mortensen, K.; Revhaug, A.; Lindsetmo, R.O.; Augestad, K.M.; Jenssen, R. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records. IEEE J. Biomed. Health Inform. 2016, 20, 1404–1415. [Google Scholar] [CrossRef]
- Locke, S.; Bashall, A.; Al-Adely, S.; Moore, J.; Wilson, A.; Kitchen, G.B. Natural language processing in medicine: A review. Trends Anaesth. Crit. Care 2021, 38, 4–9. [Google Scholar] [CrossRef]
- Charleen; Angelica, C.; Purnama, H.; Purnomo, F. Impact of Computer Vision With Deep Learning Approach in Medical Imaging Diagnosis. In Proceedings of the International Conference on Computer Science and Artificial Intelligence (ICCSAI), Jakarta, Indonesia, 28 October 2021; pp. 37–41. [Google Scholar]
- Olveres, J.; González, G.; Torres, F.; Moreno-Tagle, J.C.; Carbajal-Degante, E.; Valencia-Rodríguez, A.; Méndez-Sánchez, N.; Escalante-Ramírez, B. What is new in computer vision and artificial intelligence in medical image analysis applications. Quant. Imaging Med. Surg. 2021, 11, 3830–3853. [Google Scholar] [CrossRef]
- Ward, T.M.; Mascagni, P.; Ban, Y.; Rosman, G.; Padoy, N.; Meireles, O.; Hashimoto, D.A. Computer vision in surgery. Surgery 2021, 169, 1253–1256. [Google Scholar] [CrossRef]
- Gore, J.C. Artificial intelligence in medical imaging. Magn. Reson. Imaging 2019, 68, A1–A4. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Gupta, N. Pelvic prolapse imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Shen, Y.T.; Chen, L.; Yue, W.W.; Xu, H.X. Artificial intelligence in ultrasound. Eur. J. Radiol. 2021, 139, 109717. Available online: https://pubmed.ncbi.nlm.nih.gov/33962110/ (accessed on 23 October 2024). [CrossRef] [PubMed]
- Zaharchuk, G.; Davidzon, G. Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Semin. Nucl. Med. 2021, 51, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, R.; Shah, A.D.; Akin, O.; Do, R.K.G.; Konar, A.S.; Hatzoglou, V.; Mahmood, U.; Lee, N.; Wong, R.J.; Banerjee, S.; et al. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers 2023, 15, 2573. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.; Lyakhovitsky, A. Revolutionizing teledermatology: Exploring the integration of artificial intelligence, including Generative Pre-trained Transformer chatbots for artificial intelligence-driven anamnesis, diagnosis, and treatment plans. Clin. Dermatol. 2024, 42, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.S.; Cahill, D.; Panagides, J.; Nelson, C.P.; Wu, H.T.; Estrada, C. Pattern recognition algorithm to identify detrusor overactivity on urodynamics. Neurourol. Urodyn. 2021, 40, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, K.T.; Choe, N.; Aksenov, L.I.; Reyes, L.; Aquino, W.; Routh, J.C.; Hokanson, J.A. Machine Learning for Urodynamic Detection of Detrusor Overactivity. Urology 2022, 159, 247–254. [Google Scholar] [CrossRef]
- Onal, S.; Lai-Yuen, S.; Bao, P.; Weitzenfeld, A.; Greene, K.; Kedar, R.; Hart, S. Assessment of a semiautomated pelvic floor measurement model for evaluating pelvic organ prolapse on MRI. Int. Urogynecol. J. 2014, 25, 767–773. [Google Scholar] [CrossRef]
- Nekooeimehr, I.; Lai-Yuen, S.; Bao, P.; Weitzenfeld, A.; Hart, S. Automated contour tracking and trajectory classification of pelvic organs on dynamic MRI. J. Med. Imaging 2018, 5, 014008. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, D.; Feng, F.; Ashton-Miller, J.A.; DeLancey, J.O.L.; Luo, J. Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning. Int. Urogynecol. J. 2022, 33, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, X.; Zheng, Z.; Chen, Y.; Ren, Y.; Zhang, X. Artificial intelligence models derived from 2D transperineal ultrasound images in the clinical diagnosis of stress urinary incontinence. Int. Urogynecol. J. 2021, 33, 1179–1185. [Google Scholar] [CrossRef]
- Szentimrey, Z.; Ameri, G.; Hong, C.X.; Cheung, R.Y.K.; Ukwatta, E.; Eltahawi, A. Automated segmentation and measurement of the female pelvic floor from the mid-sagittal plane of 3D ultrasound volumes. Med. Phys. 2023, 50, 6215–6227. [Google Scholar] [CrossRef] [PubMed]
- Aleissa, M.; Osumah, T.; Drelichman, E.; Mittal, V.; Bhullar, J. Current Status and Role of Artificial Intelligence in Anorectal Diseases and Pelvic Floor Disorders. JSLS J. Soc. Laparosc. Robot. Surg. 2024, 28, e2024.00007. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Wang, H. Evaluation of Nursing Effect of Pelvic Floor Rehabilitation Training on Pelvic Organ Prolapse in Postpartum Pregnant Women under Ultrasound Imaging with Artificial Intelligence Algorithm. Comput. Math. Methods Med. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Negassi, M.; Suarez-Ibarrola, R.; Hein, S.; Miernik, A.; Reiterer, A. Application of artificial neural networks for automated analysis of cystoscopic images: A review of the current status and future prospects. World J. Urol. 2020, 38, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Aramendía-Vidaurreta, V.; Cabeza, R.; Villanueva, A.; Navallas, J.; Alcázar, J.L. Ultrasound Image Discrimination between Benign and Malignant Adnexal Masses Based on a Neural Network Approach. Ultrasound Med. Biol. 2015, 42, 742–752. [Google Scholar] [CrossRef]
- Licari, L.C.; Bologna, E.; Ditonno, F.; Autorino, R. Artificial Intelligence and Augmented Reality: Transforming Urology? Uro-Technol. J. 2024, 8, 9–13. [Google Scholar] [CrossRef]
- Taylor, R.A.; Moore, C.L.; Cheung, K.H.; Brandt, C. Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE 2018, 13, e0194085. [Google Scholar] [CrossRef] [PubMed]
- Dedeene, L.; Van Elslande, J.; Dewitte, J.; Martens, G.; De Laere, E.; De Jaeger, P.; De Smet, D. An artificial intelligence-driven support tool for prediction of urine culture test results. Clin. Chim. Acta 2024, 562, 119854. [Google Scholar] [CrossRef]
- Burton, R.J.; Albur, M.; Eberl, M.; Cuff, S.M. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med. Inform. Decis. Mak. 2019, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Goździkiewicz, N.; Zwolińska, D.; Polak-Jonkisz, D. The Use of Artificial Intelligence Algorithms in the Diagnosis of Urinary Tract Infections—A Literature Review. J. Clin. Med. 2022, 11, 2734. [Google Scholar] [CrossRef]
- Brodie, A.; Dai, N.; Teoh, J.Y.C.; Decaestecker, K.; Dasgupta, P.; Vasdev, N. 1109 Artificial Intelligence in Urological Oncology. Br. J. Surg. 2021, 108 (Suppl. S6), znab259.947. [Google Scholar] [CrossRef]
- Jones, O.T.; Calanzani, N.; Saji, S.; Duffy, S.W.; Emery, J.; Hamilton, W.; Singh, H.; de Wit, N.J.; Walter, F.M. Artificial intelligence techniques that may be applied to primary care data to facilitate the earlier diagnosis of cancer: A systematic review (Preprint). J. Med. Internet Res. 2020, 23, e23483. [Google Scholar] [CrossRef] [PubMed]
- Mascagni, P.; Alapatt, D.; Sestini, L.; Altieri, M.S.; Madani, A.; Watanabe, Y.; Alseidi, A.; Redan, J.A.; Alfieri, S.; Costamagna, G.; et al. Computer vision in surgery: From potential to clinical value. NPJ Digit. Med. 2022, 5, 163. [Google Scholar] [CrossRef]
- Bates, D.W.; Levine, D.; Syrowatka, A.; Kuznetsova, M.; Craig, K.J.T.; Rui, A.; Jackson, G.P.; Rhee, K. The potential of artificial intelligence to improve patient safety: A scoping review. NPJ Digit. Med. 2021, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Sharp, H.T.; Adelman, M.R. Prevention, Recognition, and Management of Urologic Injuries During Gynecologic Surgery. Obstet. Gynecol. 2016, 127, 1085–1096. [Google Scholar] [CrossRef]
- Serban, N.; Kupas, D.; Hajdu, A.; Török, P.; Harangi, B. Distinguishing the Uterine Artery, the Ureter, and Nerves in Laparoscopic Surgical Images Using Ensembles of Binary Semantic Segmentation Networks. Sensors 2024, 24, 2926. [Google Scholar] [CrossRef] [PubMed]
- Narihiro, S.; Kitaguchi, D.; Hasegawa, H.; Takeshita, N.; Ito, M. Deep Learning-Based Real-time Ureter Identification in Laparoscopic Colorectal Surgery. Dis. Colon Rectum 2024, 67, e1596–e1599. [Google Scholar] [CrossRef] [PubMed]
- Kitaguchi, D.; Harai, Y.; Kosugi, N.; Hayashi, K.; Kojima, S.; Ishikawa, Y.; Yamada, A.; Hasegawa, H.; Takeshita, N.; Ito, M. Artificial intelligence for the recognition of key anatomical structures in laparoscopic colorectal surgery. Br. J. Surg. 2023, 110, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.A.; Joisa, C.U.; Stem, J.M.; Guillem, J.G.; Gomez, S.M.; Kapadia, M.R. Prediction of Ureteral Injury During Colorectal Surgery Using Machine Learning. Am. Surg. 2023, 89, 5702–5710. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Song, E.; Liu, H.; Zhu, J.; Hung, C. Laparoscopic Image-Guided System Based on Multispectral Imaging for the Ureter Detection. IEEE Access 2019, 7, 3800–3809. [Google Scholar] [CrossRef]
- Siff, L.N.; Mehta, N. An Interactive Holographic Curriculum for Urogynecologic Surgery. Obstet. Gynecol. 2018, 132, 27S–32S. [Google Scholar] [CrossRef] [PubMed]
- Manne, R.; Kantheti, S.C. Application of Artificial Intelligence in Healthcare: Chances and Challenges. Curr. J. Appl. Sci. Technol. 2021, 40, 78–89. [Google Scholar] [CrossRef]
- Sheyn, D.; Ju, M.; Zhang, S.; Anyaeche, C.; Hijaz, A.; Mangel, J.; Mahajan, S.; Conroy, B.; El-Nashar, S.; Ray, S. Development and Validation of a Machine Learning Algorithm for Predicting Response to Anticholinergic Medications for Overactive Bladder Syndrome. Obstet. Gynecol. 2019, 134, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Bentaleb, J.; Larouche, M. Innovative use of artificial intelligence in urogynecology. Int. Urogynecol. J. 2020, 31, 1287–1288. [Google Scholar] [CrossRef] [PubMed]
- Semproni, F.; Iacovacci, V.; Menciassi, A. Bladder Monitoring Systems: State of The Art and Future Perspectives. IEEE Access 2022, 10, 125626–125651. [Google Scholar] [CrossRef]
- Kuru, K.; Ansell, D.; Jones, M.; De Goede, C.; Leather, P. Feasibility study of intelligent autonomous determination of the bladder voiding need to treat bedwetting using ultrasound and smartphone ML techniques. Med. Biol. Eng. Comput. 2018, 57, 1079–1097. [Google Scholar] [CrossRef]
- Kim, E.S.; Eun, S.J.; Kim, K.H. Artificial Intelligence-Based Patient Monitoring System for Medical Support. Int. Neurourol. J. 2023, 27, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Eun, S.J.; Lee, J.Y.; Jung, H.; Kim, K.H. Personalized Urination Activity Management Based on an Intelligent System Using a Wearable Device. Int. Neurourol. J. 2021, 25, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.L.; Mehta, S.; Farag, S.; Kelley, R.S.; Chen, K.T. In Search of Mobile Applications for Urogynecology Providers. Female Pelvic Med. Reconstr. Surg. 2019, 25, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Nyström, E.; Söderström, L.; Samuelsson, E. Self-management of incontinence using a free mobile app: Factors associated with improvement. Int. Urogynecol. J. 2021, 33, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Han, M.N.; Grisales, T.; Sridhar, A. Evaluation of a Mobile Application for Pelvic Floor Exercises. Telemed. e-Health 2019, 25, 160–164. Available online: https://www.liebertpub.com/doi/abs/10.1089/tmj.2017.0316 (accessed on 26 September 2024). [CrossRef] [PubMed]
- Mascarenhas, M.; Martins, M.; Ribeiro, T.; Afonso, J.; Cardoso, P.; Mendes, F.; Cardoso, H.; Almeida, R.; Ferreira, J.; Fonseca, J.; et al. Software as a Medical Device (SaMD) in Digestive Healthcare: Regulatory Challenges and Ethical Implications. Diagnostics 2024, 14, 2100. [Google Scholar] [CrossRef]
- Lucas, G.M.; Gratch, J.; King, A.; Morency, L.P. It’s only a computer: Virtual humans increase willingness to disclose. Comput. Hum. Behav. 2014, 37, 94–100. [Google Scholar] [CrossRef]
- Elenskaia, K.; Haidvogel, K.; Heidinger, C.; Doerfler, D.; Umek, W.; Hanzal, E. The greatest taboo: Urinary incontinence as a source of shame and embarrassment. Wien. Klin. Wochenschr. 2011, 123, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, C.N.; Sitto, H.M.; Wittmann, D.; Wallner, L.P.; Streur, C.; DeJonckheere, M.; Stoffel, J.S.; Cameron, A.P.; Sarma, A.; Clemens, J.Q.; et al. “There is a lot of shame that comes with this”: A qualitative study of patient experiences of isolation, embarrassment, and stigma associated with overactive bladder. Neurourol. Urodyn. 2024, 43, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Trebeschi, S.; Bodalal, Z.; van Dijk, N.; Boellaard, T.N.; Apfaltrer, P.; Bucho, T.M.T.; Nguyen-Kim, T.D.L.; van der Heijden, M.S.; Aerts, H.J.W.L.; Beets-Tan, R.G.H. Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy. Front. Oncol. 2021, 11, 637804. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Asan, O. Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review. JMIR Med. Inform. 2020, 8, e18599. [Google Scholar] [CrossRef]
- Kim, J.; Kadkol, S.; Solomon, I.; Yeh, H.; Soh, J.Y.; Nguyen, T.M.; Choi, J.Y.; Lee, S.; Srivatsa, A.V.; Nahass, G.R.; et al. AI Anxiety: A Comprehensive Analysis of Psychological Factors and Interventions. SSRN Electron. J. 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Mascarenhas, M.; Afonso, J.; Ribeiro, T.; Andrade, P.; Cardoso, H.; Macedo, G. The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. Medicina 2023, 59, 790. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Asan, O.; Mansouri, M. Patients’ Perceptions of Integrating AI into Healthcare: Systems Thinking Approach. In Proceedings of the 2022 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 24–26 October 2022; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/10005383 (accessed on 28 December 2024).
- Tran, V.T.; Riveros, C.; Ravaud, P. Patients’ Views of Wearable Devices and AI in healthcare: Findings from the ComPaRe e-cohort. NPJ Digit. Med. 2019, 2, 53. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, T.; Chen, Y.; Wei, D.; Cui, T.; Mei, L.; Zhang, L.; Niu, X. Medicine and engineering collaboration in urogynecology: A narrative review. Gynecol. Pelvic Med. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Beck, J.T.; Rammage, M.; Jackson, G.P.; Preininger, A.M.; Dankwa-Mullan, I.; Roebuck, M.C.; Torres, A.; Holtzen, H.; Coverdill, S.E.; Williamson, M.P.; et al. Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center. JCO Clin. Cancer Inform. 2020, 4, 50–59. [Google Scholar] [CrossRef]
- Askin, S.; Burkhalter, D.; Calado, G.; El Dakrouni, S. Artificial Intelligence Applied to clinical trials: Opportunities and challenges. Health Technol. 2023, 13, 203–213. [Google Scholar] [CrossRef]
- Lu, X.; Chen, M.; Lu, Z.; Shi, X.; Liang, L. Artificial intelligence tools for optimising recruitment and retention in clinical trials: A scoping review protocol. BMJ Open 2024, 14, e080032. [Google Scholar] [CrossRef]
- Lu, X.; Yang, C.; Liang, L.; Hu, G.; Zhong, Z.; Jiang, Z. Artificial intelligence for optimizing recruitment and retention in clinical trials: A scoping review. J. Am. Med. Inform. Assoc. 2024, 31, 2749–2759. [Google Scholar] [CrossRef]
- Kowalski, D.J. Optimizing Drug Discovery and Development with AI-Powered Clinical Trials Management: Applies AI algorithms to optimize the design and execution of clinical trials, accelerating drug discovery and development processes in the pharmaceutical industry. J. Mach. Learn. Healthc. Decis. Support 2024, 4, 60–71. [Google Scholar]
- Delso, G.; Cirillo, D.; Kaggie, J.D.; Valencia, A.; Metser, U.; Veit-Haibach, P. How to Design AI-Driven Clinical Trials in Nuclear Medicine. Semin. Nucl. Med. 2021, 51, 112–119. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.; Stremmel, J.; Pio-Lopez, L.; McMillen, P.; Rasmussen-Ivey, C.; Levin, M. Machine Learning for Hypothesis Generation in Biology and Medicine: Exploring the latent space of neuroscience and developmental bioelectricity. Digit. Discov. 2024, 3, 249–263. [Google Scholar] [CrossRef]
- Xianyu, Z.; Correia, C.; Yong Ung, C.; Zhu, S.; Billadeau, D.D.; Li, H. The Rise of Hypothesis-Driven Artificial Intelligence in Oncology. Cancers 2024, 16, 822. [Google Scholar] [CrossRef]
- Paranjape, K.; Schinkel, M.; Nannan Panday, R.; Car, J.; Nanayakkara, P. Introducing Artificial Intelligence Training in Medical Education (Preprint). JMIR Med. Educ. 2019, 5, e16048. [Google Scholar] [CrossRef]
- Charow, R.; Jeyakumar, T.; Younus, S.; Dolatabadi, E.; Salhia, M.; Al-Mouaswas, D.; Anderson, M.; Balakumar, S.; Clare, M.; Dhalla, A.; et al. Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review. JMIR Med. Educ. 2021, 7, e31043. [Google Scholar] [CrossRef] [PubMed]
- Malerbi, F.K.; Nakayama, L.F.; Gayle Dychiao, R.; Zago Ribeiro, L.; Villanueva, C.; Celi, L.A.; Regatieri, C.V. Digital Education for the Deployment of Artificial Intelligence in Health Care. J. Med. Internet Res. 2023, 25, e43333. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, G.M.; Raina, N.T.; Mir, S.M.; Mir, S.M.; Miskeen, E.; Alharthi, M.H.; Alamri, M.M.S. Application of Artificial Intelligence in Medical Education: Current Scenario and Future Perspectives. J. Adv. Med. Educ. Prof. 2023, 11, 133–140. [Google Scholar]
- Sapci, A.H.; Sapci, H.A. Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Med. Educ. 2020, 6, e19285. [Google Scholar] [CrossRef]
- Nasr, M.; Islam, M.d.M.; Shehata, S.; Karray, F.; Quintana, Y. Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects. IEEE Access 2021, 9, 145248–145270. [Google Scholar] [CrossRef]
- Chomutare, T.; Tejedor, M.; Svenning, T.O.; Marco-Ruiz, L.; Tayefi, M.; Lind, K.; Godtliebsen, F.; Moen, A.; Ismail, L.; Makhlysheva, A.; et al. Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators. Int. J. Environ. Res. Public Health 2022, 19, 16359. [Google Scholar] [CrossRef]
- Madiega, T. Artificial Intelligence Act. 2024. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf (accessed on 22 October 2024).
- Manning, C. Technology Readiness Levels; NASA. 2023. Available online: https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/ (accessed on 22 October 2024).
- Liu, X.; Shi, J.; Li, Z.; Huang, Y.; Zhang, Z.; Zhang, C. The Present and Future of Artificial Intelligence in Urological Cancer. J. Clin. Med. 2023, 12, 4995. [Google Scholar] [CrossRef] [PubMed]
Type of Model | Model | Definition |
---|---|---|
ML | Support Vector Machine (SVM) | Supervised algorithm used for classification and regression tasks, searching the ideal hyperplane to categorize data in a high-dimensional space while maximizing the margin between them. |
Random Forest (RF) | Algorithm used for classification and regression tasks that generates multiple decision trees, yielding the categories’ mode or the mean prediction, respectively, mitigating overfitting in the training set. | |
Extreme Gradient Boosting (XGBoost) | Gradient boosting algorithm used for classification and regression tasks which combines sequentially multiple decision trees’ predictions originating more precise and robust models. | |
k-Nearest Neighbors (kNNs) | Algorithm used for classification and regression tasks which uses a non-parametric supervised method to analyze the most common class or the average of the k value closest to the data points to make predictions. | |
K-Means Clustering | Non-supervised algorithm used to cluster data to separate it into k different groups based on shared similarities. | |
Coupled Switched Hidden Markov Model (CSHMM) | Algorithm used to analyze complex data such as time series from various intertwined processes and fluid data interactions. | |
Manifold Learning | Method to simplify and better comprehend multidimensional complex data to facilitate working with them. | |
Adaptive Boosting (AdaBoost) | Algorithm used for classification tasks that combines multiple weak classifiers to originate a stronger one, adjusting the weight of the training data so that errors would receive more attention. | |
Elastic Net | Regression method used for datasets with many predictor variables, able to improve the model’s stability and the selection of variables by combining Lasso (L1) and Ridge (L2) penalties. | |
Multilayer Perceptron (MLP) | Artificial neural network used for classification and regression tasks where each neuron is connected to all neurons in the following layer, using a non-linear activation function to facilitate teaching complex data patterns. | |
Multiple Logistic Regression (MLR) | Supervised algorithm used for classification tasks based on several independent variables, enabling effective modeling and the prediction of categorical outcomes. | |
Ensemble Voting Classifier | Technique that gathers and combines different models to make enhanced predictions based on the different models’ outputs. | |
Neural Network | Model inspired by the human brain that is able to identify patterns and make predictions due to its interconnected neural layers. | |
Sequential Minimal Optimization (SMO) | Training algorithm for SVMs that aims to solve its optimization problem by finding the ideal hyperplane for separating different data classes. | |
Linear Regression (LR) | ML algorithm used for regression tasks, able to make predictions and discover data trends. | |
Ensemble Bagging (EB) | ML technique that generates many training dataset subsets and uses each to train a model, originating predictions for each subset that are then combined to create a final prediction, reducing overfitting and variance. | |
Prognostic AI-Monitor (PAM) | Algorithm that predicts healthcare outcomes, risks, and events based on healthcare data analysis. | |
DL | Convolutional Neural Networks (CNNs) | Neural network which processes multidimensional grid-topology data like images, enabling image classification, object recognition and detection, segmentation, and more, being highly used in computer vision. |
U-NET | Type of CNN used in image segmentation tasks at the pixel level, being applied in the biomedical domain. | |
Residual Network (ResNET) | DL architecture that uses residual connections to improve information flow and facilitate training, all while diminishing the vanishing gradient problem. | |
ResNet-50 | Popular version of ResNET with 50 layers created to improve deep neural networks’ performance in imaging classification. | |
Inception-V3 | CNN architecture used for image recognition and identification tasks and for transfer learning, able to analyze different parts of the image at the same time. | |
Transfer Learning | Technique where a model created to perform a task is adapted to perform a different task by drawing insights from a pre-trained model. | |
No-new U-Net (nnU-Net) | Advanced framework used for medical image segmentation at pixel level which automates part of the required training enabling it to adapt itself to different databases without broad manual training. | |
TUMNet | DL architecture used for medical imaging segmentation, more specifically for tumor detection and analysis. | |
Xception | Type of CNN used for image classification and segmentation, object detection, image and video analysis, and computer vision tasks. | |
Recurrent Neural Networks (RNNs) | Artificial neural networks used for processing sequential data, having connections that enable maintaining the memory of past inputs due to them looping back on themselves. | |
Long short-term memory (LSTM) | Type of RNN used for sequential data and to address RNNs’ limitations of maintaining long-term data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.B.M.d.; Mendes, F.; Martins, M.; Cardoso, P.; Fonseca, J.; Mascarenhas, T.; Saraiva, M.M. The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects. Diagnostics 2025, 15, 274. https://doi.org/10.3390/diagnostics15030274
Oliveira MBMd, Mendes F, Martins M, Cardoso P, Fonseca J, Mascarenhas T, Saraiva MM. The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects. Diagnostics. 2025; 15(3):274. https://doi.org/10.3390/diagnostics15030274
Chicago/Turabian StyleOliveira, Maria Beatriz Macedo de, Francisco Mendes, Miguel Martins, Pedro Cardoso, João Fonseca, Teresa Mascarenhas, and Miguel Mascarenhas Saraiva. 2025. "The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects" Diagnostics 15, no. 3: 274. https://doi.org/10.3390/diagnostics15030274
APA StyleOliveira, M. B. M. d., Mendes, F., Martins, M., Cardoso, P., Fonseca, J., Mascarenhas, T., & Saraiva, M. M. (2025). The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects. Diagnostics, 15(3), 274. https://doi.org/10.3390/diagnostics15030274