Glycan Analysis as Biomarkers for Testicular Cancer
Abstract
:1. Description, Risk Factors and Classification of Testicular Cancer (TC)
1.1. TC Risk Factors
1.2. TC Classification
2. TC Biomarkers and Their Limitations
2.1. Human Chorionic Gonadotropin (hCG)
- (A)
- two types when considering the binding preference [41]:
- binding to LH/hCG hormone receptor (hormone hCG, a normal form of hCG);
- binding to TGFβ-II receptor (hCG-H or hCGβ-H).
- (B)
- four biantennary N-glycans, three type 1 O-glycans (tri- and tetra-saccharides), one type 2 O-glycan (hCG);
- four biantennary N-glycans and four type 2 O-glycans (penta- and hexa-saccharides) (placental hyperglycosylated hCG);
- triantennary N-glycans on β-subunit and type 2 O-glycans (extravillous cytotrophoblast hyperglycosylated hCG and cancer hyperglycosylated hCG);
- N-acetylgalactosamine-sulphate terminating N-glycans and type 1 O-glycans (sulphated hCG hormone).
- (C)
- seven semi-independent molecules, when considering functional roles [41]:
- placental hCG (controlling pregnancy);
- placental autocrine hyperglycosylated hCG (start placentation during pregnancy);
- pituitary sulphated hCG (present during ovarian steroidogenesis, ovulation & luteogenesis);
- foetal hCG hormone (promoting foetal organ growth);
- ovarian hyperglycosylated hCG (driving the final proteolytic enzymatic step during ovulation);
- hCG-H (trophoblastic tumours);
- hCGβ-H (non-trophoblastic tumours).
- (D)
- significant structural variability involving numerous isoforms combining glycosylation (14 major variants for hCGα and 12 major variants for hCGβ) [35,49,50] and structural (nicked forms of hCG, hCGβ, hCG-H, hCGβ-H; hCG forms without a terminal CTP tail (β113-145 containing all 4 O-glycans); β-core fragment (β6-40 and β55-92 linked by a disulphide bond)) variations [35,41].
2.2. α-Fetoprotein (AFP)
2.3. Lactate Dehydrogenase (LDH)
2.4. Other TC Biomarkers
3. Glycans as TC Biomarkers
3.1. Performance of Glycosylated hCG as a TC Biomarker
3.2. Performance of Glycosylated AFP as a TC Biomarker
3.3. Analysis of Glycans in Serum
3.4. Application of Lectins for Analysis in Tissues
3.5. Analysis of Expression Of GLycan-Processing Enzymes
3.6. Analysis of Glycan Binding Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, M.; Cheng, L. Molecular characterization of testicular germ cell tumors: Chasing the underlying pathways. Future Oncol. 2019, 15, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Albers, P.; Berney, D.M.; Feldman, D.R.; Daugaard, G.; Gilligan, T.; Looijenga, L.H.J. Testicular cancer. Nat. Rev. Dis. Primers 2018, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016, 315, 68. [Google Scholar] [CrossRef] [PubMed]
- Rajpert-De Meyts, E.; McGlynn, K.A.; Okamoto, K.; Jewett, M.A.S.; Bokemeyer, C. Testicular germ cell tumours. Lancet 2016, 387, 1762–1774. [Google Scholar] [CrossRef]
- Mardiak, J.; Mego, M.; Palacka, P.; Chovanec, M. Nádory genitourinárneho traktu; Univerzita Komenského: Bratislava, Slovakia, 2013; ISBN 978-80-223-3496-9. [Google Scholar]
- Skakkebæk, N.E.; Rajpert-De Meyts, E.; Main, K.M. Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects: Opinion. Human Reprod. 2001, 16, 972–978. [Google Scholar] [CrossRef]
- Skakkebaek, N.E. Testicular dysgenesis syndrome. Horm. Res. Paediatr. 2003, 60, 49. [Google Scholar] [CrossRef]
- Lymperi, S.; Giwercman, A. Endocrine disruptors and testicular function. Metabolism 2018, 86, 79–90. [Google Scholar] [CrossRef]
- Purdue, M.P.; Devesa, S.S.; Sigurdson, A.J.; McGlynn, K.A. International patterns and trends in testis cancer incidence. Int. J. Cancer 2005, 115, 822–827. [Google Scholar] [CrossRef]
- Bray, F.; Richiardi, L.; Ekbom, A.; Pukkala, E.; Cuninkova, M.; Møller, H. Trends in testicular cancer incidence and mortality in 22 european countries: Continuing increases in incidence and declines in mortality. Int. J. Cancer 2006, 118, 3099–3111. [Google Scholar] [CrossRef]
- Sampson, J.N.; Wheeler, W.A.; Yeager, M.; Panagiotou, O.; Wang, Z.; Berndt, S.I.; Lan, Q.; Abnet, C.C.; Amundadottir, L.T.; Figueroa, J.D.; et al. Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J. Natl. Cancer Inst. 2015, 107, djv279. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Hemminki, K. Modification of cancer risks in offspring by sibling and parental cancers from 2,112,616 nuclear families. Int. J. Cancer 2001, 92, 144–150. [Google Scholar] [CrossRef]
- Hemminki, K.; Li, X. Cancer risks in nordic immigrants and their offspring in sweden. Eur. J. Cancer 2002, 38, 2428–2434. [Google Scholar] [CrossRef]
- Giannandrea, F.; Fargnoli, S. Environmental factors affecting growth and occurrence of testicular cancer in childhood: An overview of the current epidemiological evidence. Children 2017, 4, 1. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 who classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- Leão, R.; Ahmad, A.E.; Hamilton, R.J. Testicular cancer biomarkers: A role for precision medicine in testicular cancer. Clin. Genitourin. Cancer 2018, 17, e176–e183. [Google Scholar] [CrossRef]
- Milose, J.C.; Filson, C.P.; Weizer, A.Z.; Hafez, K.S.; Montgomery, J.S. Role of biochemical markers in testicular cancer: Diagnosis, staging, and surveillance. Open Access J. Urol. 2012, 4, 1–8. [Google Scholar]
- Idrees, M.T.; Ulbright, T.M.; Oliva, E.; Young, R.H.; Montironi, R.; Egevad, L.; Berney, D.; Srigley, J.R.; Epstein, J.I.; Tickoo, S.K. The world health organization 2016 classification of testicular non-germ cell tumours: A review and update from the international society of urological pathology testis consultation panel. Histopathology 2017, 70, 513–521. [Google Scholar] [CrossRef]
- Thong, A.E.; Lichtensztajn, D.Y.; Almario, L.; Ingels, A.; Gomez, S.L.; Gonzalgo, M.L. Stage i testicular seminoma: A seer analysis of contemporary adjuvant radiotherapy trends. J. Urol. 2013, 190, 1240–1244. [Google Scholar] [CrossRef]
- Young, R.H. Sex cord-stromal tumors of the ovary and testis: Their similarities and differences with consideration of selected problems. Modern Pathol. 2005, 18, S81–S98. [Google Scholar] [CrossRef]
- Albers, P.; Albrecht, W.; Algaba, F.; Bokemeyer, C.; Cohn-Cedermark, G.; Fizazi, K.; Horwich, A.; Laguna, M.P.; Nicolai, N.; Oldenburg, J. Guidelines on testicular cancer: 2015 update. Eur. Urol. 2015, 68, 1054–1068. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; Nicholson, J.C. A-fetoprotein. Arch. Dis. Child. Educ. Pract. 2011, 96, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.H.; Lilja, H.; Brünner, N.; Chan, D.W.; Babaian, R.; Bast, R.C.; Dowell, B.; Esteva, F.J.; et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 2008, 54, e11–e79. [Google Scholar] [CrossRef] [PubMed]
- Oosterhuis, J.W.; Looijenga, L.H.J. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 2005, 5, 210–222. [Google Scholar] [CrossRef]
- Mir, M.C.; Pavan, N.; Gonzalgo, M.L. Current clinical applications of testicular cancer biomarkers. Urol. Clin. N. Am. 2016, 43, 119–125. [Google Scholar] [CrossRef]
- Barrisford, G.W.; Kreydin, E.I.; Preston, M.A.; Rodriguez, D.; Harisighani, M.G.; Feldman, A.S. Role of imaging in testicular cancer: Current and future practice. Future Oncol. 2015, 11, 2575–2586. [Google Scholar] [CrossRef]
- Trigo, J.M.; Tabernero, J.M.; Paz-Ares, L.; Garcia-Llano, J.L.; Mora, J.; Lianes, P.; Esteban, E.; Salazar, R.; López-López, J.J.; Cortés-Funes, H. Tumor markers at the time of recurrence in patients with germ cell tumors. Cancer 2000, 88, 162–168. [Google Scholar] [CrossRef]
- Carver, B.S.; Sheinfeld, J. Germ cell tumors of the testis. Ann. Surg. Oncol. 2005, 12, 871–880. [Google Scholar] [CrossRef]
- Beyer, J. Prognostic factors in metastatic germ-cell cancer. Andrology 2019, 7, 475–478. [Google Scholar] [CrossRef]
- Tarin, T.V.; Sonn, G.; Shinghal, R. Estimating the risk of cancer associated with imaging related radiation during surveillance for stage i testicular cancer using computerized tomography. J. Urol. 2009, 181, 627–633. [Google Scholar] [CrossRef]
- Murray, M.J.; Coleman, N. Testicular cancer: A new generation of biomarkers for malignant germ cell tumours. Nat. Rev. Urol. 2012, 9, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Tkac, J.; Gajdosova, V.; Hroncekova, S.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Kasak, P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus 2019, 9, 20180077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulasingam, V.; Diamandis, E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 2008, 5, 588. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.; Lapthorn, A.J. The molecular relationship between antigenic domains and epitopes on hcg. Mol. Immunol. 2016, 76, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod. Biol. Endocrinol. 2009, 7, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Favilla, V.; Cimino, S.; Madonia, M.; Morgia, G. New advances in clinical biomarkers in testis cancer. Front. Biosci. 2010, 2, 456–477. [Google Scholar]
- Elnour, A.a. Elevated human chorionic gonadotropin hcg serum level in germ cell testicular tumor. MOJ Proteom. Bioinform. 2018, 7. [Google Scholar] [CrossRef]
- Cole, L.A. Hyperglycosylated hcg. Placenta 2007, 28, 977–986. [Google Scholar] [CrossRef]
- Cole, L.A.; Butler, S.A. Human Chorionic Gonadotropin (hCG), 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; 446p. [Google Scholar] [CrossRef]
- Cole, L.A. Human chorionic gonadotropin (hcg) and hyperglycosylated hcg, seven semi-independent critical molecules: A review. J. Mol. Oncol. Res. 2017, 1, 22–24. [Google Scholar]
- Berger, P.; Paus, E.; Hemken, P.M.; Sturgeon, C.; Stewart, W.W.; Skinner, J.P.; Harwick, L.C.; Saldana, S.C.; Ramsay, C.S.; Rupprecht, K.R.; et al. Candidate epitopes for measurement of hcg and related molecules: The second isobm td-7 workshop. Tumor Biol. 2013, 34, 4033–4057. [Google Scholar] [CrossRef]
- Elliott, M.M.; Kardana, A.; Lustbader, J.W.; Cole, L.A. Carbohydrate and peptide structure of the α- and β-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine 1997, 7, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A.; Butler, S.A. The biological function of hyperglycosylated hcg. Asian Pac. J. Reprod. 2012, 1, 7–12. [Google Scholar] [CrossRef]
- Cole, L.A.; Butler, S. Hyperglycosylated hcg, hCGβ and hyperglycosylated hcgβ: Interchangeable cancer promoters. Mol. Cel. Endocrinol. 2012, 349, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A. Hyperglycosylated hcg drives malignancy in most or all human cancers: Tying all research together. J. Anal. Oncol. 2018, 7, 14–21. [Google Scholar] [CrossRef]
- Cole, L.A. The carbohydrate structure of the hormone hcg, the autocrine hyper glycosylated hCG, and the extravillous cytotrophoblast hyperglycosylated hcg. J. Glycobiol. 2018, 07, 3–7. [Google Scholar] [CrossRef]
- Cole, L.A. The 4 separate forms of hCG. Am. J. Obstet. Gynecol. 2019, in press. [Google Scholar]
- Toll, H.; Berger, P.; Hofmann, A.; Hildebrandt, A.; Oberacher, H.; Lenhof, H.P.; Huber, C.G. Glycosylation patterns of human chorionic gonadotropin revealed by liquid chromatography-mass spectrometry and bioinformatics. Electrophoresis 2006, 27, 2734–2746. [Google Scholar] [CrossRef]
- Camperi, J.; Combes, A.; Guibourdenche, J.; Guillarme, D.; Pichon, V.; Fournier, T.; Delaunay, N. An attempt to characterize the human chorionic gonadotropin protein by reversed phase liquid chromatography coupled with high-resolution mass spectrometry at the intact level. J. Pharm. Biomed. Anal. 2018, 161, 35–44. [Google Scholar] [CrossRef]
- Cole, L.A. Hyperglycosylated hcg drives malignancy in cancer cases. J. Mol. Oncol. Res. 2017, 1, 53–63. [Google Scholar]
- Acevedo, H.F.; Krichevsky, A.; Campbell-Acevedo, E.A.; Galyon, J.C.; Buffo, M.J.; Hartsock, R.J. Flow cytometry method for the analysis of membrane-associated human chorionic gonadotropin, its subunits, and fragments on human cancer cells. Cancer 1992, 69, 1818–1828. [Google Scholar] [CrossRef]
- Regelson, W. Have we found the “definitive cancer biomarker”? The diagnostic and therapeutic implications of human chorionic gonadotropin-beta expression as a key to malignancy. Cancer 1995, 76, 1299–1301. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Kaneko, M.; Fukui, M.; Sakaguchi, H.; Ishiguro, T. Three different types of alpha-fetoprotein in the diagnosis of malignant solid tumors: Use of a sensitive lectin-affinity immunoelectrophoresis. J. Pediatr. Surg. 1989, 24, 350–355. [Google Scholar] [CrossRef]
- Germà-Lluch, J.R.; Garcia del Muro, X.; Maroto, P.; Paz-Ares, L.; Arranz, J.A.; Gumà, J.; Alba, E.; Sastre, J.; Aparicio, J.; Fernández, A.; et al. Clinical pattern and therapeutic results achieved in 1490 patients with germ-cell tumours of the testis: The experience of the spanish germ-cell cancer group (gg). Eur. Urol. 2002, 42, 553–563. [Google Scholar] [CrossRef]
- Mora, J.; Garrido, A.; Antonijuan, A.; Martínez, S.; González-Sastre, F. Applicability of α-fetoprotein-concanavalin a (afp-cona) binding to discriminate between germinal or hepatic origin of afp in germ cell tumour patients during chemotherapy or follow-up. Clin. Chem. Lab. Med. 2007, 45, 932–933. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, Y.; Beck, S.D.W.; Foster, R.S.; Bihrle, R.; Einhorn, L.H. Serum tumor markers in testicular cancer. Urol. Oncol. 2013, 31, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Magers, M.J.; Idrees, M.T. Updates in staging and reporting of testicular cancer. Surg. Pathol. Clin. 2018, 11, 813–824. [Google Scholar] [CrossRef]
- Von Eyben, F.E.; de Graaff, W.E.; Marrink, J.; Blaabjerg, O.; Sleijfer, D.T.; Koops, H.S.; Oosterhuis, J.W.; Petersen, P.H.; van Echten-Arends, J.; de Jong, B. Serum lactate dehydrogenase isoenzyme 1 activity in patients with testicular germ cell tumors correlates with the total number of copies of the short arm of chromosome 12 in the tumor. Mol. Gen. Genet. 1992, 235, 140–146. [Google Scholar] [CrossRef]
- Von Eyben, F.E.; Skude, G.; Fosså, S.D.; Klepp, O.; Børmer, O. Serum lactate dehydrogenase (s-ldh) and s-ldh isoenzymes in patients with testicular germ cell tumors. Mol. Gen. Genet. 1983, 189, 326–333. [Google Scholar] [CrossRef]
- Gilligan, T.D.; Seidenfeld, J.; Basch, E.M.; Einhorn, L.H.; Fancher, T.; Smith, D.C.; Stephenson, A.J.; Vaughn, D.J.; Cosby, R.; Hayes, D.F.; et al. American society of clinical oncology clinical practice guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 2010, 28, 3388–3404. [Google Scholar] [CrossRef]
- Huijgen, H.J.; Sanders, G.T.; Koster, R.W.; Vreeken, J.; Bossuyt, P.M. The clinical value of lactate dehydrogenase in serum: A quantitative review. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 569–579. [Google Scholar]
- Belge, G.; Dieckmann, K.-P.; Spiekermann, M.; Balks, T.; Bullerdiek, J. Serum levels of micrornas mir-371-3: A novel class of serum biomarkers for testicular germ cell tumors? Eur. Urol. 2012, 61, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Skinner, D.G.; Scardino, P.T. Relevance of biochemical tumor markers and lymphadenectomy in management of non-seminomatous testis tumors: Current perspective. J. Urol. 1980, 123, 378–382. [Google Scholar] [CrossRef]
- Nicholson, B.D.; Jones, N.R.; Protheroe, A.; Joseph, J.; Roberts, N.W.; Van den Bruel, A.; Fanshawe, T.R. The diagnostic performance of current tumour markers in surveillance for recurrent testicular cancer: A diagnostic test accuracy systematic review. Cancer Epidemiol. 2019, 59, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, M.; Mego, M.; Cheng, L.; Montironi, R.; Cimadamore, A.; Albany, C. Emerging prognostic biomarkers in testicular germ cell tumors: Looking beyond established practice. Front. Oncol. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Bulić-Jakuš, F.; Ježek, D.; Buljubašić, R.; Buljubašić, M.; Sinčić, N.; Ulamec, M.; Vlahović, M.; Bojanac, A.K. Epigenetics and testicular germ cell tumors. Gene 2018, 661, 22–33. [Google Scholar]
- Ling, H.; Krassnig, L.; Bullock, M.D.; Pichler, M. Micrornas in testicular cancer diagnosis and prognosis. Urol. Clin. N. Am. 2016, 43, 127–134. [Google Scholar] [CrossRef]
- Milardi, D.; Grande, G.; Vincenzoni, F.; Pierconti, F.; Pontecorvi, A. Proteomics for the identification of biomarkers in testicular cancer–review. Front. Endocrinol. 2019, 10, 462. [Google Scholar] [CrossRef]
- Casadei, C.; Schepisi, G.; Menna, C.; Chovanec, M.; Gurioli, G.; Gallà, V.; Altavilla, A.; Marcellini, M.; Bellia, S.R.; Lolli, C. Reclassification of good-risk seminoma: Prognostic factors, novel biomarkers and implications for clinical management. Future Oncol. 2019, 15, 1347–1352. [Google Scholar] [CrossRef]
- Takashi, M.; Haimoto, H.; Nagai, T.; Koshikawa, T.; Kato, K. Enolase isozymes in seminoma. Urol. Res. 1990, 18, 175–180. [Google Scholar] [CrossRef]
- Fosså, S.S.D.; Klepp, O.; Paus, E. Neuron-specific enolase – a serum tumour marker in seminoma? Br. J. Cancer 1992, 65, 297–299. [Google Scholar] [CrossRef]
- Tandstad, T.; Klepp, O. Neuron-specific enolase in testicular cancer. Acta Oncol. 2004, 42, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Kuzmits, R.; Schernthaner, G.; Krisch, K. Serum neuron-specific enolase. A marker for responses to therapy in seminoma. Cancer 1987, 60, 1017–1021. [Google Scholar] [CrossRef]
- Roelofs, H.; Manes, T.; Janszen, T.; Millán, J.L.; Oosterhuis, J.W.; Looijenga, L.H.J. Heterogeneity in alkaline phosphatase isozyme expression in human testicular germ cell tumours: An enzyme-/immunohistochemical and molecular analysis. J. Pathol. 1999, 189, 236–244. [Google Scholar] [CrossRef]
- Stolbach, L.L.; Krant, M.J.; Fishman, W.H. Ectopic production of an alkaline phosphatase isoenzyme in patients with cancer. N. Engl. J. Med. 1969, 281, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Sakai, N.; Ando, T.; Hirata, T.; Shinoda, J.; Miwa, Y.; Yamada, H. Placental alkaline phosphatase as a tumor marker for primary intracranial germinoma. J. Neurosurg. 2009, 710–720. [Google Scholar]
- Horwich, A.; Tucker, D.F.; Peckham, M.J. Placental alkaline phosphatase as a tumour marker in seminoma using the h17 e2 monoclonal antibody assay. Br. J. Cancer 1985, 51, 625–629. [Google Scholar] [CrossRef] [PubMed]
- De Broe, M.E.; Pollet, D.E. Multicenter evaluation of human placental alkaline phosphatase as a possible tumor-associated antigen in serum. Clin. Chem. 1988, 34, 1995–1999. [Google Scholar]
- Badcock, G.; Pigott, C.; Goepel, J.; Andrews, P.W. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 1999, 59, 4715–4719. [Google Scholar]
- Schopperle, W.M.; Kershaw, D.B.; DeWolf, W.C. Human embryonal carcinoma tumor antigen, gp200/gctm-2, is podocalyxin. Biochem. Biophys. Res. Commun. 2003, 300, 285–290. [Google Scholar] [CrossRef]
- Andrews, P.W.; Banting, G.; Damjanov, I.; Arnaud, D.; Avner, P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma 1984, 3, 347–361. [Google Scholar] [CrossRef]
- Giwercman, A.; Andrews, P.W.; Jørgensen, N.; Müller, J.; Graem, N.; Skakkebaek, N.E. Immunohistochemical expression of embryonal marker tra-1-60 in carcinoma in situ and germ cell tumors of the testis. Cancer 1993, 72, 1308–1314. [Google Scholar] [CrossRef]
- Lajer, H.; Daugaard, G.; Andersson, A.-M.M.; Skakkebæk, N.E.; Skakkebaek, N.E. Clinical use of serum tra-1-60 as tumor marker in patients with germ cell cancer. Int. J. Cancer 2002, 100, 244–246. [Google Scholar] [CrossRef]
- Murray, M.J.; Huddart, R.A.; Coleman, N. The present and future of serum diagnostic tests for testicular germ cell tumours. Nat. Rev. Urol. 2016, 13, 715. [Google Scholar] [CrossRef]
- Boccellino, M.; Vanacore, D.; Zappavigna, S.; Cavaliere, C.; Rossetti, S.; D’Aniello, C.; Chieffi, P.; Amler, E.; Buonerba, C.; Di Lorenzo, G.; et al. Testicular cancer from diagnosis to epigenetic factors. Oncotarget 2017, 8, 104654–104663. [Google Scholar] [CrossRef]
- Diaz, L.A.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- Ellinger, J.; Wittkamp, V.; Albers, P.; Perabo, F.G.E.; Mueller, S.C.; von Ruecker, A.; Bastian, P.J. Cell-free circulating DNA: Diagnostic value in patients with testicular germ cell cancer. J. Urol. 2009, 181, 363–371. [Google Scholar] [CrossRef]
- Ellinger, J.; Albers, P.; Perabo, F.G.; Müller, S.C.; von Ruecker, A.; Bastian, P.J. Cpg island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J. Urol. 2009, 182, 324–329. [Google Scholar] [CrossRef]
- Mego, M.; van Agthoven, T.; Gronesova, P.; Chovanec, M.; Miskovska, V.; Mardiak, J.; Looijenga, L.H. Clinical utility of plasma mir-371a-3p in germ cell tumors. J. Cell. Mol. Med. 2019, 23, 1128–1136. [Google Scholar] [PubMed]
- Fendler, A.; Stephan, C.; Yousef, G.M.; Kristiansen, G.; Jung, K. The translational potential of micrornas as biofluid markers of urological tumours. Nat. Rev. Urol. 2016, 13, 734–752. [Google Scholar] [CrossRef] [PubMed]
- Landhuis, E. Glycobiology: Sweet success. Nature 2017, 547, 127–129. [Google Scholar] [CrossRef] [Green Version]
- RodrÍguez, E.; Schetters, S.T.T.; van Kooyk, Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol. 2018, 18, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Kumar, V.; Nordstrøm, L.U.; Feng, L.; Takeuchi, H.; Hao, H.; Luca, V.C.; Garcia, K.C.; Stanley, P.; Wu, P.; et al. Inhibition of delta-induced notch signaling using fucose analogs. Nat. Chem. Biol. 2017, 14, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, R.; Cai, K.; He, H.; Liu, Y.; Yen, J.; Wang, Z.; Xu, M.; Sun, Y.; Zhou, X.; et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 2017, 13, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Beatson, R.; Tajadura-Ortega, V.; Achkova, D.; Picco, G.; Tsourouktsoglou, T.-D.; Klausing, S.; Hillier, M.; Maher, J.; Noll, T.; Crocker, P.R.; et al. The mucin muc1 modulates the tumor immunological microenvironment through engagement of the lectin siglec-9. Nat. Immunol. 2016, 17, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the swiss-prot database. BBA-Gen. Subj. 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Hakomori, S. Glycosylation defining cancer malignancy: New wine in an old bottle. Proc. Acad. Sci. Natl. USA 2002, 99, 10231–10233. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.; Murphy, B.T.; Boyce, S.; Flynn, L.; Gilgunn, S.; O’Rourke, C.J.; Rooney, C.; Stöckmann, H.; Walsh, A.L.; Finn, S.; et al. Integrating biomarkers across omic platforms: An approach to improve stratification of patients with indolent and aggressive prostate cancer. Mol. Oncol. 2018, 12, 1513–1525. [Google Scholar] [CrossRef]
- Kelly, L.S.; Birken, S.; Puett, D. Determination of hyperglycosylated human chorionic gonadotropin produced by malignant gestational trophoblastic neoplasias and male germ cell tumors using a lectin-based immunoassay and surface plasmon resonance. Mol. Cel. Endocrinol. 2007, 260–262, 33–39. [Google Scholar] [CrossRef]
- Valmu, L.; Alfthan, H.; Hotakainen, K.; Birken, S.; Stenman, U.H. Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography—Electrospray mass spectrometry. Glycobiology 2006, 16, 1207–1218. [Google Scholar] [CrossRef]
- Lempiäinen, A.; Sankila, A.; Hotakainen, K.; Haglund, C.; Blomqvist, C.; Stenman, U.H. Expression of human chorionic gonadotropin in testicular germ cell tumors. Urol. Oncol. 2014, 32, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Lempiäinen, A.; Hotakainen, K.; Blomqvist, C.; Alfthan, H.; Stenman, U.-H. Hyperglycosylated human chorionic gonadotropin in serum of testicular cancer patients. Clin. Chem. 2012, 58, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Ruoslahti, E.; Engvall, E.; Pekkala, A.; Seppälä, M. Developmental changes in carbohydrate moiety of human alpha-fetoprotein. Int. J. Cancer 1978, 22, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Breborowicz, J. Microheterogeneity of human alphafetoprotein. Tumor Biol. 1988, 9, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Kojima, T.; Miyanaga, N.; Hattori, K.; Hinotsu, S.; Shimazui, T.; Akaza, H. Lectin-reactive alpha-fetoprotein as a marker for testicular tumor activity. Intl. J. Urol. 2005, 12, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Kayser, K.; Hoeft, D.; Hufnagl, P.; Caselitz, J.; Zick, Y.; André, S.; Kaltner, H.; Gabius, H.J. Combined analysis of tumor growth pattern and expression of endogenous lectins as a prognostic tool in primary testicular cancer and its lung metastases. Histol. Histopathol. 2003, 18, 771–779. [Google Scholar]
- Kamoto, T.; Satomura, S.; Yoshiki, T.; Okada, Y.; Henmi, F.; Nishiyama, H.; Kobayashi, T.; Terai, A.; Habuchi, T.; Ogawa, O. Lectin-reactive α-fetoprotein (afp-l3%) curability and prediction of clinical course after treatment of non-seminomatous germ cell tumors. Jpn. J. Clin. Oncol. 2002, 32, 472–476. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Jin, J.; Park, J.; Yu, S.J.; Yoon, J.-H.; Kim, Y. Measurement of glycosylated alpha-fetoprotein improves diagnostic power over the native form in hepatocellular carcinoma. PLoS ONE 2014, 9, e110366. [Google Scholar] [CrossRef]
- Marrink, J.; Sleijfer, D.T.; de Vries, E.G.E.; Schraffordt Koops, H. Alpha-fetoprotein-lectin binding as a marker of tumour activity or liver damage. Eur. J. Cancer Clin. Oncol. 1990, 26, 969–972. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Suzuki, Y.; Igarashi, K.; Saitoh, A.; Oguro, M.; Yokota, T.; Mori, S.; Suda, T.; Isemura, M.; Asakura, H. Carbohydrate structures of human α-fetoprotein of patients with hepatocellular carcinoma: Presence of fucosylated and non-fucosylated triantennary glycans. Br. J. Cancer 1993, 67, 486–492. [Google Scholar] [CrossRef]
- Johnson, P.J.; Poon, T.C.; Hjelm, N.M.; Ho, C.S.; Ho, S.K.; Welby, C.; Stevenson, D.; Patel, T.; Parekh, R.; Townsend, R.R. Glycan composition of serum alpha-fetoprotein in patients with hepatocellular carcinoma and non-seminomatous germ cell tumour. Br. J. Cancer 1999, 81, 1188–1195. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Poon, T.; Hjelm, N.; Ho, C.; Blake, C.; Ho, S. Structures of disease-specific serum alpha-fetoprotein isoforms. Br. J. Cancer 2000, 83, 1330. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Gascón, N.; Tabernero, J.M.; Germà, J.R.; González, F. Alpha-fetoprotein-concanavalin a binding as a marker to discriminate between germ cell tumours and liver diseases. Eur. J. Cancer 1995, 31, 2239–2242. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Tajiri, T.; Souzaki, R.; Tatsuta, K.; Higashi, M.; Izaki, T.; Takahashi, Y.; Taguchi, T. Diagnostic value of lectin reactive alpha-fetoprotein for neoinfantile hepatic tumors and malignant germ cell tumors: Preliminary study. J. Pediatr. Hematol./Oncol. 2008, 30, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Waseda, Y.; Tanaka, H.; Nakagomi, K.; Goto, S.; Ido, A. A case of hereditary persistence of α-fetoprotein: Diagnostic usefulness of the subfraction profile. Jpn. J. Clin. Oncol. 2012, 42, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Ohkouchi, T.; Wakui, Y.; Minobe, S.; Watari, H.; Shimizu, K.; Satomura, S.; Sakuragi, N. A study on the microheterogeneity of alpha-fetoproteins produced by yolk sac and germ cell tumors. Acta Obstetricia et Gynecologica Scandinavica 2003, 82, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Narita, T.; Hatakeyama, S.; Yoneyama, T.; Narita, S.; Yamashita, S.; Mitsuzuka, K.; Sakurai, T.; Kawamura, S.; Tochigi, T.; Takahashi, I.; et al. Clinical implications of serum n-glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors. Cancer Med. 2017, 6, 739–748. [Google Scholar] [CrossRef]
- Kosmehl, H.; Langbein, L.; Katenkamp, D. Lectin histochemistry of human testicular germ cell tumors. Neoplasma 1989, 36, 29–39. [Google Scholar]
- Malmi, R.; Söderström, K.O. Lectin binding to carcinoma-in situ cells of the testis. A comparative study of cis germ cells and seminoma cells. Virchows Archiv. 1988, 413, 69–75. [Google Scholar] [CrossRef]
- Teshima, S.; Hirohashi, S.; Shimosato, Y.; Kishi, K.; Ino, Y.; Matsumoto, K.; Yamada, T. Histochemically demonstrable changes in cell surface carbohydrates of human germ cell tumors. Lab. Investig. J. Tech. Methods Pathol. 1984, 50, 271–277. [Google Scholar]
- Zou, X.; Yoshida, M.; Nagai-Okatani, C.; Iwaki, J.; Matsuda, A.; Tan, B.; Hagiwara, K.; Sato, T.; Itakura, Y.; Noro, E.; et al. A standardized method for lectin microarray-based tissue glycome mapping. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rajpert-De Meyts, E.; Poll, S.N.; Goukasian, I.; Jeanneau, C.; Herlihy, A.S.; Bennett, E.P.; Skakkebæk, N.E.; Clausen, H.; Giwercman, A.; Mandel, U. Changes in the profile of simple mucin-type o-glycans and polypeptide galnac-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation. Virchows Archiv. 2007, 451, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, S.; Kyan, A.; Yamamoto, H.; Okamoto, A.; Sugiyama, N.; Suzuki, Y.; Yoneyama, T.; Hashimoto, Y.; Koie, T.; Yamada, S. Core 2 n-acetylglucosaminyltransferase-1 expression induces aggressive potential of testicular germ cell tumor. Int. J. Cancer 2010, 127, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Kyan, A.; Kamimura, N.; Hagisawa, S.; Hatakeyama, S.; Koie, T.; Yoneyama, T.; Arai, Y.; Nakagawa, H.; Nishimura, S.I.; Miyoshi, E.; et al. Positive expressions of n-acetylglucosaminyltransferase-v (gnt-v) and β1-6 branching n-linked oligosaccharides in human testicular germ cells diminish during malignant transformation and progression. Int. J. Oncol. 2008, 32, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.S.; Kozak, M.; Walker, T.; Pierce, M.; Puett, D. Lectin immunoassays using antibody fragments to detect glycoforms of human chorionic gonadotropin secreted by choriocarcinoma cells. Anal. Biochem. 2005, 338, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.C.; Brinck, U.; Schauer, A.; Gabius, H.J. Differential binding activities of lectins and neoglycoproteins in human testicular tumors. Urol. Res. 2000, 28, 62–68. [Google Scholar] [CrossRef]
- Gupta, G.S.; Gupta, A.; Gupta, R.K. Animal Lectins: Form, Function and Clinical Applications. Animal Lectins: Form, Function and Clinical Applications; Springer-Verlag: Heidelberg, Germany, 2012; pp. 1–1108. ISBN 9783709110. [Google Scholar] [CrossRef]
- Devouassoux-Shisheboran, M.; Deschildre, C.; Mauduit, C.; Berger, G.; Mejean-Lebreton, F.; Bouvier, R.; Droz, J.; Fénichel, P.; Benahmed, M. Expression of galectin-3 in gonads and gonadal sex cord stromal and germ cell tumors. Oncol. Rep. 2006, 16, 335–340. [Google Scholar] [CrossRef]
- Deschildre, C.; Ji, J.W.; Chater, S.; Dacheux, F.; Selva, J.; Albert, M.; Bailly, M.; Hatey, F.; Benahmed, M. Expression of galectin-3 and its regulation in the testes. Int. J. Androl. 2007, 30, 28–40. [Google Scholar] [CrossRef]
TC Biomarkers | Half-Life | Normal Values | Tumour Type | Glycoprotein | Subunits |
---|---|---|---|---|---|
AFP | 5–7 d | < 40 ng/mL | EC, T, YST | 1 N-glycan 1 O-glycan | 1 |
hCG | 24–36 h | < 5 mIU/mL (0.6 ng/mL) | Seminoma, TC choriocarcinoma, EC | 4 N-glycans 4 O-glycans | 2 |
LDH | varies | 1.5–3.2 nkat/mL | Any | - | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hires, M.; Jane, E.; Mego, M.; Chovanec, M.; Kasak, P.; Tkac, J. Glycan Analysis as Biomarkers for Testicular Cancer. Diagnostics 2019, 9, 156. https://doi.org/10.3390/diagnostics9040156
Hires M, Jane E, Mego M, Chovanec M, Kasak P, Tkac J. Glycan Analysis as Biomarkers for Testicular Cancer. Diagnostics. 2019; 9(4):156. https://doi.org/10.3390/diagnostics9040156
Chicago/Turabian StyleHires, Michal, Eduard Jane, Michal Mego, Michal Chovanec, Peter Kasak, and Jan Tkac. 2019. "Glycan Analysis as Biomarkers for Testicular Cancer" Diagnostics 9, no. 4: 156. https://doi.org/10.3390/diagnostics9040156
APA StyleHires, M., Jane, E., Mego, M., Chovanec, M., Kasak, P., & Tkac, J. (2019). Glycan Analysis as Biomarkers for Testicular Cancer. Diagnostics, 9(4), 156. https://doi.org/10.3390/diagnostics9040156