Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges
Abstract
:1. Introduction
2. Materials and Methods
Literature Search: Eligibility Criteria and Data Extraction
3. Results
Medline Review
4. Discussion
4.1. Demographic Data
4.2. Clinical Manifestations
4.3. Histopathologic Features and Immunohistochemical Findings
4.4. Radiological Findings
4.4.1. Localization and Lesion’s Appearance
4.4.2. MRI Signal Intensity
- -
- A 60-year-old female patient undergoing follow-up for pulmonary adenocarcinoma (a–f). MRI T2w and FLAIR sequences reveal several tiny hyperintense nodules clustered within the subcortical left parietal white matter, with sparing of the overlying cortex (white arrows in a–b). No restricted diffusion (c) and no intratumoral hemorrhage (d) are observed; post-contrast imaging shows no enhancement (e) and no increased rCBV values (f). The presumed MVNT remained stable during the 2-year follow-up period;
- -
- A 13-year-old male with epilepsy underwent evaluation and was subsequently treated with surgery (g–m). Imaging reveals clusters of coalescent nodules involving the cortex and subcortical white matter in the right parahippocampal gyrus, extending to the hippocampus without tissue expansion or mass effect. The nodules are hyperintense on T2WI and FLAIR, with interspersed areas of high signal intensity (white arrows in g,h). No diffusion restriction (i), hemorrhage (j), enhancement (k), or perfusion alterations (l) are observed. Magnetic resonance spectroscopy shows an elevated choline peak, reduced N-acetyl aspartate peak, and an increased Cho/NAA ratio (m);
- -
- A 20-year-old female with Noonan syndrome (n–s). Imaging reveals nodules with a bubble-like appearance in the subcortical parietal white matter, hyperintense to CSF on T2 (white arrow in n), with complete suppression on FLAIR except for a peripheral high-signal-intensity ring (white arrow in o), following the gyral contour. No vasogenic edema, mass effect, diffusion restriction (p), hemorrhage (q), enhancement (r), or perfusion alterations (s) are observed. The imaging remained stable over the extended 5-year follow-up period;
- -
- A 26-year-old syndromic male with epilepsy was treated pharmacologically (t–B). T2WI and FLAIR imaging reveal a radial-like band of tiny hyperintense nodules clustered in the subcortical-juxtacortical left frontal lobe, extending to the lateral ventricle, with no cortical blurring (white arrows in t,u,v). A bright diffusion signal restriction (w) with high ADC values is detected (y); no intratumoral hemorrhage (y), no enhancement (z), and no perfusion alterations are observed (A). Spectroscopy demonstrates an increased Cho/NAA ratio (B). The imaging remained stable over the extended 6-year follow-up period.
- -
- A 52-year-old female presenting with headaches and an incidental finding of small coalescent T2w and FLAIR hyperintense nodules in the superior vermis (a,b,c), without diffusion restriction (d), intratumoral susceptibility signals (e), enhancement (f), or mass effect. The imaging remained stable during the 3-year follow-up period;
- -
- A 57-year-old male presented with speech disturbances and an incidental finding of small nodules in the right paravermian region and cerebellar hemisphere. The nodules are hyperintense to CSF on T2 (g,h) with FLAIR suppression, except for a peripheral high-signal-intensity ring (i). Abnormal venous drainage is noted in the left cerebellar hemisphere (white arrow in k). No diffusion restriction (j), intratumoral susceptibility signals (k), enhancement (l), or perfusion alterations (m) are observed. The imaging remained stable during the 2-year follow-up period.
4.5. Treatment and Follow-Up
4.6. Differential Diagnosis
- -
- A 25-year-old male with epilepsy was treated surgically with a histological diagnosis of DNET (a–f). Imaging reveals a shaped, multicystic (bubbly) cortical-subcortical lesion expanding the right temporal uncus (a,b,c). The nodules are hyperintense on T2WI and FLAIR (a,b,c), with no intratumoral diffusion restriction (d), susceptibility signals (e), or enhancement (f).
- -
- A 44-year-old male presenting with headache and vertigo with a histological diagnosis of RGNT (a–g). Imaging shows a solid-cystic mass in the fourth ventricle, hyperintense on T2WI and FLAIR (a,b,c), hypointense on DWI (d), with blooming on SWI (e) and heterogeneous enhancement after gadolinium (f). Perfusion mapping reveals increased rCBV values with reduced T2 signal recovery on the time curve (g);
- -
- A 29-year-old male presenting with headache and vomiting, with a histological diagnosis of RGNT (h–n). Imaging reveals a multicystic mass in the cerebellar vermis extending into the fourth ventricle. The mass is hyperintense on T2WI and FLAIR (h,i,j), hypointense on DWI (k), with tiny blooming foci on SWI (l) and a ’green bell pepper’ sign after gadolinium enhancement (m). Perfusion mapping shows increased rCBV values with reduced T2 signal recovery on the time curve (n);
- -
- A 6-year-old male presenting with a critical episode and histological diagnosis of pylocityc astrocytomas (o–u). Imaging reveals a cystic mass in the cerebellar vermis, consisting of a larger cyst (o,q) with smaller satellite cysts hyperintense to CSF on T2WI (white arrows in p) and unsuppressed on FLAIR (r) without restriction on DWI (s). The larger cyst features blooming foci on SWI (t) and an enhancing mural nodule (u).
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Huse, J.T.; Edgar, M.; Halliday, J.; Mikolaenko, I.; Lavi, E.; Rosenblum, M.K. Multinodular and Vacuolating Neuronal Tumors of the Cerebrum: 10 Cases of a Distinctive Seizure-Associated Lesion. Brain Pathol. 2013, 23, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Bodi, I.; Curran, O.; Selway, R.; Elwes, R.; Burrone, J.; Laxton, R.; Al-Sarraj, S.; Honavar, M. Two Cases of Multinodular and Vacuolating Neuronal Tumour. Acta Neuropathol. Commun. 2014, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Nagaishi, M.; Yokoo, H.; Nobusawa, S.; Fujii, Y.; Sugiura, Y.; Suzuki, R.; Tanaka, Y.; Suzuki, K.; Hyodo, A. Localized Overexpression of Alpha-Internexin within Nodules in Multinodular and Vacuolating Neuronal Tumors. Neuropathology 2015, 35, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, S.; Yoshida, A.; Narita, Y.; Arita, H.; Ohno, M.; Miyakita, Y.; Ichimura, K.; Shibui, S. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum. Brain Tumor Pathol. 2015, 32, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Komori, T.; Nakata, Y.; Yagishita, A.; Morino, M.; Isozaki, E. Multinodular and Vacuolating Neuronal Tumor Affecting Amygdala and Hippocampus: A Quasi-Tumor? Pathol. Int. 2016, 66, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.A.; Rosenblum, M.K. The 2021 WHO Classification of Tumors of the Central Nervous System: An Update on Pediatric Low-Grade Gliomas and Glioneuronal Tumors. Brain Pathol. 2022, 32, e13060. [Google Scholar] [CrossRef]
- Choi, E.; Kim, S.-I.; Won, J.-K.; Chung, C.K.; Kim, S.K.; Choi, S.-H.; Choi, S.; Han, B.; Ahn, B.; Im, S.-W.; et al. Clinicopathological and Molecular Analysis of Multinodular and Vacuolating Neuronal Tumors of the Cerebrum. Hum. Pathol. 2019, 86, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Pekmezci, M.; Stevers, M.; Phillips, J.J.; Van Ziffle, J.; Bastian, B.C.; Tsankova, N.M.; Kleinschmidt-DeMasters, B.K.; Rosenblum, M.K.; Tihan, T.; Perry, A.; et al. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum Is a Clonal Neoplasm Defined by Genetic Alterations That Activate the MAP Kinase Signaling Pathway. Acta Neuropathol. 2018, 135, 485–488. [Google Scholar] [CrossRef]
- Thom, M.; Liu, J.; Bongaarts, A.; Reinten, R.J.; Paradiso, B.; Jäger, H.R.; Reeves, C.; Somani, A.; An, S.; Marsdon, D.; et al. Multinodular and Vacuolating Neuronal Tumors in Epilepsy: Dysplasia or Neoplasia? Brain Pathol. 2018, 28, 155–171. [Google Scholar] [CrossRef]
- Nunes, R.H.; Hsu, C.C.; da Rocha, A.J.; do Amaral, L.L.F.; Godoy, L.F.S.; Watkins, T.W.; Marussi, V.H.; Warmuth-Metz, M.; Alves, H.C.; Goncalves, F.G.; et al. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: A New “Leave Me Alone” Lesion with a Characteristic Imaging Pattern. AJNR Am. J. Neuroradiol. 2017, 38, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Kapucu, I.; Jhaveri, M.D.; Kocak, M.; Kontzialis, M. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: A Benign Nonaggressive Cerebral Lesion. Eur. Neurol. 2018, 79, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Sirbu, C.A.; Ștefani, C.; Tuță, S.; Manole, A.M.; Sirbu, O.M.; Ivan, R.; Toma, G.S.; Calu, A.G.; Jianu, D.C. New Imaging Features of Multinodular and Vacuolating Neuronal Tumor Revealed by Alcohol and Illicit Drugs Consumption. Diagnostics 2022, 12, 2779. [Google Scholar] [CrossRef] [PubMed]
- Morassi, M.; Bagatto, D. Infratentorial Multinodular and Vacuolating Neuronal Tumor or Multinodular and Vacuolating Posterior Fossa Lesions of Unknown Significance? Clinico-Radiologic Findings from 2 Cases. World Neurosurg. 2020, 136, 58–61. [Google Scholar] [CrossRef]
- Lecler, A.; Bailleux, J.; Carsin, B.; Adle-Biassette, H.; Baloglu, S.; Bogey, C.; Bonneville, F.; Calvier, E.; Comby, P.-O.; Cottier, J.-P.; et al. Multinodular and Vacuolating Posterior Fossa Lesions of Unknown Significance. AJNR Am. J. Neuroradiol. 2019, 40, 1689–1694. [Google Scholar] [CrossRef]
- Alsufayan, R.; Alcaide-Leon, P.; de Tilly, L.N.; Mandell, D.M.; Krings, T. Natural History of Lesions with the MR Imaging Appearance of Multinodular and Vacuolating Neuronal Tumor. Neuroradiology 2017, 59, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Quarante, L.H.; Ruiz-Juretschke, F.; Sola Vendrell, E.; Gil de Sagredo Del Corral, O.L.; Agarwal, V.; Garcia-Leal, R. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum. A Rare Entity. New Case and Review of the Literature. Neurocirugia 2018, 29, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.; Srinivasan, A. Case of the Season: Multinodular and Vacuolating Neuronal Tumor. Semin. Roentgenol. 2018, 53, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Makrakis, D.; Veneris, S.; Papadaki, E. Multinodular and Vacuolating Neuronal Tumor Incidentally Discovered in a Young Man: Conventional and Advanced MRI Features. Radiol. Case Rep. 2018, 13, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Zahra, C.; Grech, R. Multinodular and Vacuolating Neuronal Tumor. Open Access Maced. J. Med. Sci. 2018, 6, 1697–1698. [Google Scholar] [CrossRef] [PubMed]
- Shitara, S.; Tokime, T.; Akiyama, Y. Multinodular and Vacuolating Neuronal Tumor: A Case Report and Literature Review. Surg. Neurol. Int. 2018, 9, 63. [Google Scholar] [CrossRef]
- Kodama, S.; Shirota, Y.; Hagiwara, A.; Otsuka, J.; Sato, K.; Sugiyama, Y.; Mori, H.; Watanabe, M.; Hamada, M.; Toda, T. Multinodular and Vacuolating Neuronal Tumor (MVNT): A Presumably Incidental and Asymptomatic Case in an Intractable Epilepsy Patient. Clin. Neurophysiol. Pract. 2019, 4, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Baščarević, V.; Pejović, A.T.; Ristić, A.J.; Vojvodić, N.; Raičević, S.; Đukić, T.; Brajković, L.; Sokić, D. Multinodular and Vacuolating Neuronal Tumour of the Cerebrum: A Rare Neuroimaging Incidentaloma or a Potentially Treatable Cause of Focal Epilepsy? Epileptic Disord. 2019, 21, 209–214. [Google Scholar] [CrossRef]
- Nunes Dias, L.; Candela-Cantó, S.; Jou, C.; Aparicio Calvo, J.; García-García, S.; Mena-Bernal, J.H. Multinodular and Vacuolating Neuronal Tumor Associated with Focal Cortical Dysplasia in a Child with Refractory Epilepsy: A Case Report and Brief Review of Literature. Childs Nerv. Syst. 2020, 36, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, E. Magnetic Resonance Imaging Findings of Two Cases with Multinodular and Vacuolating Neuronal Tumor. Acta Neurol. Belg. 2020, 120, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Buffa, G.B.; Chaves, H.; Serra, M.M.; Stefanoff, N.I.; Gagliardo, A.S.; Yañez, P. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum (MVNT): A Case Series and Review of the Literature. J. Neuroradiol. 2020, 47, 216–220. [Google Scholar] [CrossRef]
- Turner, A.L.; D’Souza, P.; Belirgen, M.; Al-Rahawan, M.M. Atypical Presentation of Multinodular and Vacuolating Neuronal Tumor of the Cerebrum in a Boy. J. Neurosci. Rural. Pract. 2020, 11, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Lecler, A.; Broquet, V.; Bailleux, J.; Carsin, B.; Adle-Biassette, H.; Baloglu, S.; Forestier, G.; Bonneville, F.; Calvier, E.; Chauvet, D.; et al. Advanced Multiparametric Magnetic Resonance Imaging of Multinodular and Vacuolating Neuronal Tumor. Eur. J. Neurol. 2020, 27, 1561–1569. [Google Scholar] [CrossRef]
- Alizada, O.; Ayman, T.; Akgun, M.Y.; Sar, M.; Urganci, N.; Kemerdere, R. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: Two Cases and Review of the Literature. Clin. Neurol. Neurosurg. 2020, 197, 106149. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.S.E.; Sanamandra, S.K. Multinodular and Vacuolating Neuronal Tumour of the Cerebrum: An Incidental Diagnosis in a Child Presenting with Absence Seizures. Postgrad. Med. J. 2021, 97, 125–126. [Google Scholar] [CrossRef]
- Arbuiso, S.; Roster, K.; Gill, A.; Tarawneh, O.; Cole, K.L.; Kazim, S.F.; Vellek, J.; Schmidt, M.H.; Bowers, C.A. Multinodular and Vacuolating Neuronal Tumor: Incidental Diagnosis of a Rare Brain Lesion. Cureus 2021, 13, e20674. [Google Scholar] [CrossRef] [PubMed]
- Turan, A.; Tatar, I.G.; Hekimoglu, A.; Coskun, H.; Yildirim, F. Advanced Magnetic Resonance Imaging Findings of Multinodular and Vacuolating Neuronal Tumor. Turk. Neurosurg. 2021, 31, 725–730. [Google Scholar] [CrossRef]
- Bagatto, D.; Ius, T.; Pegolo, E.; Morassi, M. A Multinodular and Vacuolating Neuronal Tumor of the Cerebrum (MVNT) with Glioma-like Appearance. Acta Neurol. Belg. 2021, 121, 1851–1854. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Zagzag, D.; Young, M.; Golfinos, J.; Orringer, D.; Jain, R. Long-Term Follow-up of Multinodular and Vacuolating Neuronal Tumors and Implications for Surveillance Imaging. AJNR Am. J. Neuroradiol. 2023, 44, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Kishi, S.; Maeda, M.; Tanaka, F.; Kogue, R.; Umino, M.; Matsubara, T.; Obara, M.; Sakuma, H. Advanced Multiparametric MRI and FDG-PET/CT in Multinodular and Vacuolating Neuronal Tumor: A Pathologically Confirmed Case. Radiol. Case Rep. 2023, 18, 2924–2928. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Kojima, M.; Inokuchi, G.; Motomura, A.; Arai, N.; Inoue, H.; Kabasawa, H.; Iwase, H.; Yajima, D. Two Medicolegal Autopsy Cases of Multinodular and Vacuolating Neuronal Tumor Revealed by Postmortem MRI. Leg. Med. 2024, 69, 102342. [Google Scholar] [CrossRef] [PubMed]
- Do, T.; Lee, J.S.; Lee, S.-J.; Lee, J. Multinodular and Vacuolating Neuronal Tumor Initially Misdiagnosed as Acute Cerebral Infarction Presenting With Thunderclap Headache. J. Clin. Neurol. 2024, 20, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Pak, A.; Choi, H.J.; You, S.-H.; Yang, K.-S.; Kim, B.; Choi, S.-H.; Kim, S.H.; Kim, J.Y.; Kim, B.K.; Park, S.E.; et al. Bright Diffusion Sign: A Sensitive and Specific Radiologic Biomarker for Multinodular and Vacuolating Neuronal Tumor. J. Neuroradiol. 2024, 51, 101171. [Google Scholar] [CrossRef] [PubMed]
- Abdelouahhab, H.; Guemmi, I.; Bouamama, T.; Kamaoui, I.; Nasri, S.; Aichouni, N.; Skiker, I. A Rare Cause of Adult’s Epileptic Crisis: Infratentorial Multinodular and Vacuolating Neuronal Tumor. Radiol. Case Rep. 2022, 17, 4847–4849. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J. Case Report: Rare Case of Multinodular and Vacuolar Neuronal Tumors in the Cerebellum. Front. Neurol. 2023, 14, 1309209. [Google Scholar] [CrossRef]
- Agarwal, A.; Lakshmanan, R.; Devagnanam, I.; Bynevelt, M. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: Does the Name Require Review? AJNR Am. J. Neuroradiol. 2019, 40, E69–E70. [Google Scholar] [CrossRef] [PubMed]
- On, T.J.; Alcantar-Garibay, O.; Xu, Y.; Abramov, I.; Eschbacher, J.M.; Tiwari, N.; Smith, K.A.; Preul, M.C. Multinodular and Vacuolating Neuronal Tumor in the Thalamus: Case Report and Systematic Review of Literature. Acta Neurochir. 2024, 166, 340. [Google Scholar] [CrossRef]
- Perry, A.; Scheithauer, B.W.; Macaulay, R.J.B.; Raffel, C.; Roth, K.A.; Kros, J.M. Oligodendrogliomas with Neurocytic Differentiation. A Report of 4 Cases with Diagnostic and Histogenetic Implications. J. Neuropathol. Exp. Neurol. 2002, 61, 947–955. [Google Scholar] [CrossRef]
- Daghistani, R.; Miller, E.; Kulkarni, A.V.; Widjaja, E. Atypical Characteristics and Behavior of Dysembryoplastic Neuroepithelial Tumors. Neuroradiology 2013, 55, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Blümcke, I.; Giencke, K.; Wardelmann, E.; Beyenburg, S.; Kral, T.; Sarioglu, N.; Pietsch, T.; Wolf, H.K.; Schramm, J.; Elger, C.E.; et al. The CD34 Epitope Is Expressed in Neoplastic and Malformative Lesions Associated with Chronic, Focal Epilepsies. Acta Neuropathol. 1999, 97, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Coras, R.; de Boer, O.J.; Armstrong, D.; Becker, A.; Jacques, T.S.; Miyata, H.; Thom, M.; Vinters, H.V.; Spreafico, R.; Oz, B.; et al. Good Interobserver and Intraobserver Agreement in the Evaluation of the New ILAE Classification of Focal Cortical Dysplasias. Epilepsia 2012, 53, 1341–1348. [Google Scholar] [CrossRef]
- Taylor, D.C.; Falconer, M.A.; Bruton, C.J.; Corsellis, J.A. Focal Dysplasia of the Cerebral Cortex in Epilepsy. J. Neurol. Neurosurg. Psychiatry 1971, 34, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Okar, S.V.; Hu, F.; Shinohara, R.T.; Beck, E.S.; Reich, D.S.; Ineichen, B.V. The Etiology and Evolution of Magnetic Resonance Imaging-Visible Perivascular Spaces: Systematic Review and Meta-Analysis. Front. Neurosci. 2023, 17, 1038011. [Google Scholar] [CrossRef]
- Rawal, S.; Croul, S.E.; Willinsky, R.A.; Tymianski, M.; Krings, T. Subcortical Cystic Lesions within the Anterior Superior Temporal Gyrus: A Newly Recognized Characteristic Location for Dilated Perivascular Spaces. AJNR Am. J. Neuroradiol. 2014, 35, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Song, C.J.; Kim, J.H.; Kier, E.L.; Bronen, R.A. MR Imaging and Histologic Features of Subinsular Bright Spots on T2-Weighted MR Images: Virchow-Robin Spaces of the Extreme Capsule and Insular Cortex. Radiology 2000, 214, 671–677. [Google Scholar] [CrossRef]
- Jungreis, C.A.; Kanal, E.; Hirsch, W.L.; Martinez, A.J.; Moossy, J. Normal Perivascular Spaces Mimicking Lacunar Infarction: MR Imaging. Radiology 1988, 169, 101–104. [Google Scholar] [CrossRef]
- Sherazi, Z.A. Gangliocytoma--Magnetic Resonance Imaging Characteristics. Singapore Med. J. 1998, 39, 373–375. [Google Scholar] [PubMed]
- Chen, Y.; Buchanan, P.; Brossier, N.M.; Navalkele, P. Incidence and Survival Characteristics of Pediatric Ganglioglioma from 2004 to 2018, with Focus on Infratentorial Sites. Neurooncol Pract 2024, 11, 328–335. [Google Scholar] [CrossRef]
- Blümcke, I.; Wiestler, O.D. Gangliogliomas: An Intriguing Tumor Entity Associated with Focal Epilepsies. J. Neuropathol. Exp. Neurol. 2002, 61, 575–584. [Google Scholar] [CrossRef]
- Schiff, D. Low-Grade Gliomas: A New Mutation, New Targeted Therapy, and Many Questions. Neurology 2024, 103, e209688. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Han, F.; Jin, Y.; Xiong, J.; Lv, Y.; Yao, Z.; Zhang, J. Imaging Features of Rosette-Forming Glioneuronal Tumours. Clin. Radiol. 2018, 73, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Kuchelmeister, K.; Demirel, T.; Schlörer, E.; Bergmann, M.; Gullotta, F. Dysembryoplastic Neuroepithelial Tumour of the Cerebellum. Acta Neuropathol. 1995, 89, 385–390. [Google Scholar] [CrossRef]
- Eye, P.G.; Davidson, L.; Malafronte, P.J.; Cantrell, S.; Theeler, B.J. PIK3CA Mutation in a Mixed Dysembryoplastic Neuroepithelial Tumor and Rosette Forming Glioneuronal Tumor, a Case Report and Literature Review. J. Neurol. Sci. 2017, 373, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Appay, R.; Bielle, F.; Sievers, P.; Barets, D.; Fina, F.; Boutonnat, J.; Adam, C.; Gauchotte, G.; Godfraind, C.; Lhermitte, B.; et al. Rosette-Forming Glioneuronal Tumours Are Midline, FGFR1-Mutated Tumours. Neuropathol. Appl. Neurobiol. 2022, 48, e12813. [Google Scholar] [CrossRef]
- Podlesek, D.; Geiger, K.; Hendry, D.J.; Schackert, G.; Krex, D. Rosette-Forming Glioneuronal Tumor of the Fourth Ventricle in an Elderly Patient. J. Neurooncol 2011, 103, 727–731. [Google Scholar] [CrossRef]
- Luan, S.; Zhuang, D.; Sun, L.; Huang, F.-P. Rosette-Forming Glioneuronal Tumor (RGNT) of the Fourth Ventricle: Case Report and Review of Literature. Clin. Neurol. Neurosurg. 2010, 112, 362–364. [Google Scholar] [CrossRef]
- Anan, M.; Inoue, R.; Ishii, K.; Abe, T.; Fujiki, M.; Kobayashi, H.; Goya, T.; Nakazato, Y. A Rosette-Forming Glioneuronal Tumor of the Spinal Cord: The First Case of a Rosette-Forming Glioneuronal Tumor Originating from the Spinal Cord. Hum. Pathol. 2009, 40, 898–901. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Silva, A.I.; Ketterling, R.P.; Pula, J.H.; Lininger, J.F.; Krinock, M.J. Rosette-Forming Glioneuronal Tumor: Report of a Chiasmal-Optic Nerve Example in Neurofibromatosis Type 1: Special Pathology Report. Neurosurgery 2009, 64, E771–E772, discussion E772. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Adjei, B.; Mietus, C.J.; Lim, J.C.; Lambert, W.; Daci, R.; Cachia, D.; Smith, T.W.; Amenta, P.S. Diffusely Invasive Supratentorial Rosette-Forming Glioneuronal Tumor: Illustrative Case. J. Neurosurg. Case Lessons 2023, 6, CASE23435. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.K. The 2007 WHO Classification of Nervous System Tumors: Newly Recognized Members of the Mixed Glioneuronal Group. Brain Pathol. 2007, 17, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Kwan, G.; Lau, Q.; Bhuta, S. Rosette-Forming Glioneuronal Tumour: Imaging Features, Histopathological Correlation and a Comprehensive Review of Literature. Br. J. Neurosurg. 2012, 26, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Rameh, V.; Löbel, U.; D’Arco, F.; Bhatia, A.; Mankad, K.; Poussaint, T.Y.; Alves, C.A. Cortically-Based Brain Tumors in Children: A Decision-Tree Approach in the Radiology Reading Room. AJNR Am. J. Neuroradiol. 2024, 46, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Salles, D.; Laviola, G.; Malinverni, A.C.d.M.; Stávale, J.N. Pilocytic Astrocytoma: A Review of General, Clinical, and Molecular Characteristics. J. Child. Neurol. 2020, 35, 852–858. [Google Scholar] [CrossRef]
- Gregory, T.A.; Chumbley, L.B.; Henson, J.W.; Theeler, B.J. Adult Pilocytic Astrocytoma in the Molecular Era: A Comprehensive Review. CNS Oncol. 2021, 10, CNS68. [Google Scholar] [CrossRef] [PubMed]
- Crainic, N.; Furtner, J.; Pallud, J.; Bielle, F.; Lombardi, G.; Rudà, R.; Idbaih, A. Rare Neuronal, Glial and Glioneuronal Tumours in Adults. Cancers 2023, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Pizzimenti, C.; Fiorentino, V.; Germanò, A.; Martini, M.; Ieni, A.; Tuccari, G. Pilocytic Astrocytoma: The Paradigmatic Entity in Low-grade Gliomas (Review). Oncol. Lett. 2024, 27, 146. [Google Scholar] [CrossRef]
- Moreno-Jiménez, S.; Miranda-Fernández, K.A.; García Gutiérrez, M.; Vázquez-Estrada, N.; Müller-Grohmann, S.; Flores-Vázquez, F. Astrocytoma and epilepsy. Clinical case. Cir. Cir. 2017, 85, 419–423. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.E.; Murray, D.; MacNally, S.; O’Brien, D.F. Lhermitte-Duclos Disease (Dysplastic Cerebellar Gangliocytoma) in the Setting of Cowden Syndrome: A Case Report and Literature Review on COLD Syndrome. Br. J. Neurosurg. 2024, 38, 1170–1173. [Google Scholar] [CrossRef]
- Buhl, R.; Barth, H.; Hugo, H.-H.; Straube, T.; Mehdorn, H.M. Dysplastic Gangliocytoma of the Cerebellum: Rare Differential Diagnosis in Space Occupying Lesions of the Posterior Fossa. Acta Neurochir. 2003, 145, 509–512, discussion 512. [Google Scholar] [CrossRef]
- Robinson, S.; Cohen, A.R. Cowden Disease and Lhermitte-Duclos Disease: An Update. Case Report and Review of the Literature. Neurosurg. Focus. 2006, 20, E6. [Google Scholar] [CrossRef]
Authors (Year) | Study Type (n. pts) | Age in Years (Range) | Clinical Presentation | Immunohistochemical Findings/ Genetic Alterations | Localization | MRI Findings | Follow-Up (n.pts) (Months) |
---|---|---|---|---|---|---|---|
Huse et al. (2013) [2] | Case series (n.10) | (31–64) | Seizure (n.3), confusion/loss of attention/vertigo (n.7) | -HuC/HuD, Syn (n.3), CD34 (n.7)/MEK1 (n.1) | Temporal (n.8), frontal (n.1), parietal (n.1) | Appearance: multinodularity and solid (n.9), cystic components (n.1). Signal: T2w/FLAIR hyperintensity (n.10), faint enhancement (n.2), increased choline/NAA (n.1) | No recurrence after surgery (n.10); (8–72) |
Bodi et al. (2014) [3] | Case series (n.2) | 34–71 | Seizure (n.2) | Syn, HuC/HuD, p62 | Temporal (n.1), frontal (n.1), | Appearance: multinodularity and solid Signal: T2-w/FLAIR hyperintensity, no enhancement | No recurrence after surgery (n.2); (24) |
Fukushima et al. (2015) [5] | Case report (n.1) | 37 | Epilepsy | Syn, HuC/HuD, Olig2 | Parietal | Appearance: solid lesion Signal: T1w isointensity, T2w/FLAIR hyperintensity, no enhancement, increased choline/NAA | No recurrence after surgery (n.1); (18) |
Nagaishi et al. (2015) [4] | Case report (n.1) | 22 | Headache | α-INA, HuC/HuD, Olig2, S100 | Frontal | Appearance: solid lesion Signal: T1w isointensity, T2-w/FLAIR hyperintensity, no enhancement, increased choline/NAA | S (n.1); (6) |
Yamaguchi et al. (2016) [6] | Case report (n.1) | 41 | Epilepsy | α-INA, HuC/HuD, Olig2, p62 | Temporal | Appearance: multinodular-solid lesion Signal: T1w hypointensity, T2w/FLAIR hyperintensity, no enhancement | Surgery (n.1); (NA) |
Nunes et al. (2017) [11] | Case series (n.33) | 8–63 | Suspected seizures (n.8), headache (n.16) | NA | Parietal (n.9), frontal (n.8), temporal (n.6), occipital (n.2), more lobes (n.8) | Appearance: multinodularity Signal: T2w/FLAIR hyperintensity, T1w iso/hypointensity, no restricted diffusion (n.33), enhancement (n.1) | S (n.30), NA (n.3); (24–144) |
Alsufayan et al. (2017) [16] | Original research (n.24) | 24–59 | Headaches (n.8), seizures (n.4), visual symptom (n.3), paresthesia (n.1), hemiparesis (n.1), cognitive difficulties (n.1), non relevant neurological symptoms (n.6) | NA | Parietal (n.5), frontal (n.11), temporal (n.2), occipital (n.3), more lobes (n.3) | Appearance: multinodularity Signal: a) T2w/FLAIR hyperintensity, T1w hypointensity (solid lesions n.18); b) T2w hyperintensity, suppressed on FLAIR, T1w hypointensity (cystic-solid lesions n.5, cystic lesion n.1) No restricted diffusion (n.24), enhancement (n.2) | S (n.18); (2–93) Progression (n.1) NA (n.5) |
Thom et al. (2018) [10] | Case series (n.10) | 6–67 | Seizure (n.9), breathing difficulties (n.1) |
Neurofilament/SMI32, MAP2, Syn, OTX1, TBR1, SOX2, MAP1b, CD34, GFAPd, OLIG2, SMI94/SUFU, EZH2 | Temporal (n.9), occipital (n.1) | Appearance: multinodularity Signal: T2w/FLAIR hyperintensity | No recurrence after surgery (n.9); (10–168) |
Gonzalez-Quarante et al. (2018) [17] | Case report (n.1) | 57 | Seizure | Syn, nestin, FGP 9.5, SOX10, OLIG2, p16, ATRX | Temporal | Signal: T2w/FLAIR hyperintensity, no enhancement | No recurrence after surgery (n.1); (12) |
Lobo et al. (2018) [18] | Case report (n.1) | 19 | Vague neurological complaints | NA | Occipital | Appearance: cystic nodules Signal: T2w/FLAIR hyperintensity, no enhancement | NA (no surgery) |
Makrakis et al. (2018) [19] | Case report (n.1) | 22 | Seizures | NA | Parietal | Appearance: small well defined nodules Signal: T2w/FLAIR hyperintensity, T1w hypointensity, no enhancement, slight increased CBV | S (n.1); (6) |
Zahra et al. (2018) [20] | Case report (n.1) | 33 | No relevant symptom | NA | Occipital lobe | Appearance: small nodules Signal: T2w/FLAIR hyperintensity, no enhancement | S (n.1); (NA) |
Shitara et al. (2018) [21] | Case report (n.1) | 60 | No relevant symptom | α-INA, HuC/HuD, Syn, Olig2, NeuN | Frontal | Appearance: multinodular Signal: T2w/FLAIR hyperintensity, T1w hypointensity, no enhancement | No recurrence after surgery (n.1); (16) |
Kapucu et al. (2018) [12] | Case report (n.1) | 34 | No relevant symptom | NA | Parieto-occipital | Appearance: multinodular Signal: T2w/FLAIR hyperintensity, no enhancement | NA |
Choi et al.(2019) [8] | Original research (n.7) | 10–56 | Seizure (n.4), headache (n.3) | α-INA (n.5), Syn (n.7), Olig2 (n.7), MAP2 (n.7), FGFR2 (n.1) | Temporal (n.5), frontal (n.2) | Appearance: solid (n.4), solido-cystic (n.3) Signal: T2w/FLAIR hyperintensity, T1w iso/hypointensity, partial enhancement (n.1) | No recurrence after surgery (n.7); (24–72) |
Kodama et al. (2019) [22] | Case report (n.1) | 33 | Epilepsy | NA | Temporal | Appearance: multinodularity Signal: T2-w/FLAIR hyperintensity, no enhancement | S (n.1); (NA) |
Baščarević et al. (2019) [23] | Case report (n.1) | 48 | Epilepsy | Syn, chromogranin, MAP2, CD34, CD68 | Temporal | Appearance: multinodularity Signal: T1w hypointensity, T2w/FLAIR hyperintensity, no enhancement | No recurrence after surgery (n.1); (24) |
Nunes Dias et al. (2020) [24] | Case report (n.1) | 10 | Headache and epilepsy | Syn, Olig2 | Temporal | Signal: T2w/FLAIR hyperintensity, loss of gray-white matter differentiation | No recurrence after surgery (n.1); (24) |
Gökçe et al. (2020) [25] | Case report (n.2) | 27, 21 | Headache (n.1), Epilepsy (n.1) | NA | Occipital (n.1), frontal (n.1) | Appearance: small well defined nodules Signal: T2w/FLAIR hyperintensity, T1w hypointensity, no enhancement, no increased CBV | S (n.2); (24–36) |
Buffa et al. (2020) [26] | Case series (n.16) | 16–77 | Seizure (n.5), headache, cognitive impairment (n.3) | NA | Temporal (n.1), frontal (n.8), parietal (n.6), occipital (n.1) | Appearance: small nodules Signal: T2w/FLAIR hyperintensity, T1w iso/hypointensity, no enhancement | S (n.7), NA (n.9); (5–117) |
Turner et al. (2020) [27] | Case report (n.1) | 5 | Cerebral palsy | Olig2 | Basal ganglia | Signal: T1w hypointensity, T2w/FLAIR hyperintensity, no enhancement | NA |
Lecler et al. (2020) [28] | Original research (n.64) | 44.2 ± 15.1 | Seizure (n.4), headache (n.45), asymptomatic (n.15) | NA | Temporal (n.13), frontal (n.20), parietal (n.26), occipital (n.5) | Appearance: small nodules; cortical involvement (n.5). Signal: T2w/FLAIR hyperintensity (dot sign n.36), T1w iso/hyper/hypointensity; no restriction on DWI, no increased perfusion, no enhancement | S (n.62), no recurrence after surgery (n.2); (24) |
Alizada et al. (2020) [29] | Case series (n.2) | 58, 17 | Severe headache (n.1), seizure (n.1) | Syn, Olig2, MAP2, GFAP, CD34 | Temporal (n.1), frontal (n.1), | Appearance: small nodules Signal: T2w/FLAIR hyperintensity; T1w hypointensity; no enhancement | No recurrence after surgery (n.2); (3–9) |
Tan at al. (2021) [30] | Case report (n.1) | 7 | Sudden activity arrest | NA | Parietal | Appearance: small nodules Signal: T2w/FLAIR hyperintensity; T1w hypointensity | S (n.7); (NA) |
Arbuiso et al. (2021) [31] | Case report (n.1) | 25 | Headache | NA | Parietal | Appearance: solido-cystic Signal: T2w/FLAIR hyperintensity | S (n.1); (12) |
Turan et al. (2021) [32] | Original research (n.4) | 40–52 | No neurologic symptoms | NA | Parietal (n.3), temporal (n.1) | Appearance: multinodularity Signal: T1w hypo-isointensity, T2w/FLAIR hyperintensity, no enhancement, slight decreased perfusion, increased Cho/Cr, decreased Cho/NAA | S (n.4); (12–36) |
Bagatto et al. (2021) [33] | Case report (n.1) | 45 | Seizures | GFAP, Syn, Olig2, ATRX | Parietal | Appearance: multinodularity Signal: T1w isointensity, T2w/FLAIR hyperintensity, no enhancement, decreased CBV, increased Cho/NAA | No recurrence after surgery (n.1); (88) |
Sirbu et al. (2022) [13] | Case report (n.1) | 29 | Seizures | NA | Temporal | Appearance: small nodules Signal: T1w hypointensity, T2-w/FLAIR hyperintensity(dot sign), increased Cho/NAA | NA |
Dogra et al. (2023) [34] | Original research (n.48) | 10–76 | Headache (n.16), seizures (n.5), dizziness (n.5), no clinical neurological symptoms (n.22) | NA | Frontal (n.17), parietal (n.16), temporal (n.5), cerebellum (n.4), occipital (n.3), more lobes (n.3) | Appearance: Multinodular Signal: T2w/FLAIR hyperintensity; T1w hypointensity, no diffusion restriction, no enhancement | S (n.48); (5–30) |
Kishi et al. (2023) [35] | Case report (n.1) | 67 | Epilepsy | GFAP, Syn, Olig2, ATRX, MGMT | Temporal | Appearance: small nodules Signal: T2w/FLAIR hyperintensity | NA |
Makino et al. (2024) [36] | Case series (n.2) | 30, 20 | Intractable epilepsy (n.1), ataxia (n.1) | NA | Parietal (n.1), frontal (n.1), | Appearance: small nodules Signal: T2w/FLAIR hyperintensity, DWI hyperintensity, ADC isointensity | S (n.2); (12) |
Do et al. (2024) [37] | Case report (n.1) | 62 | Headache | NA | Occipital | Appearance: small nodules Signal: T2w/FLAIR hyperintensity, DWI hyperintensity, ADC isointensity | S (n.1); (12) |
Pak et al. (2024) [38] | Original research (n.37) | 56 ± 12 | Cognitive impairment | NA | Parietal (n.11), frontal (n.14), temporal (9), occipital (3) | Appearance: babble (n.35), cortical involvement (n.4) Signal: T2w/FLAIR, hyperintensity DWI hyperintensity, ADC iso-hyperintensity | S (n.37); (21 ± 35) |
Lecler et al. (2019) [15] | Original research (n.11) | 22–70 | Headache (n.4), dizziness (1), no relevant neurological symptoms (n.6) | NA | Vermis and cerebellar hemisphere (n.5), cerebellum (n.6) | Appearance: small nodules, cortical involvement (n.2) Signal: T2w/FLAIR hyperintensity (dot sign in n.9), T1w hypointensity/isointensity (n.11), enhancement (n.1) | S (n.11); (12–43) |
Morassi et al. (2020) [14] | Case series (n.2) | 41, 44 | Headache (n.1), vertigo (n.1) | NA | Vermis and cerebellar hemisphere (n.2) | Appearance: small nodules, cortical involvement (n.1) Signal: T1w hypointensity, T2w hyperintensity, partial suppression on FLAIR; ADC hyperintensity, no enhancement | S (n.2); (12–36) |
Abdelouahhab et al. (2022) [39] | Case report (n.1) | 54 | Seizures | NA | Vermis and cerebellar hemisphere | Appearance: cystic-like lesion Signal: T2w/FLAIR hyperintensity; T1w hypointensity, no diffusion restriction, no enhancement | S (n.1); (12) |
Wang et al. (2023) [40] | Case report (n.1) | 52 | Insomnia and irrirability | GFAP, CD34, HuC/HuD, MAP2, Syn, Olig2 | cerebellar hemisphere | Appearance: multinodularity Signal: T1w hypo-isointensity, T2w/FLAIR hyperintensity, slight enhancement | No recurrence after surgery (n.1); (12) |
Agarwal et al. (2019) [41] | Case series (n.3) | 23–39 | Headache (n.2), vertigo (n.1) | NA | cerebellar hemisphere (n.1), vermis (n.2) | Appearance: multinodularity Signal: T1w, hypointensity, T2w/FLAIR hyperintensity, no enhancement | S (n.3); (12) |
On et al. (2024) [42] | Case report (n.1) | 60 | Epilepsy | Syn, Olig2, MAP2, GFAP, CD34 | Thalamus | Appearance: multicystic Signal: T2w/FLAIR hyperintensity, no enhancement | NA |
Category | Markers |
---|---|
Main neuronal markers | |
-Immature | HuC/HuD, α-INA |
-Mature | NeuN, neurofilaments, synaptophysin, MAP2 |
Main glial markers | |
-Astroglial | GFAP, GFAPδ |
-Oligodendroglial | Olig2, SMI94/MBP |
Specific neuronal markers | |
Cortical layer markers | TBR1, TBR2, OTX1, N200, MAP1B |
Developmental/stem cell markers | CD34, Reelin, PAX6, SOX2, Nestin, DCX, PDGFRβ |
Interneuronal markers | Calbindin, Calretinin, Parvalbumin, NPY |
Neurodegenerative markers | p62, AT8, APP, Mitochondria |
Sovratentorial localization | Age Categories | Similarities with MVNT | Differences with MVNT | Immunohistochemical Findings |
---|---|---|---|---|
DNET | Children and adolescents, rarely in adults |
|
| NeuN |
FCD IIB | Children, adolescents and young adults |
|
| NeuN, GFAP, SMI-32 |
VRPS | Adults and less frequently in children |
|
| _ |
Gangliocytoma/Ganglioglioma | Adolescents and young adults (Gangliocytoma) Children and young adults (Ganglioglioma) |
|
| BRAF mutation V600 CD34, Syn, EGBs, Rosenthal fibers |
LGG (oligodendrogliomas) | Adult |
|
| Olig2 |
Infratentorial localization | Age Categories | Similarities with MVNT | Differences with MVNT | Immunohistochemical findings |
RGNT | Young adult |
|
| Syn, Olig2, GFAP, S-100 |
Dysplastic cerebellar gangliocytoma | Young adult |
|
| GFAP, S-100, NeuN, Syn |
PA | Children and adolescents |
|
| GFAP, OLIG2, and S-100 |
VRPS | Adults |
|
| _ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calandrelli, R.; Mallio, C.A.; Bernetti, C.; Pilato, F. Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges. Diagnostics 2025, 15, 334. https://doi.org/10.3390/diagnostics15030334
Calandrelli R, Mallio CA, Bernetti C, Pilato F. Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges. Diagnostics. 2025; 15(3):334. https://doi.org/10.3390/diagnostics15030334
Chicago/Turabian StyleCalandrelli, Rosalinda, Carlo Augusto Mallio, Caterina Bernetti, and Fabio Pilato. 2025. "Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges" Diagnostics 15, no. 3: 334. https://doi.org/10.3390/diagnostics15030334
APA StyleCalandrelli, R., Mallio, C. A., Bernetti, C., & Pilato, F. (2025). Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges. Diagnostics, 15(3), 334. https://doi.org/10.3390/diagnostics15030334