Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review
Abstract
:1. Introduction
- CRPS with remission of some features: Patients who previously met CRPS criteria but currently do not have enough features to be classified as having CRPS.
- CRPS Not Otherwise Specified (NOS): Patients displaying some, but not all, features of CRPS required for a formal diagnosis, and when no other diagnosis better explains the clinical features.
- N-Methyl-D-aspartate (NMDA) Receptor Antagonists: Agents such as ketamine target central sensitization mechanisms by blocking NMDA receptors. These receptors play a critical role in amplifying pain signals in the central nervous system and have a significant effect on the development of central sensitization, spontaneous pain, and hyperalgesia [19]. By blocking these receptors, there is potential to reduce hyperalgesia, allodynia, and chronic neuropathic pain [20].
- Low-Dose Naltrexone (LDN): Toll-like receptor 4 (TLR4) receptors present in glial cells enhance the release of pro-inflammatory cytokines in the central nervous system [19]. By modulating Toll-like receptor 4 (TLR4) activity in glial cells, LDN has the potential to reduce neuroinflammation and neuropathic pain [21].
- Immune and Glial-Modulating Agents: These approaches aim to regulate glial cell activity, addressing their role in central sensitization and inflammation. Targeting glial cell function may help manage pain and inflammation in CRPS [11].
- Alpha-Adrenergic Modulators: Evidence suggests an upregulation of α-adrenergic receptors in the skin of CRPS patients, and activation of these receptors leads to increased noradrenaline release, which hyperstimulates nociceptive fibers, resulting in pain and hyperalgesia [22]. By targeting α1 and α2 adrenoreceptors, adrenergic agonists and antagonists offer new opportunities for managing adrenergic sensitivity and its contribution to pain and inflammation.
- IV Immunoglobulin and Plasma Exchange Therapy: Evidence suggests an autoimmune component in CRPS. Treatments such as intravenous immunoglobulin (IVIG) and plasma exchange show promise in addressing this condition [16].
- Neuromodulation Techniques: Advanced neurostimulation methods, including peripheral nerve stimulation, spinal cord stimulation, dorsal root ganglia stimulation, and transcranial magnetic stimulation, offer minimally invasive options for modulating pain and neuroinflammation [23].
2. Methods
3. New Approach and Research Areas
3.1. New Approaches for Identifying Risk Factors and Developing Treatment Strategies
3.1.1. Biomarker Identification
- a.
- Diagnosing CRPS in patients
- b.
- Supporting phenotypic characterization to identify underlying inflammatory mechanisms
- c.
- Stratifying patients to determine who may or may not benefit from anti-inflammatory therapies.
- d.
- Monitoring the therapeutic effects of these treatments
Role of miRNAs as Biomarkers for CRPS
Role of Other Biomarkers
- Biochemical analyses have shown increased bone turnover in patients with complex regional pain syndrome type 1 (CRPS-1), characterized by higher bone resorption (elevated urinary deoxypyridinoline) and increased bone formation (notable increases in serum calcitonin, osteoprotegerin, and alkaline phosphatase) [39]. Histological examinations have revealed bone changes in both acute and chronic CRPS-1 [39]. A recent study indicates that the bone involvement seen in early CRPS-1 may be unrelated to increased osteoclast activity. Instead, elevated serum markers of bone formation have been observed, accompanied by decreased levels of Sclerostin and DKK1, which likely indicate widespread osteocyte dysfunction [40]. Supporting this understanding, osteoprotegerin (OPG), a critical regulator of bone remodeling, may play a role in the pathophysiology of CRPS. The persistent elevation of OPG levels in CRPS suggests increased osteoblastic activity [41]. These findings propose potential biomarkers for identifying patients who may benefit from treatments aimed at modulating bone turnover, highlighting important areas for future research.
- In another study, researchers noted significant reductions in serum IL-37 and tryptophan (TRP) levels in participants with CRPS. Additionally, a subset of these individuals exhibited notably elevated GM-CSF levels, suggesting the involvement of various inflammatory markers in the pathogenesis of CRPS [42].
- Another study suggests that, in the absence of other biomarkers for CRPS type 1, P29ING4 autoantibodies may assist in its diagnostic evaluation [43].
3.1.2. Role of Genetic Factors
3.1.3. Role of Autoimmunity
3.1.4. Role of Patient Education
4. Future Treatment Options for CRPS
4.1. NMDA Receptor Antagonist (Ketamine)
4.1.1. Overview and Mechanism of Action
4.1.2. Role in Central Sensitization and Pain Relief
4.1.3. Administration Routes and Bioavailability
4.1.4. Clinical Evidence of Ketamine’s Effectiveness
4.1.5. Side Effects and Safety Concerns
4.1.6. Relative Contraindications
- Poorly controlled cardiovascular disease and uncontrolled hypertension
- Severe hepatic disease (avoid) and moderate hepatic disease (use caution)
- Recent liver transplantation
- Elevated intracranial pressure
- Elevated intraocular pressure
- Eye injuries
- Active psychiatric issues
- Active substance abuse
- Sympathomimetic syndrome
- Porphyria
- Pregnancy
4.1.7. Need for Further Research
4.2. Low-Dose Naltrexone
4.2.1. Overview of Low-Dose Naltrexone
4.2.2. Mechanism of Action and Toll-like Receptor 4 (TLR4)
4.2.3. Advantages and Disadvantages of LDN Therapy
- Low cost
- Minimal side effects
- No known potential for abuse
- Self-Dosing Issues: LDN is not commercially available in the ideal 1.5–4.5 mg dosage for chronic pain management. As a result, patients often resort to self-preparation methods, such as splitting 50 mg tablets or creating liquid doses, which can lead to dosing inconsistencies. Although this inconsistency poses a minimal risk of overdose, self-dosing is suboptimal and raises concerns about the efficacy of the treatment.
- There is insufficient concrete evidence regarding the long-term safety of LDN.
4.2.4. Special Considerations: Interaction with Opioids
4.3. Immune and Glial Modulating Agents
4.3.1. Overview of Glial Cells in Neuroinflammation
4.3.2. Mechanism of Action of Glial-Modulating Agents
4.3.3. Promising Glial Activation Inhibitors
4.3.4. Implications for CRPS and Opioid Interaction
4.3.5. Cytokine Modulation for Neuropathic Pain Relief
- Recombinant IL-10 (rIL-10): Intrathecal administration of recombinant IL-10 (rIL-10) was investigated for its potential anti-allodynic effects during the acute stage of CRPS using a rodent model [136]. The results showed that rIL-10 helps alleviate mechanical allodynia by modulating microglial activation in this early phase of CRPS. However, the researchers noted that while intrathecal rIL-10 can reduce allodynia in the acute stage, it does not prevent progression to the chronic stage of CRPS.
- TNF-α Antagonists: TNFα, a pro-inflammatory cytokine, is elevated in CRPS-affected tissues. Anti-TNF agents such as infliximab and adalimumab may help treat CRPS but carry risks of severe infections [137,138]. The potential use of infliximab was first reported in a case series involving two CRPS patients [139]. In a small study focusing on early intervention with a TNF-α antagonist (infliximab) to combat inflammation, the researchers identified a promising trend in reducing initially high TNF-α concentrations in patients with neuroinflammation during acute CRPS [140]. They suggested that infliximab could be a treatment option for patients experiencing regional inflammation at this early stage of CRPS. Additionally, a clinical case series reported that another TNF-α antagonist, adalimumab, may also be valuable for CRPS patients [141]. This study on adalimumab reported that 3 out of 10 CRPS patients experienced a ≥2-point pain reduction at a 6-month follow-up. However, the potential costs and side effects of this therapy must be taken into account. Side effects may include injection site reactions, infusion reactions, neutropenia, and infections [138].
4.4. Alpha-Adrenergic Modulators
4.4.1. Alpha-Adrenergic Agonists
- Clonidine:
- Dexmedetomidine:
- Opioid-Sparing Effect: Dexmedetomidine has an opioid-sparing effect, which may help reduce the required dosage of opioids. This is particularly beneficial for patients who are at risk for postoperative nausea, vomiting, or respiratory depression [157]. A meta-analysis by Peng et al. compared the use of opioid–dexmedetomidine combinations to opioids alone for intravenous patient-controlled analgesia (IV PCA). The findings indicated that this combination is both safe and effective, making it a viable option for postoperative IV PCA [159].
- Adjuvant for Nerve Blocks: Research indicates that dexmedetomidine can be used as an adjuvant to enhance the duration of spinal or peripheral nerve blocks. A meta-analysis conducted by Abdallah et al. showed that intravenous dexmedetomidine can prolong both the sensory and motor blocks, as well as extend the time until the first analgesic is needed following spinal anesthesia [160].
4.4.2. Alpha-Adrenergic Antagonists
4.5. IV Immunoglobulin Therapies and Plasma Exchange Therapy
4.5.1. IVIG Therapies
- Elimination of pro-inflammatory cytokines
- Increased breakdown of harmful autoantibodies
- Anti-inflammatory actions
- Downregulation of autoantibody production in B cells
- Inhibition of cytotoxic T cells
4.5.2. Plasma Exchange Therapies
4.6. Neuromodulation Techniques
4.6.1. Peripheral Nerve Stimulation (PNS)
Clinical Evidence Supporting PNS for CRPS
- PNS techniques use a more focused, targeted stimulation close to the peripheral nerves with higher current density (via low frequency and short pulse width), making it particularly effective for chronic and neuropathic pain by inducing lasting changes in pain pathways. This method targets myelinated fibers more selectively, leading to a reduction in chronic pain by inducing long-term suppression of synaptic activity [175].
- TENS provides pain relief by delivering diffuse stimulation to underlying tissues using larger pads placed on the skin, resulting in a broader effect [175].
Long-Term Efficacy of PNS
- Permanent systems may not be suitable for all CRPS patients, especially younger or highly active individuals, due to common complications such as lead migration, infection, and implant site pain.
- Short trials may not be adequate for patients who exhibit delayed responses to treatment. A prolonged 60-day PNS treatment can help identify delayed responders, offering the potential for sustained pain relief and expanding access to effective PNS therapy.
- Percutaneous Placement: Electrodes were inserted through the skin to stimulate the peripheral nerves near the injury site.
- Targeted Nerve Stimulation: The approach aimed to modulate pain signals and enhance functionality by concentrating on the tibial and common peroneal nerves.
- Duration: Stimulation was delivered continuously over 60 days.
4.6.2. Spinal Cord Stimulation (SCS)
Mechanism of Action
- Suppressing Ascending Nociceptive Signals: SCS helps reduce the transmission of pain signals by enhancing the release of analgesic neurotransmitters such as GABA and endocannabinoids in the spinal dorsal horn.
- Enhancing Descending Inhibitory Pathways: By stimulating the release of neurotransmitters such as noradrenaline, dopamine, and serotonin, SCS activates descending inhibitory pathways that block pain signals at the spinal level.
- Stimulating Supraspinal Brain Regions: SCS can modulate brain areas involved in pain perception and emotional regulation, offering a broader impact on both physical pain and its psychological effects.
Clinical SCS
Clinical Evidence and Outcomes
Limitations and Complications
- Epidural bleeding
- Epidural infection
- Post-dural puncture headaches
- Wound infection
Recommendations and Timing
4.6.3. Dorsal Root Ganglia Stimulation (DRG)
Mechanisms of Action
- Modulate pain signaling more directly at the site of pain transmission.
- Provide greater precision in addressing localized pain areas compared to the broader stimulation of SCS.
Clinical Evidence
Clinical Applications and Advantages
Limitations and Considerations
- Cost and access: As an emerging technology, access to DRG stimulation may be limited, and treatment costs may be higher than those for SCS. The higher cost of DRG is attributed to a higher conversion rate from trial to permanent implant and shorter battery longevity [218].
4.6.4. Repetitive Transcranial Magnetic Stimulation (rTMS):
5. Controversial Therapies
5.1. Free Radical Scavengers
5.2. Alpha-Lipoic Acid (ALA)
5.3. Dimethyl Fumarate (DMF)
5.4. AMPK Activators—Metformin
5.5. Tadalafil
5.6. Psilocybin
6. Additional Research Areas
Biopsy Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harden, N.R.; Bruehl, S.; Perez, R.S.G.M.; Birklein, F.; Marinus, J.; Maihofner, C.; Lubenow, T.; Buvanendran, A.; Mackey, S.; Graciosa, J.; et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain 2010, 150, 268–274. [Google Scholar] [CrossRef]
- Taylor, S.S.; Noor, N.; Urits, I.; Paladini, A.; Sadhu, M.S.; Gibb, C.; Carlson, T.; Myrcik, D.; Varrassi, G.; Viswanath, O. Complex Regional Pain Syndrome: A Comprehensive Review. Pain Ther. 2021, 10, 875–892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Mos, M.; de Bruijn, A.G.; Huygen, F.J.; Dieleman, J.P.; Stricker, B.H.; Sturkenboom, M.C. The incidence of complex regional pain syndrome: A population-based study. Pain 2007, 129, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.L.; Chidambaram, S.; Ma, D. Complex regional pain syndrome: A recent update. Burn. Trauma 2017, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Raja, S.N. Severing the link between acute and chronic pain: The anesthesiologist’s role in preventive medicine. Anesthesiology 2004, 101, 1063–1065. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.B.; Mikkelsen, K.L.; Lauritzen, J.B.; Krogsgaard, M.R. Risk Factors for Post-treatment Complex Regional Pain Syndrome (CRPS): An Analysis of 647 Cases of CRPS from the Danish Patient Compensation Association. Pain Pract. 2018, 18, 341–349. [Google Scholar] [CrossRef]
- Bruehl, S. Complex regional pain syndrome. BMJ 2015, 351, h2730. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Birklein, F.; Brunner, F.; Clark, J.D.; Gierthmühlen, J.; Harden, N.; Huygen, F.; Knudsen, L.; McCabe, C.; Lewis, J.; et al. The Valencia consensus-based adaptation of the IASP complex regional pain syndrome diagnostic criteria. Pain 2021, 162, 2346–2348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goebel, A.; Barker, C.; Birklein, F.; Brunner, F.; Casale, R.; Eccleston, C.; Eisenberg, E.; McCabe, C.S.; Moseley, G.L.; Perez, R.; et al. Standards for the diagnosis and management of complex regional pain syndrome: Results of a European Pain Federation task force. Eur. J. Pain 2019, 23, 641–651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marinus, J.; Moseley, G.L.; Birklein, F.; Baron, R.; Maihöfner, C.; Kingery, W.S.; van Hilten, J.J. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 2011, 10, 637–648. [Google Scholar] [CrossRef]
- Parkitny, L.; McAuley, J.H.; Di Pietro, F.; Stanton, T.R.; O’Connell, N.E.; Marinus, J.; van Hilten, J.J.; Moseley, G.L. Inflammation in complex regional pain syndrome: A systematic review and meta-analysis. Neurology 2013, 80, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Pan, Y.; Cheng, J.; Xu, L.; Xu, J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J. Pain Res. 2023, 16, 3061–3073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blaes, F.; Schmitz, K.; Tschernatsch, M.; Kaps, M.; Krasenbrink, I.; Hempelmann, G.; Bräu, M.E. Autoimmune etiology of complex regional pain syndrome (M. Sudeck). Neurology 2004, 63, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Cuhadar, U.; Gentry, C.; Vastani, N.; Sensi, S.; Bevan, S.; Goebel, A.; Andersson, D.A. Autoantibodies produce pain in complex regional pain syndrome by sensitizing nociceptors. Pain 2019, 160, 2855–2865. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Bisla, J.; Carganillo, R.; Frank, B.; Gupta, R.; Kelly, J.; McCabe, C.; Murphy, C.; Padfield, N.; Phillips, C.; et al. Low-Dose Intravenous Immunoglobulin Treatment for Long-Standing Complex Regional Pain Syndrome: A Randomized Trial. Ann. Intern. Med. 2017, 167, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Tajerian, M.; Clark, J.D. New Concepts in Complex Regional Pain Syndrome. Hand Clin. 2016, 32, 41–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- David Clark, J.; Tawfik, V.L.; Tajerian, M.; Kingery, W.S. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol. Pain 2018, 14, 1744806918799127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruehl, S. An Update on the Pathophysiology of Complex Regional Pain Syndrome. Anesthesiology 2010, 113, 713–725. [Google Scholar] [CrossRef]
- Duong, S.; Bravo, D.; Todd, K.J.; Finlayson, R.J.; Tran, Q. Treatment of complex regional pain syndrome: An updated systematic review and narrative synthesis. Can. J. Anaesth. 2018, 65, 658–684. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Y.; Chen, S.R.; Pan, H.L. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert. Rev. Clin Pharmacol. 2011, 4, 379–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, P.S.; Fishman, M.A. Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review. Curr. Pain Headache Rep. 2020, 24, 64. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Guzmán, S.; Nava-Obregón, T.A.; Palacios-Ríos, D.; Estrada-Cortinas, J.A.; González-García, M.C.; Mendez-Guerra, J.F.; González-Santiago, O. Complex regional pain syndrome (CRPS), a review. Med. Univ. 2015, 17, 114–121. [Google Scholar] [CrossRef]
- Rokyta, R.; Fricová, J. Neurostimulation methods in the treatment of chronic pain. Physiol. Res. 2012, 61 (Suppl. S2), S23–S31. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, R.; Zhou, R.; Chen, H.; Liu, C.; Zhu, T.; Chen, C. The emerging power and promise of non-coding RNAs in chronic pain. Front. Mol. Neurosci. 2022, 15, 1037929. [Google Scholar] [CrossRef] [PubMed]
- Birklein, F.; Ajit, S.K.; Goebel, A.; Perez, R.S.G.M.; Sommer, C. Complex regional pain syndrome-phenotypic characteristics and potential biomarkers. Nat. Rev. Neurol. 2018, 14, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Bharwani, K.D.; Dik, W.A.; Dirckx, M.; Huygen, F.J.P.M. Highlighting the Role of Biomarkers of Inflammation in the Diagnosis and Management of Complex Regional Pain Syndrome. Mol. Diagn. Ther. 2019, 23, 615–626. [Google Scholar] [CrossRef]
- Wickman, J.R.; Luo, X.; Li, W.; Jean-Toussaint, R.; Sahbaie, P.; Sacan, A.; Clark, J.D.; Ajit, S.K. Circulating microRNAs from the mouse tibia fracture model reflect the signature from patients with complex regional pain syndrome. Pain Rep. 2021, 6, e950. [Google Scholar] [CrossRef]
- Gilad, S.; Meiri, E.; Yogev, Y.; Benjamin, S.; Lebanony, D.; Yerushalmi, N.; Benjamin, H.; Kushnir, M.; Cholakh, H.; Melamed, N.; et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008, 3, e3148. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, A.; Lee, I.; Hood, L.; Galas, D.; Wang, K. Extracellular microRNA: A new source of biomarkers. Mutat. Res. 2011, 717, 85–90. [Google Scholar] [CrossRef]
- Mendell, J.T.; Olson, E.N. MicroRNAs in stress signaling and human disease. Cell 2012, 148, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.L.; Wang, H.C.; Chunag, Y.T.; Chou, C.W.; Lin, I.L.; Lai, C.S.; Chang, L.L.; Cheng, K.I. miRNA expression change in dorsal root ganglia after peripheral nerve injury. J. Mol. Neurosci. 2017, 61, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; He, J.H. Transcriptomic analysis reveals essential microRNAs after peripheral nerve injury. Neural Regen. Res. 2021, 16, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Orlova, I.A.; Alexander, G.M.; Qureshi, R.A.; Sacan, A.; Graziano, A.; Barrett, J.E.; Schwartzman, R.J.; Ajit, S.K. MicroRNA modulation in complex regional pain syndrome. J. Transl. Med. 2011, 9, 195. [Google Scholar] [CrossRef]
- Douglas, S.R.; Shenoda, B.B.; Qureshi, R.A.; Sacan, A.; Alexander, G.M.; Perreault, M.; Barrett, J.E.; Aradillas-Lopez, E.; Schwartzman, R.J.; Ajit, S.K. Analgesic Response to Intravenous Ketamine Is Linked to a Circulating microRNA Signature in Female Patients With Complex Regional Pain Syndrome. J. Pain 2015, 16, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, S.; Douglas, S.R.; Alexander, G.M.; Shenoda, B.B.; Barrett, J.E.; Aradillas, E.; Sacan, A.; Ajit, S.K. Exosome microRNA signatures in patients with complex regional pain syndrome undergoing plasma exchange. J. Transl. Med. 2019, 17, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDonald, M.K.; Ramanathan, S.; Touati, A.; Zhou, Y.; Thanawala, R.U.; Alexander, G.M.; Sacan, A.; Ajit, S.K. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939. Sci. Rep. 2016, 6, 30976. [Google Scholar] [CrossRef]
- Reinhold, A.K.; Kindl, G.K.; Dietz, C.; Scheu, N.; Mehling, K.; Brack, A.; Birklein, F.; Rittner, H.L. Molecular and clinical markers of pain relief in complex regional pain syndrome: An observational study. Eur. J. Pain. 2023, 27, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Pande, R.; Parikh, A.; Shenoda, B.; Ramanathan, S.; Alexander, G.M.; Schwartzman, R.J.; Ajit, S.K. Hsa-miR-605 regulates the proinflammatory chemokine CXCL5 in complex regional pain syndrome. Biomed. Pharmacother. 2021, 140, 111788. [Google Scholar] [CrossRef]
- Kollmann, G.; Wertli, M.M.; Dudli, S.; Distler, O.; Brunner, F. The role of the bone in complex regional pain syndrome 1-A systematic review. Eur. J. Pain 2023, 27, 794–804. [Google Scholar] [CrossRef]
- Varenna, M.; Orsini, F.; Di Taranto, R.; Zucchi, F.; Adami, G.; Gatti, D.; Crotti, C. Bone Turnover Markers and Wnt Signaling Modulators in Early Complex Regional Pain Syndrome. A Pre-specified Observational Study. Calcif. Tissue Int. 2024, 115, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Krämer, H.H.; Hofbauer, L.C.; Szalay, G.; Breimhorst, M.; Eberle, T.; Zieschang, K.; Rauner, M.; Schlereth, T.; Schreckenberger, M.; Birklein, F. Osteoprotegerin: A new biomarker for impaired bone metabolism in complex regional pain syndrome? Pain 2014, 155, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.A.; Georgius, P.; Pires, A.S.; Heng, B.; Allwright, M.; Guennewig, B.; Santarelli, D.M.; Bailey, D.; Fiore, N.T.; Tan, V.X.; et al. Novel immune biomarkers in complex regional pain syndrome. J. Neuroimmunol. 2020, 347, 577330. [Google Scholar] [CrossRef] [PubMed]
- Baerlecken, N.T.; Gaulke, R.; Pursche, N.; Witte, T.; Karst, M.; Bernateck, M. Autoantibodies against P29ING4 are associated with complex regional pain syndrome. Immunol. Res. 2019, 67, 461–468. [Google Scholar] [CrossRef]
- De Rooij, A.M.; Florencia Gosso, M.; Haasnoot, G.W.; Marinus, J.; Verduijn, W.; Claas, F.H.; van den Maagdenberg, A.M.; van Hilten, J.J. HLA-B62 and HLA-DQ8 are associated with complex regional pain syndrome with fixed dystonia. Pain 2009, 145, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Van Rooijen, D.E.; Roelen, D.L.; Verduijn, W.; Haasnoot, G.W.; Huygen, F.J.; Perez, R.S.; Claas, F.H.; Marinus, J.; van Hilten, J.J.; van den Maagdenberg, A.M. Genetic HLA associations in complex regional pain syndrome with and without dystonia. J. Pain 2012, 13, 784–789. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, A.M.; de Mos, M.; Sturkenboom, M.C.; Marinus, J.; van den Maagdenberg, A.M.; van Hilten, J.J. Familial occurrence of complex regional pain syndrome. Eur. J. Pain 2009, 13, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.S.; Goebel, A.; Lee, M.C.; Nahorski, M.S.; Shenker, N.; Pamela, Y.; Drissi, I.; Brown, C.; Ison, G.; Shaikh, M.F.; et al. Evidence of a genetic background predisposing to complex regional pain syndrome type 1. J. Med. Genet. 2024, 61, 163–170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dey, S.; Guthmiller, K.B.; Varacallo, M. Complex Regional Pain Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Tan, W.; Song, Y.; Mo, C.; Jiang, S.; Wang, Z. Analysis of gene expression profile microarray data in complex regional pain syndrome. Mol. Med. Rep. 2017, 16, 3371–3378. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Blaes, F. Complex regional pain syndrome, prototype of a novel kind of autoimmune disease. Autoimmun. Rev. 2013, 12, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Kohr, D.; Singh, P.; Tschernatsch, M.; Kaps, M.; Pouokam, E.; Diener, M.; Kummer, W.; Birklein, F.; Vincent, A.; Goebel, A.; et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain 2011, 152, 2690–2700. [Google Scholar] [CrossRef]
- Dubuis, E.; Thompson, V.; Leite, M.I.; Blaes, F.; Maihöfner, C.; Greensmith, D.; Vincent, A.; Shenker, N.; Kuttikat, A.; Leuwer, M.; et al. Longstanding complex regional pain syndrome is associated with activating autoantibodies against alpha-1a adrenoceptors. Pain 2014, 155, 2408–2417. [Google Scholar] [CrossRef]
- Romashin, D.D.; Tolstova, T.V.; Varshaver, A.M.; Kozhin, P.M.; Rusanov, A.L.; Luzgina, N.G. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr. Issues Mol. Biol. 2024, 46, 8627–8641. [Google Scholar] [CrossRef] [PubMed]
- Tajerian, M.; Hung, V.; Khan, H.; Lahey, L.J.; Sun, Y.; Birklein, F.; Krämer, H.H.; Robinson, W.H.; Kingery, W.S.; Clark, J.D. Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome. Exp. Neurol. 2017, 287 Pt 1, 14–20. [Google Scholar] [CrossRef]
- Goebel, A.; Leite, M.I.; Yang, L.; Deacon, R.; Cendan, C.M.; Fox-Lewis, A.; Vincent, A. The passive transfer of immunoglobulin G serum antibodies from patients with longstanding Complex Regional Pain Syndrome. Eur. J. Pain. 2011, 15, 504. [Google Scholar] [CrossRef] [PubMed]
- Bruehl, S.; Liu, X.; Burns, J.W.; Chont, M.; Jamison, R.N. Associations between daily chronic pain intensity, daily anger expression, and trait anger expressiveness: An ecological momentary assessment study. Pain 2012, 153, 2352–2358. [Google Scholar] [CrossRef] [PubMed]
- Lebovits, A.H.; Yarmush, J.; Lefkowitz, M. Reflex sympathetic dystrophy and posttraumatic stress disorder. Multidisciplinary evaluation and treatment. Clin. J. Pain 1990, 6, 153–157. [Google Scholar] [CrossRef]
- Harden, R.N.; Oaklander, A.L.; Burton, A.W.; Perez, R.S.; Richardson, K.; Swan, M.; Barthel, J.; Costa, B.; Graciosa, J.R.; Bruehl, S.; et al. Complex regional pain syndrome: Practical diagnostic and treatment guidelines, 4th edition. Pain Med. 2013, 14, 180–229. [Google Scholar] [CrossRef] [PubMed]
- Brinkers, M.; Rumpelt, P.; Lux, A.; Kretzschmar, M.; Pfau, G. Psychiatric Disorders in Complex Regional Pain Syndrome (CRPS): The Role of the Consultation-Liaison Psychiatrist. Pain Res. Manag. 2018, 2018, 2894360. [Google Scholar] [CrossRef]
- Petchkrua, W.; Weiss, D.J.; Patel, R.R. Reassessment of the incidence of complex regional pain syndrome type 1 following stroke. Neurorehabil. Neural Repair 2000, 14, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Gellman, H.; Keenan, M.A.E.; Stone, L.; Hardy, S.E.; Waters, R.L.; Stewar, C. Reflex sympathetic dystrophy in brain-injured patients. Pain 1992, 51, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Grande, L.A.; Loeser, J.D.; Ozuna, J.; Ashleigh, A.; Samii, A. Complex regional pain syndrome as a stress response. Pain 2004, 110, 495–498. [Google Scholar] [CrossRef]
- Lewis, J.S.; Wallace, C.S.; White, P.; Mottram, L.; Ockenden, G.; Rehm, K.; Walker, K. Early versus persistent Complex Regional Pain Syndrome: Is there a difference in patient reported outcomes following rehabilitation? Eur. J. Pain 2024, 28, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Pepper, A.; Li, W.; Kingery, W.S.; Angst, M.S.; Curtin, C.M.; Clark, J.D. Changes resembling complex regional pain syndrome following surgery and immobilization. J. Pain 2013, 14, 516–524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terkelsen, A.J.; Bach, F.W.; Jensen, T.S. Experimental forearm immobilization in humans induces cold and mechanical hyperalgesia. Anesthesiology 2008, 109, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S.; Wang, R.; Su, X.; Wang, X.Q. Effect and mechanisms of exercise for complex regional pain syndrome. Front. Mol. Neurosci. 2023, 16, 1167166. [Google Scholar] [CrossRef]
- Cossins, L.; Okell, R.W.; Cameron, H.; Simpson, B.; Poole, H.M.; Goebel, A. Treatment of complex regional pain syndrome in adults: A systematic review of randomized controlled trials published from June 2000 to February 2012. Eur. J. Pain 2013, 17, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Orhurhu, V.J.; Roberts, J.S.; Ly, N.; Cohen, S.P. Ketamine in Acute and Chronic Pain Management. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar] [PubMed]
- Shteamer, J.W.; Callaway, M.A.; Patel, P.; Singh, V. How effective is ketamine in the management of chronic neuropathic pain? Pain Manag. 2019, 9, 517–519. [Google Scholar] [CrossRef] [PubMed]
- Niesters, M.; Martini, C.; Dahan, A. Ketamine for chronic pain: Risks and benefits. Br. J. Clin. Pharmacol. 2014, 77, 357–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Simone, D.A.; Larson, A.A. Windup leads to characteristics of central sensitization. PAIN 1999, 79, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Quibell, R.; Prommer, E.E.; Mihalyo, M.; Twycross, R.; Wilcock, A. Ketamine*. J. Pain Symptom. Manag. 2011, 41, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.L.; Cheng, J.C.; Rogachov, A.; Kim, J.A.; Hemington, K.S.; Osborne, N.R.; Venkat Raghavan, L.; Bhatia, A.; Davis, K.D. Brain Dynamics and Temporal Summation of Pain Predicts Neuropathic Pain Relief from Ketamine Infusion. Anesthesiology 2018, 129, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, R.; Mehta, N.; Gungor, S.; Gulati, A. A Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice. Clin. J. Pain 2018, 34, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Aroni, F.; Iacovidou, N.; Dontas, I.; Pourzitaki, C.; Xanthos, T. Pharmacological aspects and potential new clinical applications of ketamine: Reevaluation of an old drug. J. Clin. Pharmacol. 2009, 49, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Vranken, J.H.; Troost, D.; de Haan, P.; Pennings, F.A.; van der Vegt, M.H.; Dijkgraaf, M.G.; Hollmann, M.W. Severe toxic damage to the rabbit spinal cord after intrathecal administration of preservative-free S (+)-ketamine. Anesthesiology 2006, 105, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Bhatia, A.; Buvanendran, A.; Schwenk, E.S.; Wasan, A.D.; Hurley, R.W.; Viscusi, E.R.; Narouze, S.; Davis, F.N.; Ritchie, E.C.; et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Maher, D.P.; Chen, L.; Mao, J. Intravenous Ketamine Infusions for Neuropathic Pain Management: A Promising Therapy in Need of Optimization. Anesth. Analg. 2017, 124, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Michelet, D.; Brasher, C.; Horlin, A.L.; Bellon, M.; Julien-Marsollier, F.; Vacher, T.; Pontone, S.; Dahmani, S. Ketamine for chronic non-cancer pain: A meta-analysis and trial sequential analysis of randomized controlled trials. Eur. J. Pain 2018, 22, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, L.E.; Smith, S.A.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst. Rev. 2013, CD008307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorlin, A.W.; Rosenfeld, D.M.; Ramakrishna, H. Intravenous sub-anesthetic ketamine for perioperative analgesia. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 160–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangnus, T.J.P.; Dirckx, M.; Bharwani, K.D.; de Vos, C.C.; Frankema, S.P.G.; Stronks, D.L.; Huygen, F.J.P.M. Effect of intravenous low-dose S-ketamine on pain in patients with Complex Regional Pain Syndrome: A retrospective cohort study. Pain Pract. 2021, 21, 890–897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigtermans, M.J.; van Hilten, J.J.; Bauer, M.C.R.; Arbous, S.M.; Marinus, J.; Sarton, E.Y.; Dahan, A. Ketamine produces effective and long-term pain relief in patients with Complex Regional Pain Syndrome Type 1. Pain 2009, 145, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Schwartzman, R.J.; Alexander, G.M.; Grothusen, J.R.; Paylor, T.; Reichenberger, E.; Perreault, M. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: A double-blind placebo-controlled study. Pain 2009, 147, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Schwartzman, R.J.; Samudralwar, R.; Getson, P.; Alexander, G.M. Ketamine as Adjunctive Anesthesia in Refractory Complex Regional Pain Syndrome Patients: A Case Series. Pain Syndrome Patients: A Case Series. J. Clin. Case Rep. 2012, 2, 12. [Google Scholar] [CrossRef]
- Finch, P.M.; Knudsen, L.; Drummond, P.D. Reduction of allodynia in patients with complex regional pain syndrome: A double-blind placebo-controlled trial of topical ketamine. Pain 2009, 146, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Correll, G.E.; Maleki, J.; Gracely, E.J.; Muir, J.J.; Harbut, R.E. Subanesthetic ketamine infusion therapy: A retrospective analysis of a novel therapeutic approach to complex regional pain syndrome. Pain Med. 2004, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Everett, A.; Mclean, B.; Plunkett, A.; Buckenmaier, C. A unique presentation of complex regional pain syndrome type I treated with a continuous sciatic peripheral nerve block and parenteral ketamine infusion: A case report. Pain Med. 2009, 10, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.B.; Prager, J.P.; Harden, R.N. A systematic review of ketamine for complex regional pain syndrome. Pain Med. 2015, 16, 943–969. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Herndon, C.; Anderson, S.; Getson, P.; Foorsov, V.; Harbut, R.E.; Moskovitz, P.; Harden, R.N. Intravenous Ketamine Infusion for Complex Regional Pain Syndrome: Survey, Consensus, and a Reference Protocol. Pain Med. 2019, 20, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Perez, V.L.; Cerdá-Olmedo, G.; Samper, J.M.; Mínguez, A.; Monsalve, V.; Bayona, M.J.; De Andrés, J.A. Oral ketamine for the treatment of type I complex regional pain syndrome. Pain Pract. 2007, 7, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, S.S.; Wood, D.M.; Dargan, P.I. The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use. Emerg. Health Threats J. 2011, 4, 7107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Middela, S.; Pearce, I. Ketamine-induced vesicopathy: A literature review. Int. J. Clin. Pract. 2011, 65, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hashimoto, K. An update on ketamine and its two enantiomers as rapid-acting antidepressants. Expert. Rev. Neurother. 2019, 19, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Popova, V.; Wylie, C.; Fedgchin, M.; Daly, E.; Janik, A.; Ochs-Ross, R.; Lane, R.; Lim, P.; Cooper, K.; et al. Effect of Esketamine Nasal Spray on Olfactory Function and Nasal Tolerability in Patients with Treatment-Resistant Depression: Results from Four Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase III Studies. CNS Drugs 2021, 35, 781–794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- SPRAVATO™ (Esketamine). Janssen Pharmaceutical. 2018. Available online: www.spravato.com/ (accessed on 1 November 2024).
- Temmermand, R.; Barrett, J.E.; Fontana, A.C.K. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol. Res. 2022, 185, 106492. [Google Scholar] [CrossRef] [PubMed]
- Toljan, K.; Vrooman, B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med. Sci. 2018, 6, 82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Younger, J.; Mackey, S. Fibromyalgia symptoms are reduced by low-dose naltrexone: A pilot study. Pain Med. 2009, 10, 663–672. [Google Scholar] [CrossRef]
- Chopra, P.; Cooper, M.S. Treatment of Complex Regional Pain Syndrome (CRPS) using low dose naltrexone (LDN). J. Neuroimmune Pharmacol. 2013, 8, 470–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milligan, E.D.; Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009, 10, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Younger, J.; Parkitny, L.; McLain, D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin. Rheumatol. 2014, 33, 451–459. [Google Scholar] [CrossRef]
- Wiska, R.; Fallat, L. Operating on patients with complex regional pain syndrome. Foot Ankle Online J. 2018, 11, 3. [Google Scholar]
- Ren, K.; Dubner, R. Interactions between the immune and nervous systems in pain. Nat. Med. 2010, 16, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bradesi, S. Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol. Motil. 2010, 22, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Du, E.R.; Fan, R.P.; Rong, L.L.; Xie, Z.; Xu, C.S. Regulatory mechanisms and therapeutic potential of microglial inhibitors in neuropathic pain and morphine tolerance. J. Zhejiang Univ. Sci. B 2020, 21, 204–217. [Google Scholar] [CrossRef]
- Tremblay, M.È.; Stevens, B.; Sierra, A.; Wake, H.; Bessis, A.; Nimmerjahn, A. The role of microglia in the healthy brain. J. Neurosci. 2011, 31, 16064–16069. [Google Scholar] [CrossRef] [PubMed]
- Caylor, J.; Reddy, R.; Yin, S.; Cui, C.; Huang, M.; Huang, C.; Ramesh, R.; Baker, D.G.; Simmons, A.; Souza, D.; et al. Spinal cord stimulation in chronic pain: Evidence and theory for mechanisms of action. Bioelectron. Med. 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsuka, Y.; Afroz, S.; Dalanon, J.C.; Iwasa, T.; Waskitho, A.; Oshima, M. The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci. Biobehav. Rev. 2020, 108, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Mika, J.; Zychowska, M.; Popiolek-Barczyk, K.; Rojewska, E.; Przewlocka, B. Importance of glial activation in neuropathic pain. Eur. J. Pharmacol. 2013, 716, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.; Woolf, C.J. The neuropathic pain triad: Neurons, immune cells and glia. Nat. Neurosci. 2007, 10, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Koga, K.; Chen, T.; Zhuo, M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J. Neurochem. 2017, 141, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Kam, P.C. Neuroimmune mechanisms of pain: Basic science and potential therapeutic modulators. Anaesth Intensive Care 2020, 48, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, R.; Tilley, D.M.; Vogel, L.; Benyamin, R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract. 2010, 10, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.K.; Gentry, C.; Bradbury, E.J.; McMahon, S.B.; Malcangio, M. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur. J. Pain 2007, 11, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Sweitzer, S.; De Leo, J. Propentofylline: Glial modulation, neuroprotection, and alleviation of chronic pain. Handb. Exp. Pharmacol. 2011, 200, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, V.L.; Nutile-McMenemy, N.; Lacroix-Fralish, M.L.; Deleo, J.A. Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav. Immun. 2007, 21, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, A.; Sloane, E.M.; Milligan, E.D.; Frank, M.G.; Mahony, J.H.; Maier, S.F.; Watkins, L.R. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Padi, S.S.; Kulkarni, S.K. Minocycline prevents the development of neuropathic pain, but not acute pain: Possible anti-inflammatory and antioxidant mechanisms. Eur. J. Pharmacol. 2008, 601, 79–87. [Google Scholar] [CrossRef]
- Mei, X.P.; Chen, L.; Wang, W.; Wu, D.; Wang, L.Y.; Zhang, T.; Zhang, H.; Xu, L.X.; Li, Y.Q. Combination of tramadol with minocycline exerted synergistic effects on a rat model of nerve injury-induced neuropathic pain. Neurosignals. 2013, 21, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, V.; Tanga, F.; DeLeo, J.A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 2003, 306, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.A.; Kim, T.U.; Chang, M.C. Minocycline for Controlling Neuropathic Pain: A Systematic Narrative Review of Studies in Humans. J. Pain Res. 2021, 14, 139–145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mika, J. Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol. Rep. 2008, 60, 297–307. [Google Scholar] [PubMed]
- Romero-Sandoval, E.A.; Horvath, R.J.; DeLeo, J.A. Neuroimmune interactions and pain: Focus on glial-modulating targets. Curr. Opin. Investig. Drugs 2008, 9, 726–734. [Google Scholar] [PubMed] [PubMed Central]
- Watkins, L.R.; Hutchinson, M.R.; Rice, K.C.; Maier, S.F. The "toll" of opioid-induced glial activation: Improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol. Sci. 2009, 30, 581–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dorazil-Dudzik, M.; Mika, J.; Schafer, M.K.; Li, Y.; Obara, I.; Wordliczek, J.; Przewłocka, B. The effects of local pentoxifylline and propentofylline treatment on formalin-induced pain and tumor necrosis factor-alpha messenger RNA levels in the inflamed tissue of the rat paw. Anesth. Analg. 2004, 98, 1566–1573. [Google Scholar] [CrossRef]
- Ellis, A.; Wieseler, J.; Favret, J.; Johnson, K.W.; Rice, K.C.; Maier, S.F.; Falci, S.; Watkins, L.R. Systemic administration of propentofylline, ibudilast, and (+)-naltrexone each reverses mechanical allodynia in a novel rat model of central neuropathic pain. J. Pain 2014, 15, 407–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujita, M.; Tamano, R.; Yoneda, S.; Omachi, S.; Yogo, E.; Rokushima, M.; Shinohara, S.; Sakaguchi, G.; Hasegawa, M.; Asaki, T. Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats: Different inhibitory mechanism on spinal microglia from minocycline and propentofylline. Eur. J. Pharmacol. 2018, 833, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Hama, A.T.; Broadhead, A.; Lorrain, D.S.; Sagen, J. The antinociceptive effect of the asthma drug ibudilast in rat models of peripheral and central neuropathic pain. J. Neurotrauma 2012, 29, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.R.; Hutchinson, M.R.; Ledeboer, A.; Wieseler-Frank, J.; Milligan, E.D.; Maier, S.F. Glia as the “bad guys”: Implications for improving clinical pain control and the clinical utility of opioids. Brain Behav. Immun. 2007, 21, 131–146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooper, Z.D.; Johnson, K.W.; Vosburg, S.K.; Sullivan, M.A.; Manubay, J.; Martinez, D.; Jones, J.D.; Saccone, P.A.; Comer, S.D. Effects of ibudilast on oxycodone-induced analgesia and subjective effects in opioid-dependent volunteers. Drug Alcohol. Depend. 2017, 178, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, A.; Hutchinson, M.R.; Watkins, L.R.; Johnson, K.W. Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert. Opin. Investig. Drugs 2007, 16, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Rauhala, P.V.; Kambur, O.; Kalso, E.A. Modulation of morphine-induced antinociception in acute and chronic opioid treatment by ibudilast. Anesthesiology 2009, 111, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Metz, V.E.; Jones, J.D.; Manubay, J.; Sullivan, M.A.; Mogali, S.; Segoshi, A.; Madera, G.; Johnson, K.W.; Comer, S.D. Effects of Ibudilast on the Subjective, Reinforcing, and Analgesic Effects of Oxycodone in Recently Detoxified Adults with Opioid Dependence. Neuropsychopharmacology 2017, 42, 1825–1832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watkins, L.R.; Maier, S.F. Glia: A novel drug discovery target for clinical pain. Nat. Rev. Drug Discov. 2003, 2, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, J.S.; Park, D. Anti-allodynic effect of interleukin 10 in a mouse model of complex regional pain syndrome through reduction of NK1 receptor expression of microglia in the spinal cord. J. Pain Res. 2018, 11, 1729–1741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangnus, T.J.P.; Bharwani, K.D.; Dirckx, M.; Huygen, F.J.P.M. From a Symptom-Based to a Mechanism-Based Pharmacotherapeutic Treatment in Complex Regional Pain Syndrome. Drugs 2022, 82, 511–531. [Google Scholar] [CrossRef]
- Kirkham, B. Tumor Necrosis Factor-Alpha Inhibitors: An Overview of Adverse Effects. 2024. Available online: https://www.uptodate.com/contents/tumor-necrosis-factor-alpha-inhibitors-an-overview-of-adverse-effects (accessed on 30 November 2024).
- Huygen, F.J.; Niehof, S.; Zijlstra, F.J.; van Hagen, P.M.; van Daele, P.L. Successful treatment of CRPS 1 with anti-TNF. J. Pain Symptom Manag. 2004, 27, 101–103. [Google Scholar] [CrossRef]
- Dirckx, M.; Groeneweg, G.; Wesseldijk, F.; Stronks, D.L.; Huygen, F.J. Report of a preliminary discontinued double-blind, randomized, placebo-controlled trial of the anti-TNF-α chimeric monoclonal antibody infliximab in complex regional pain syndrome. Pain Pract. 2013, 13, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Sandler, I.; Treister, R.; Suzan, E.; Haddad, M. Anti-tumor necrosis factor-alpha adalimumab for complex regional pain syndrome type 1 (CRPS-I): A case series. Pain Pract. 2013, 13, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, L.K.; Stumbles, P.A.; Finch, P.M.; Drummond, P.D. Inflammation induces α1-adrenoceptor expression in peripheral blood mononuclear cells of patients with complex regional pain syndrome. Brain Behav. Immun. 2024, 115, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Baik, E.; Chung, J.M.; Chung, K. Peripheral norepinephrine exacerbates neuritis-induced hyperalgesia. J. Pain 2003, 4, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Dogrul, A.; Coskun, I.; Uzbay, T. The contribution of alpha-1 and alpha-2adrenoceptors in peripheral imidazoline and adrenoceptor agonist-induced nociception. Anesth. Analg. 2006, 103, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Abbott, F.V. Contribution of peripheral alpha 1A-adrenoceptors to pain induced by formalin or by alpha-methyl-5-hydroxytryptamine plus noradrenaline. Eur. J. Pharmacol. 1996, 301, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Raja, S.N.; Wesselmann, U.; Fuchs, P.N.; Meyer, R.A.; Campbell, J.N. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain 2000, 88, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Torebjörk, E.; Wahren, L.; Wallin, G.; Hallin, R.; Koltzenburg, M. Noradrenaline-evoked pain in neuralgia. Pain 1995, 63, 11–20. [Google Scholar] [CrossRef]
- Schlereth, T.; Drummond, P.D.; Birklein, F. Inflammation in CRPS: Role of the sympathetic supply. Auton. Neurosci. 2014, 182, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S. Complex Regional Pain Syndrome in Adults: Treatment, Prognosis, and Prevention; UpToDate: Waltham, MA, USA, 2020. [Google Scholar]
- Inchiosa, M.A., Jr.; Kizelshteyn, G. Treatment of complex regional pain syndrome type I with oral phenoxybenzamine: Rationale and case reports. Pain Pract. 2008, 8, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; Kamler, M. Alpha-Adrenozeptor-Agonisten zur Therapie chronischer Schmerzen. Metaanalyse [Alpha 2-adrenergic agonists. Use in chronic pain—A meta-analysis]. Schmerz 1997, 11, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Pertovaara, A. Antinociception induced by alpha-2-adrenoceptor agonists, with special emphasis on medetomidine studies. Prog. Neurobiol. 1993, 40, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Jadad, A.; King, V.; Wiffen, P.; Glynn, C.; McQuay, H. Single-dose, randomized, double-blind, double-dummy cross-over comparison of extradural and i.v. clonidine in chronic pain. Br. J. Anaesth. 1993, 71, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Gentili, M.; Bernard, J.M.; Bonnet, F. Adding clonidine to lidocaine for intravenous regional anesthesia prevents tourniquet pain. Anesth. Analg. 1999, 88, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Goyagi, T.; Tanaka, M.; Nishikawa, T. Oral clonidine premedication enhances postoperative analgesia by epidural morphine. Anesth. Analg. 1999, 89, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, N.N.; Tverdohleb, T.; Nikibin, F.; Knezevic, I.; Candido, K.D. Management of chronic neuropathic pain with single and compounded topical analgesics. Pain Manag. 2017, 7, 537–558. [Google Scholar] [CrossRef] [PubMed]
- Weerink, M.A.S.; Struys, M.M.R.F.; Hannivoort, L.N.; Barends, C.R.M.; Absalom, A.R.; Colin, P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaksh, T.L.; Woller, S.A.; Ramachandran, R.; Sorkin, L.S. The search for novel analgesics: Targets and mechanisms. F1000prime Rep. 2015, 7, 56. [Google Scholar] [CrossRef]
- Peng, K.; Liu, H.Y.; Wu, S.R.; Cheng, H.; Ji, F.H. Effects of Combining Dexmedetomidine and Opioids for Postoperative Intravenous Patient-controlled Analgesia: A Systematic Review and Meta-analysis. Clin. J. Pain 2015, 31, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, F.W.; Abrishami, A.; Brull, R. The facilitatory effects of intravenous dexmedetomidine on the duration of spinal anesthesia: A systematic review and meta-analysis. Anesth. Analg. 2013, 117, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Wang, H.T.; Jin, J.J.; Cui, G.B.; Zhou, K.C.; Chen, Y.; Chen, G.Z.; Dong, Y.L.; Wang, W. Does dexmedetomidine as a neuraxial adjuvant facilitate better anesthesia and analgesia? A systematic review and meta-analysis. PLoS ONE 2014, 9, e93114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebert, T.J.; Hall, J.E.; Barney, J.A.; Uhrich, T.D.; Colinco, M.D. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000, 93, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Drummond, P.D.; Finch, P.M.; Skipworth, S.; Blockey, P. Pain increases during sympathetic arousal in patients with complex regional pain syndrome. Neurology 2001, 57, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Casale, R.; Atzeni, F.; Sarzi-Puttini, P. The therapeutic approach to complex regional pain syndrome: Light and shade. Clin. Exp. Rheumatol. 2015, 33 (Suppl. S88), S126–S139. [Google Scholar] [PubMed]
- Xu, J.; Yang, J.; Lin, P.; Rosenquist, E.; Cheng, J. Intravenous Therapies for Complex Regional Pain Syndrome: A Systematic Review. Anesth. Analg. 2016, 122, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Baranowski, A.; Maurer, K.; Ghiai, A.; McCabe, C.; Ambler, G. Intravenous immunoglobulin treatment of the complex regional pain syndrome: A randomized trial. Ann. Intern Med. 2010, 152, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Aradillas, E.; Schwartzman, R.J.; Grothusen, J.R.; Goebel, A.; Alexander, G.M. Plasma Exchange Therapy in Patients with Complex Regional Pain Syndrome. Pain Physician 2015, 18, 383–394. [Google Scholar] [PubMed]
- Hendrickson, J.E.; Hendrickson, E.T.; Gehrie, E.A.; Sidhu, D.; Wallukat, G.; Schimke, I.; Tormey, C.A. Complex regional pain syndrome and dysautonomia in a 14-year-old girl responsive to therapeutic plasma exchange. J. Clin. Apher. 2016, 31, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Blaes, F.; Dharmalingam, B.; Tschernatsch, M.; Feustel, A.; Fritz, T.; Kohr, D.; Singh, P.; Kaps, M.; Szalay, G. Improvement of complex regional pain syndrome after plasmapheresis. Eur. J. Pain 2015, 19, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Jones, S.; Oomman, S.; Callaghan, T.; Sprotte, G. Treatment of long-standing complex regional pain syndrome with therapeutic plasma exchange: A preliminary case series of patients treated in 2008–2014. Pain Med. 2014, 15, 2163–2164. [Google Scholar] [CrossRef]
- Prasad Md, A.; Chakravarthy Md, K. Review of complex regional pain syndrome and the role of the neuroimmune axis. Mol. Pain. 2021, 17, 17448069211006617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harden, R.N.; McCabe, C.S.; Goebel, A.; Massey, M.; Suvar, T.; Grieve, S.; Bruehl, S. Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 5th Edition. Pain Med. 2022, 23 (Suppl. S1), S1–S53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, S.; Ayling, H.; Sharma, M.; Goebel, A. External Noninvasive Peripheral Nerve Stimulation Treatment of Neuropathic Pain: A Prospective Audit. Neuromodulation 2015, 18, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chang, M.C. Effect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review. Front. Neurol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, Q.Z.; Chang, J.; Pak, D.; Supra, R.; Yazdi, C.; Kollenburg, L.; Kurt, E.; Reece, D.; Fonseca, A.C.G.; Abd-Elsayed, A.; et al. Literature Review: Mechanism, Indications, and Clinical Efficacy of Peripheral Nerve Stimulators in Lower Extremity Pain. Curr. Pain Headache Rep. 2024, 28, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Lv, J.; Sun, Y.; Shen, J.; Gao, Y.; Sun, S.; Yang, D. Peripheral Nerve Stimulation for Neuropathic Pain Management: A Narrative Review. Pain Ther. 2024, 13, 1387–1406. [Google Scholar] [CrossRef]
- Deer, T.; Shah, A.; Slavin, K.; Vorenkamp, K.E.; Shah, S.; Leong, M.; McRoberts, W.P. Birds of a Feather Redux: Defining Ways to Stimulate the Peripheral Nervous System. J. Pain Res. 2023, 16, 1219–1224. [Google Scholar] [CrossRef]
- Slavin, K.V. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics 2008, 5, 100–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirone, G.; Natale, M.; Rotondo, M. Peripheral median nerve stimulation for the treatment of iatrogenic complex regional pain syndrome (CRPS) type II after carpal tunnel surgery. J. Clin. Neurosci. 2009, 16, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Monti, E. Peripheral nerve stimulation: A percutaneous minimally invasive approach. Neuromodulation 2004, 7, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Frederico, T.N.; da Silva Freitas, T. Peripheral Nerve Stimulation of the Brachial Plexus for Chronic Refractory CRPS Pain of the Upper Limb: Description of a New Technique and Case Series. Pain Med. 2020, 21 (Suppl. S1), S18–S26. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics 2016, 13, 295–310. [Google Scholar] [CrossRef]
- Willand, M.P.; Nguyen, M.A.; Borschel, G.H.; Gordon, T. Electrical Stimulation to Promote Peripheral Nerve Regeneration. Neurorehabil. Neural Repair 2016, 30, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Vivo, M.; Puigdemasa, A.; Casals, L.; Asensio, E.; Udina, E.; Navarro, X. Immediate electrical stimulation enhances regeneration and reinnervation and mod- ulates spinal plastic changes after sciatic nerve injury and repair. Exp. Neurol. 2008, 211, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Pinilla, E.; Udina, E.; Jaramillo, J.; Navarro, X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp. Neurol. 2009, 219, 258–265. [Google Scholar] [CrossRef]
- Haastert-Talini, K.; Schmitte, R.; Korte, N.; Klode, D.; Ratzka, A.; Grothe, C. Electrical stimulation accelerates axonal and functional peripheral nerve regenera- tion across long gaps. J. Neurotrauma 2011, 28, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, Z.; Wu, J.; Rana, M.; Garza, J.; Zhu, A.C.; Chakravarthy, K.V.; Abd-Elsayed, A.; Rosenquist, E.; Basi, H.; et al. Peripheral Nerve Stimulation in Pain Management: A Systematic Review. Pain Physician 2021, 24, E131–E152. [Google Scholar]
- Chmiela, M.A.; Hendrickson, M.; Hale, J.; Liang, C.; Telefus, P.; Sagir, A.; Stanton-Hicks, M. Direct Peripheral Nerve Stimulation for the Treatment of Complex Regional Pain Syndrome: A 30-Year Review. Neuromodulation 2021, 24, 971–982. [Google Scholar] [CrossRef]
- Gutierrez, G.J.; Zurn, C.A.; Crosby, N.D. Sustained Relief of Complex Regional Pain Syndrome (CRPS) Pain Following a 60-Day Peripheral Nerve Stimulation: A Report of Three Cases. Cureus 2024, 16, e54458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naidu, R.; Li, S.; Desai, M.J.; Sheth, S.; Crosby, N.D.; Boggs, J.W. 60-Day PNS Treatment May Improve Identification of Delayed Responders and Delayed Non-Responders to Neurostimulation for Pain Relief. J. Pain Res. 2022, 15, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.; Varshney, V.; Hare, G.M.T.; Mazer, C.D. Spinal cord stimulation: A nonopioid alternative for chronic pain management. CMAJ 2020, 192, E1264–E1267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, L.; Peng, C.; Joosten, E.; Cheung, C.W.; Tan, F.; Jiang, W.; Shen, X. Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application. Neural Plast. 2021, 2021, 5607898. [Google Scholar] [CrossRef]
- Stanton-Hicks, M. Complex regional pain syndrome: Manifestations and the role of neurostimulation in its management. J. Pain Symptom Manag. 2006, 31 (Suppl. S4), S20–S24. [Google Scholar] [CrossRef]
- Khabbass, M.; Saleki, M.; Bretherton, B.; Baranidharan, G. Improvement in Health-Related Quality of Life With Spinal Cord Stimulation in Complex Regional Pain Syndrome: A Single-Center, Retrospective Study. Neuromodulation 2024, 27, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Deer, T. Spinal Cord Stimulation for the Treatment of Chronic Pain. Pain Med News. 2010. Available online: https://www.painmedicinenews.com/Review-Articles/Article/07-10/Spinal-Cord-Stimulation-for-the-Treatment-of-Chronic-Pain/15479 (accessed on 15 November 2024).
- Harke, H.; Gretenkort, P.; Ladleif, H.U.; Rahman, S.; Harke, O. The response of neuropathic pain and pain in complex regional pain syndrome I to carbamazepine and sustained-release morphine in patients pretreated with spinal cord stimulation: A double-blinded randomized study. Anesth. Analg. 2001, 92, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, T.; Kemler, M.A.; Weber, W.E.; Kessels, A.G.; van Kleef, M. Spinal cord stimulation in complex regional pain syndrome: Cervical and lumbar devices are comparably effective. Br. J. Anaesth. 2004, 92, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Rizvi, S.; Bnurs, S.B. Spinal cord stimulation is effective in management of complex regional pain syndrome I: Fact or fiction. Neurosurgery 2011, 69, 566–5580. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Matis, G.K. Spinal cord stimulation as a treatment option for complex regional pain syndrome: A narrative review. Br. J. Neurosurg. 2024, 38, 1289–1293. [Google Scholar] [CrossRef]
- Visnjevac, O.; Costandi, S.; Patel, B.A.; Azer, G.; Agarwal, P.; Bolash, R.; Mekhail, N.A. A Comprehensive Outcome-Specific Review of the Use of Spinal Cord Stimulation for Complex Regional Pain Syndrome. Pain Pract. 2017, 17, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Mattie, R.; Lin, A.B.; Bhandal, H.; Gill, B.; Tram, J.; Braun, S.; Prabakar, N.; Yin, C.T.; Brar, N.; Fox, A.; et al. Spinal cord stimulation for the treatment of complex regional pain syndrome: A systematic review of randomized controlled trials. Interv. Pain Med. 2024, 3, 100527. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.; Masone, R.J. Selection of Spinal Cord Stimulation Candidates for the Treatment of Chronic Pain. Pain Med. 2008, 9, S82–S92. [Google Scholar] [CrossRef]
- Geurts, J.W.; Smits, H.; Kemler, M.A.; Brunner, F.; Kessels, A.G.; van Kleef, M. Spinal cord stimulation for complex regional pain syndrome type I: A prospective cohort study with long-term follow-up. Neuromodulation 2013, 16, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, D. Spinal cord stimulation for neuropathic pain. Rev. Neurol. 2021, 177, 838–842. [Google Scholar] [CrossRef]
- Deer, T.R.; Levy, R.M.; Kramer, J.; Poree, L.; Amirdelfan, K.; Grigsby, E.; Staats, P.; Burton, A.W.; Burgher, A.H.; Obray, J.; et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: A randomized comparative trial. Pain 2017, 158, 669–681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koushik, S.S.; Raghavan, J.; Saranathan, S.; Slinchenkova, K.; Viswanath, O.; Shaparin, N. Complications of Spinal Cord Stimulators-A Comprehensive Review Article. Curr. Pain Headache Rep. 2024, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; O’Connor, A.B.; Kent, J.; Mackey, S.C.; Raja, S.N.; Stacey, B.R.; Levy, R.M.; Backonja, M.; Baron, R.; Harke, H.; et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 2013, 154, 2249–2261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poree, L.; Krames, E.; Pope, J.; Deer, T.R.; Levy, R.; Schultz, L. Spinal Cord Stimulation as Treatment for Complex Regional Pain Syndrome Should Be Considered Earlier Than Last Resort Therapy. Neuromodulation 2013, 16, 125–141. [Google Scholar] [CrossRef]
- Prokopienko, M.; Sobstyl, M. Spinal cord stimulation for treatment of complex regional pain syndrome: A single-centre retrospective case series study. Neurol. Neurochir. Pol. 2022, 56, 371–378. [Google Scholar] [CrossRef]
- Shim, H.; Rose, J.; Halle, S.; Shekane, P. Complex regional pain syndrome: A narrative review for the practising clinician. Br. J. Anaesth. 2019, 123, e424–e433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Buyten, J.P.; Smet, I.; Liem, L.; Russo, M.; Huygen, F. Stimulation of dorsal root ganglia for the management of complex regional pain syndrome: A prospective case series. Pain Pract. 2015, 15, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Lewis, S.; Phillip, R.; Sharma, M. Dorsal Root Ganglion Stimulation for Complex Regional Pain Syndrome (CRPS) Recurrence after Amputation for CRPS, and Failure of Conventional Spinal Cord Stimulation. Pain Pract. 2018, 18, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Correll, D. Chronic postoperative pain: Recent findings in understanding and management. F1000Research 2017, 6, 1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghosh, P.; Gungor, S. Utilization of Concurrent Dorsal Root Ganglion Stimulation and Dorsal Column Spinal Cord Stimulation in Complex Regional Pain Syndrome. Neuromodulation 2021, 24, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Pope, J.E.; Lamer, T.J.; Grider, J.S.; Provenzano, D.; Lubenow, T.R.; FitzGerald, J.J.; Hunter, C.; Falowski, S.; Sayed, D.; et al. The Neuromodulation Appropriateness Consensus Committee on Best Practices for Dorsal Root Ganglion Stimulation. Neuromodul. J. Int. Neuromodul. Soc. 2019, 22, 1–35. [Google Scholar] [CrossRef]
- Mekhail, N.; Deer, T.R.; Poree, L.; Staats, P.S.; Burton, A.W.; Connolly, A.T.; Karst, E.; Mehanny, D.S.; Saweris, Y.; Levy, R.M. Cost-Effectiveness of Dorsal Root Ganglion Stimulation or Spinal Cord Stimulation for Complex Regional Pain Syndrome. Neuromodulation 2021, 24, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, M.; Kong, J.T.; Scherrer, K.H.; Foote, A.; Mackey, S.; Johnson, K.A. Advancing Transcranial Magnetic Stimulation Methods for Complex Regional Pain Syndrome: An Open-Label Study of Paired Theta Burst and High-Frequency Stimulation. Neuromodulation 2018, 21, 409–416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Picarelli, H.; Teixeira, M.J.; de Andrade, D.C.; Myczkowski, M.L.; Luvisotto, T.B.; Yeng, L.T.; Fonoff, E.T.; Pridmore, S.; Marcolin, M.A. Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I. J. Pain 2010, 11, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Pleger, B.; Janssen, F.; Schwenkreis, P.; Völker, B.; Maier, C.; Tegenthoff, M. Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I. Neurosci. Lett. 2004, 356, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.R.S.G.; Zuurmond, A.W.W.; Bezemer, D.P.; Kuik, J.D.; van Loenen, C.A.; de Lange, J.J.; Zuidhof, J.A. The treatment of complex regional pain syndrome type I with free radical scavengers: A randomized controlled study. Pain 2003, 102, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.S.; Pragt, E.; Geurts, J.; Zuurmond, W.W.; Patijn, J.; van Kleef, M. Treatment of patients with complex regional pain syndrome type I with mannitol: A prospective, randomized, placebo-controlled, double-blinded study. J. Pain 2008, 9, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.; Tacken, M.C.; Groenewoud, J.M.; van Goor, H.; Frölke, J.P. Mannitol as salvage treatment for Complex Regional Pain Syndrome Type, I. Injury 2010, 41, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Zuurmond, W.W.; Langendijk, P.N.; Bezemer, P.D.; Brink, H.E.; de Lange, J.J.; Van Loenen, A.C. Treatment of acute reflex sympathetic dystrophy with DMSO 50% in a fatty cream. Acta Anaesthesiol. Scand. 1996, 40, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Dinç, M.; Soydemir, Ö.C. Efficacy of N-acetylcysteine in reducing inflammation and oxidative stress to prevent complex regional pain syndrome type 1. Medicine 2024, 103, e39742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moura, F.A.; de Andrade, K.Q.; dos Santos, J.C.; Goulart, M.O. Lipoic Acid: Its antioxidant and anti-inflammatory role and clinical applications. Curr. Top. Med. Chem. 2015, 15, 458–483. [Google Scholar] [CrossRef] [PubMed]
- Papanas, N.; Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin. Pharmacother. 2014, 15, 2721–2731. [Google Scholar] [CrossRef]
- Wang, J.; Lou, Z.; Xi, H.; Li, Z.; Li, L.; Li, Z.; Zhang, K.; Asakawa, T. Verification of neuroprotective effects of alpha-lipoic acid on chronic neuropathic pain in a chronic constriction injury rat model. Open Life Sci. 2021, 16, 222–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodrigues, P.; Cassanego, G.B.; Peres, D.S.; Viero, F.T.; Kudsi, S.Q.; Ruviaro, N.A.; Aires, K.V.; Portela, V.M.; Bauermann, L.F.; Trevisan, G. Alpha-lipoic acid reduces nociception by reducing oxidative stress and neuroinflammation in a model of complex regional pain syndrome type I in mice. Behav. Brain Res. 2024, 459, 114790. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Marracci, G.H.; Munar, M.Y.; Cherala, G.; Stuber, L.E.; Alvarez, L.; Shinto, L.; Koop, D.R.; Bourdette, D.N. Pharmacokinetic study of lipoic acid in multiple sclerosis: Comparing mice and human pharmacokinetic parameters. Mult. Scler. J. 2010, 16, 387–397. [Google Scholar] [CrossRef]
- Agathos, E.; Tentolouris, A.; Eleftheriadou, I.; Katsaouni, P.; Nemtzas, I.; Petrou, A.; Papanikolaou, C.; Tentolouris, N. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J. Int. Med. Res. 2018, 46, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, S.L.; Lamborn, N.; Jevtovic-Todorovic, V.; Todorovic, S.M. Alpha lipoic acid attenuates evoked and spontaneous pain following surgical skin incision in rats. Channels 2021, 15, 398–407. [Google Scholar] [CrossRef]
- Hosseini, A.; Masjedi, A.; Baradaran, B.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Anvari, E.; Jadidi-Niaragh, F. Dimethyl fumarate: Regulatory effects on the immune system in the treatment of multiple sclerosis. J. Cell.Physiol. 2019, 234, 9943–9955. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.Z.; Shi, X.; Li, W.; Wei, T.; Kingery, W.S.; Clark, J.D. Dimethyl Fumarate Reduces Oxidative Stress and Pronociceptive Immune Responses in a Murine Model of Complex Regional Pain Syndrome. Anesth. Analg. 2021, 132, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/204063s017lbl.pdf (accessed on 1 December 2024).
- Augusto, P.S.A.; Braga, A.V.; Rodrigues, F.F.; Morais, M.I.; Dutra, M.M.G.B.; Batista, C.R.A.; Melo, I.S.F.; Costa, S.O.A.M.; Goulart, F.A.; Coelho, M.M.; et al. Metformin antinociceptive effect in models of nociceptive and neuropathic pain is partially mediated by activation of opioidergic mechanisms. Eur. J. Pharmacol. 2019, 858, 172497. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Flores, G.D.C.; Guzmán-Priego, C.G.; Parra-Flores, L.I.; Murbartián, J.; Torres-López, J.E.; Granados-Soto, V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front. Pharmacol. 2020, 11, 558474. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Sun, X.; Jiang, L.; Hu, L.; Kong, H.; Han, Y.; Qian, C.; Song, C.; Qian, Y.; Liu, W. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J. Neuroinflamm. 2016, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Ang, D. Metformin: Potential analgesic? Pain Med. 2015, 16, 2256–2260. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asiedu, M.N.; Han, C.; Dib-Hajj, S.D.; Waxman, S.G.; Price, T.J.; Dussor, G. The AMPK Activator A769662 Blocks Voltage-Gated Sodium Channels: Discovery of a Novel Pharmacophore with Potential Utility for Analgesic Development. PLoS ONE 2017, 12, e0169882. [Google Scholar] [CrossRef]
- Price, T.J.; Das, V.; Dussor, G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr. Drug Targets 2016, 17, 908–920. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, G.; Huygen, F.J.; Niehof, S.P.; Wesseldijk, F.; Bussmann, J.B.; Schasfoort, F.C.; Stronks, D.L.; Zijlstra, F.J. Effect of tadalafil on blood flow, pain, and function in chronic cold complex regional pain syndrome: A randomized controlled trial. BMC Musculoskelet. Disord. 2008, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.L.; Fonseca, A.C.G.; Diejomaoh, E.M.; D’Souza, R.S.; Schatman, M.E.; Orhurhu, V.; Emerick, T. Scoping Review: The Role of Psychedelics in the Management of Chronic Pain. J. Pain Res. 2024, 17, 965–973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lyes, M.; Yang, K.H.; Castellanos, J.; Furnish, T. Microdosing psilocybin for chronic pain: A case series. Pain 2023, 164, 698–702. [Google Scholar] [CrossRef]
- Jevotovsky, D.S.; Chopra, H.; Wing, C.; Spotswood, C.J.; Castellanos, J. Refractory CRPS pain treated with psilocybin: A case report. Clin. Case Rep. 2024, 12, e9421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andronic, D.; Andronic, O.; Juengel, A.; Berli, M.C.; Distler, O.; Brunner, F. Skin biomarkers associated with complex regional pain syndrome (CRPS) Type I: A systematic review. Rheumatol. Int. 2022, 42, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Osborne, S.; Farrell, J.; Dearman, R.J.; MacIver, K.; Naisbitt, D.J.; Moots, R.J.; Edwards, S.W.; Goebel, A. Cutaneous immunopathology of long-standing complex regional pain syndrome. Eur. J. Pain 2015, 19, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
Type | Treatment Protocol | Treatment Mechanism |
---|---|---|
Medical treatments | Alpha-adrenergic antagonists (Prazosin, Phenoxybezamine) |
|
Glial-modulating agents |
| |
Immune-modulating agents |
| |
IV immunoglobulin (IVIG) Therapies |
| |
Plasma exchange therapies |
| |
Free radical scavengers |
| |
Alpha-lipoic acid (ALA) |
| |
Dimethyl fumarate (DMF) |
| |
AMPK activators—Metformin |
| |
Tadalafil (phosphodiesterase-5 inhibitor) |
| |
Interventional | peripheral nerve stimulation (PNS) treatments |
|
Type | Treatment Protocol | Treatment Mechanism |
---|---|---|
Medical treatments | Ketamine |
|
Low-dose naltrexone (LDN) |
| |
Glial-modulating agents |
| |
AMPK activators (e.g., Metformin) |
| |
Interventional treatments | Spinal cord stimulation (SCS) |
|
Dorsal root ganglion (DRG) stimulation |
| |
Repetitive transcranial magnetic stimulation (rTMS) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candan, B.; Gungor, S. Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics 2025, 15, 353. https://doi.org/10.3390/diagnostics15030353
Candan B, Gungor S. Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics. 2025; 15(3):353. https://doi.org/10.3390/diagnostics15030353
Chicago/Turabian StyleCandan, Burcu, and Semih Gungor. 2025. "Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review" Diagnostics 15, no. 3: 353. https://doi.org/10.3390/diagnostics15030353
APA StyleCandan, B., & Gungor, S. (2025). Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics, 15(3), 353. https://doi.org/10.3390/diagnostics15030353