Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review
Abstract
:1. Introduction
2. Radiation-Induced Lung Injury
3. Promising Circulating Biomarkers in Radiotherapy Monitoring
3.1. Pro- and Anti-Inflammatory Cytokines
3.1.1. Transforming Growth Factor-β
3.1.2. Interleukins
3.1.3. Tumor Necrosis Factor-α
3.2. Indicators of Pneumocytes Damage
3.2.1. Protein A and D of the Surfactant
3.2.2. Glycoprotein Krebs von den Lugen 6
4. MicroRNAs in Radiotherapy
5. Future Perspective
6. Executive Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A549 | culture of human lung carcinoma cell line |
BET | bromodomain and extraterminal domain |
BMP | bone marrow protein |
CT | computed tomography |
DDR | DNA damage response |
DNA | deoxyribonucleic acid |
DNA-PKcs | DNA-protein kinase catalytic subunit |
DSB | double-strand break |
ECM | extracellular matrix |
ED-A-FN | extradomain-A fibronectin |
G0/G1 | gap 0/gap 1 |
HIF | hypoxia-inducible factor |
IFN | interferon |
Il | interleukin |
IR | ionizing radiation |
KL-6 | glycoprotein Krebs von den Lugen-6 |
K-ras | Kirsten rat sarcoma |
MAPK | mitogen-activated protein kinase |
MMP | matrix metalloproteinases |
MUC1 | mucin 1 |
NFκB1 | nuclear factor κB1 |
NK | natural killer |
NO | nitric oxygen |
NSCLC | non-small cell lung carcinoma |
OS | overall survival |
PDGF | platelet-derived growth factor |
PI3K | phosphoinositide 3-kinase |
RILD | radiation-induced lung disease |
RILF | radiation-induced lung fibrosis |
RILI | radiation-induced lung injury |
ROS | reactive oxygen species |
RP | radiation-induced pneumonitis |
RT | radiotherapy |
SCC | squamous cell carcinoma |
SCLC | small cell lung carcinoma |
SENP1 | sentrin-specific protease 1 |
SNP | single nucleotide polymorphism |
SP | surfactant protein |
SSB | single-strand break |
surfactant | surface-active agent |
TGFβ | transforming growth factor β |
TNFα | tumor necrosis factor α |
TNM | TNM Classification of Malignant Tumors (tumor-lymph nodes-metastasis |
VCAN | versican |
WHO | World Health Organization |
References
- Cancer. Available online: http://archive.today/2020.07.03-074914/https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 29 June 2020).
- Du, L.; Ma, N.; Dai, X.; Yu, W.; Huang, X.; Xu, S.; Liu, F.; He, Q.; Liu, Y.; Wang, Q.; et al. Precise prediction of the radiation pneumonitis in lung cancer: An explorative preliminary mathematical model using genotype information. J. Cancer 2020, 11, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Lovly, C.M. Neoplasms of the lung. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- Woodworth, A.L.; Schuler, E. The respiratory system. In Laposata’s Laboratory Medicine: Diagnosis of Disease in the Clinical Laboratory, 3th ed.; Laposata, M., Ed.; McGraw-Hill: New York, NY, USA, 2019. [Google Scholar]
- Stoeckel, D.A.; Matuschak, G.M. Lung cancer. In Respiratory: An. Integrated Approach to Disease; Lechner, A.J., Matuschak, G.M., Brink, D.S., Eds.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Inamura, K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front. Oncol. 2017, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, T.; O’Reilly, P.; Antony, V.B.; Gaggar, A.; Thannickal, V.J. Matrix Remodeling in Pulmonary Fibrosis and Emphysema. Am. J. Respir. Cell Mol. Biol. 2016, 54, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starek, A.; Podolak, I. Carcinogenic effect of tobacco smoke. Rocz. Panstw. Zakl. Hig. 2009, 60, 299–310. [Google Scholar] [PubMed]
- NCCN. National Comprehensive Cancer Network Guidelines, NSCLC, Principles of Radiation Therapy. Available online: http://archive.today/2020.07.03-083935/https://www.nccn.org/professionals/physician_gls/default.aspx (accessed on 30 June 2020).
- Lu, Z.; Tang, Y.; Luo, J.; Zhang, S.; Zhou, X.; Fu, L. Advances in targeting the transforming growth factor β1 signaling pathway in lung cancer radiotherapy (Review). Oncol. Lett. 2017, 14, 5681–5687. [Google Scholar] [CrossRef] [Green Version]
- Long, L.; Zhang, X.; Bai, J.; Li, Y.; Wang, X.; Zhou, Y. Tissue-specific and exosomal miRNAs in lung cancer radiotherapy: From regulatory mechanisms to clinical implications. Cancer Manag. Res. 2019, 11, 413–4424. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liao, X.; Chen, X.; Li, D.; Sun, J.; Liao, R. Regulation of miRNAs affects radiobiological response of lung cancer stem cells. Biomed. Res. Int. 2015, 2015, 851841. [Google Scholar] [CrossRef]
- Salem, A.; Mistry, H.; Backen, A.; Hodgson, C.; Koh, P.; Dean, E.; Priest, L.; Haslett, K.; Trigonis, I.; Jackson, A.; et al. Cell Death, Inflammation, Tumor Burden, and Proliferation Blood Biomarkers Predict Lung Cancer Radiotherapy Response and Correlate With Tumor Volume and Proliferation Imaging. Clin. Lung Cancer 2018, 19, 239–248.e7. [Google Scholar] [CrossRef] [Green Version]
- Walls, G.; Hanna, G.; Qi, F.; Zhao, S.; Xia, J.; Ansari, M.; Landau, D. Predicting outcomes from radical radiotherapy for non-small cell lung cancer: A systematic review of the existing literature. Front. Oncol. 2018, 8, 433. [Google Scholar] [CrossRef]
- Fu, Z.Z.; Peng, Y.; Cao, L.Y.; Chen, Y.S.; Li, K.; Fu, B.H. Correlations Between Serum IL-6 Levels and Radiation Pneumonitis in Lung Cancer Patients: A Meta-Analysis. J. Clin. Lab. Anal. 2016, 30, 145–154. [Google Scholar] [CrossRef]
- Amini, P.; Saffar, H.; Nourani, M.R.; Motevaseli, E.; Najafi, M.; Ali Taheri, R.; Qazvini, A. Curcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats. Int. J. Mol. Cell Med. 2018, 7, 212–219. [Google Scholar] [PubMed]
- He, X.; Yang, A.; Mcdonald, D.; Riemer, E.; Vanek, K.; Schulte, B.; Wang, G. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017, 8, 69797–69807. [Google Scholar] [CrossRef] [PubMed]
- Mets, O.; Smthuis, R. Lung—Cancer TNM 8th Edition. Available online: http://archive.today/2020.07.03-083910/https://radiologyassistant.nl/chest/lung-cancer-tnm-8th-edition (accessed on 29 June 2020).
- Moertl, S.; Mutschelknaus, L.; Heider, T.; Atkinson, M.J. MicroRNAs as novel elements in personalized radiotherapy. Transl. Cancer Res. 2016, 5 (Suppl. 6), S1262–S1269. [Google Scholar] [CrossRef]
- Yu, H.M.; Liu, Y.F.; Cheng, Y.F.; Hu, L.K.; Hou, M. Effects of Rhubarb Extract on Radiation-Induced Lung Toxicity Via Decreasing Transforming Growth Factor-β1 and Interleukin-6 in Lung Cancer Patients Treated with Radiotherapy. Lung Cancer 2008, 59, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Berman, A.T. Radiation Pneumonitis: Old Problem, New Tricks. Cancers 2018, 10, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.; Liang, N.; Xie, J.; Luo, H.; Qiao, L.; Zhang, J.; Wang, D.; Zhang, J. Pulmonary toxicity generated from radiotherapeutic treatment of thoracic malignancies. Oncol. Lett. 2017, 14, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Jackson, I.L.; Zhang, Y.; Bentzen, S.M.; Hu, J.; Zhang, A.; Vujaskovic, Z. Pathophysiological mechanisms underlying phenotypic differences in pulmonary radioresponse. Sci. Rep. 2016, 6, 36579. [Google Scholar] [CrossRef]
- Veiga, C.; Chandy, E.; Jacob, J.; Yip, N.; Szmul, A.; Landau, D.; McClelland, J. Investigation of the evolution of radiation-induced lung damage using serial CT imaging and pulmonary function tests. Radiother. Oncol. 2020, 148, 89–96. [Google Scholar] [CrossRef]
- Yu, H.H.; Chengchuan Ko, E.; Chang, C.L.; Yuan, K.S.; Wu, A.; Shan, Y.S.; Wu, S.Y. Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues. Mar. Drugs 2018, 16, 392. [Google Scholar] [CrossRef] [Green Version]
- Krawczuk-Rybak, M. Late effects of treatment of childhood cancer—On the basis of the literature and own experience. Med. Wieku Rozwoj. 2013, 17, 130–136. [Google Scholar]
- Larici, A.R.; Del Ciello, A.; Maggi, F.; Immacolata Santoro, S.; Meduri, B.; Valentini, V.; Giordano, A.; Bonomo, L. Lung abnormalities at multimodality imaging after radiation therapy for non–small cell lung cancer. Radiographics 2011, 31, 771–789. [Google Scholar] [CrossRef] [PubMed]
- Abravan, A.; Eide, H.A.; Knudtsen, I.S.; Løndalen, A.M.; Helland, Å.; Malinen, E. Assessment of Pulmonary 18F-FDG-PET Uptake and Cytokine Profiles in Non-Small Cell Lung Cancer Patients Treated with Radiotherapy and Erlotinib. Clin. Transl. Radiat. Oncol. 2017, 4, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shin, Y.K.; Zheng, Z.; Zhu, L.; Lee, I.J. Risk of Radiation-Induced Pneumonitis After Helical and Static-Port Tomotherapy in Lung Cancer Patients and Experimental Rats. Radiat. Oncol. 2015, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Ding, G.; Xu, W.; Lu, Y.; Ge, H.; Jiang, Y.; Chen, X.; Li, Y. Prognostic Biological Factors of Radiation Pneumonitis after Stereotactic Body Radiation Therapy Combined with Pulmonary Perfusion Imaging. Exp. Ther. Med. 2019, 17, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, F.; Li, Z.; Mei, H.; Wang, Y.; Ma, H.; Shi, L.; Huan, A.; Zhang, T.; Lin, Z.; et al. Pharmacological targeting of BET proteins attenuates radiation-induced lung fibrosis. Sci. Rep. 2018, 8, 998. [Google Scholar] [CrossRef] [Green Version]
- Komaki, R.; Travis, E.L.; Cox, J.D. The lung, pleura, and thymus. In Radiation Oncology: Rationale, Technique, Results, 9th ed.; Cox, J.D., Ang, K.K., Eds.; Elsevier Health Sciences: Philadelphia, PA, USA, 2009; pp. 424–427. [Google Scholar]
- Goldman, L.; Schafer, A.I. Goldman’s Cecil Medicine, 24th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2012; p. 579. [Google Scholar]
- Haschek, W.M.; Rousseaux, C.G.; Wallig, M.A. Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1462–1464. [Google Scholar]
- Belkina, A.C.; Nikolajczyk, B.S.; Denis, G.V. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol. 2013, 190, 3670–3678. [Google Scholar] [CrossRef] [Green Version]
- Cellini, F.; Morganti, A.G.; Genovesi, D.; Silvestris, N.; Valentini, V. Role of microRNA in response to ionizing radiations: Evidences and potential impact on clinical practice for radiotherapy. Molecules 2014, 19, 5379–5401. [Google Scholar] [CrossRef]
- Metheetrairut, C.; Slack, F.J. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr. Opin. Genet. Dev. 2013, 23, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int. J. Mol. Sci. 2020, 21, 4569. [Google Scholar] [CrossRef]
- Kramer, E.L.; Clancy, J.P. TGFβ as a therapeutic target in cystic fibrosis. Expert Opin. Ther. Targets 2018, 22, 177–189. [Google Scholar] [CrossRef]
- Stępień-Wyrobiec, O.; Hrycek, A.; Wyrobiec, G. Transforming growth factor beta (TGF-beta): Its structure, function, and role in the pathogenesis of systemic lupus erythematosus. Postepy Hig. Med. Dosw. 2008, 62, 688–693. [Google Scholar]
- Wang, Y.; Wang, X.; Wang, X.; Zhang, D.; Jiang, S. Effect of transforming growth factor-β1 869C/T polymorphism and radiation pneumonitis. Int. J. Clin. Exp. Pathol. 2015, 8, 2835–2839. [Google Scholar]
- Gonzalez-Gonzalez, F.J.; Chandel, N.S.; Jain, M.; Budinger, G.R.S. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl. Res. 2017, 190, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Tsoutsou, P.G.; Koukourakis, M.I. Radiation Pneumonitis and Fibrosis: Mechanisms Underlying Its Pathogenesis and Implications for Future Research. Int. J. Radiat. Oncol. 2006, 66, 1281–1293. [Google Scholar] [CrossRef]
- Kong, F.M.; Ao, X.; Wang, L.; Lawrence, T.S. The Use of Blood Biomarkers to Predict Radiation Lung Toxicity: A Potential strategy to individualize thoracic radiation therapy. Cancer Control 2008, 15, 140–150. [Google Scholar] [CrossRef]
- Wang, S.; Campbell, J.; Stenmark, M.H.; Zhao, J.; Stanton, P.; Matuszak, M.M.; Ten Haken, R.K.; Kong, F.S. Plasma Levels of IL-8 and TGF-β1 Predict Radiation-Induced Lung Toxicity in Non-Small Cell Lung Cancer: A Validation Study. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Provatopoulou, X.; Athanasiou, E.; Gounaris, A. Predictive markers of radiation pneumonitis. Anticancer Res. 2008, 28, 2421–2432. [Google Scholar] [PubMed]
- Palmer, J.D.; Zaorsky, N.G.; Witek, M.; Lu, B. Molecular markers to predict clinical outcome and radiation induced toxicity in lung cancer. J. Thorac. Dis. 2014, 6, 387–398. [Google Scholar] [PubMed]
- Crohns, M.; Saarelainen, S.; Laine, S.; Poussa, T.; Alho, H.; Kellokumpu-Lehtinen, P. Cytokines in Bronchoalveolar Lavage Fluid and Serum of Lung Cancer Patients During Radiotherapy—Association of Interleukin-8 and VEGF with Survival. Cytokine 2010, 50, 30–36. [Google Scholar] [CrossRef]
- Gilowska, I. CXCL8 (Interleukina 8)—Główny mediator stanu zapalnego w przewlekłej obturacyjnej chorobie płuc? Postepy Hig. Med. Dosw. 2014, 68, 842–850. [Google Scholar] [CrossRef]
- Arpin, D.; Perol, D.; Blay, J.Y.; Falchero, L.; Line Claude, L.; Vuillermoz-Blas, S.; Martel-Lafay, I.; Ginestet, C.; Alberti, L.; Nosov, D.; et al. Early Variations of Circulating Interleukin-6 and Interleukin-10 Levels During Thoracic Radiotherapy Are Predictive for Radiation Pneumonitis. J. Clin. Oncol. 2005, 23, 8748–8756. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kalita, B.; Bajaj, S.; Prakash, H.; Singh, A.K.; Gupta, M.L. A Combination of Podophyllotoxin and Rutin Alleviates Radiation-Induced Pneumonitis and Fibrosis through Modulation of Lung Inflammation in Mice. Front. Immunol. 2017, 8, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Yang, S.; Zhang, M.; Zhang, Z.; Zhang, S.B.; Wu, B.; Hong, J.; Zhang, W.; Lin, J.; Okunieff, P.; et al. Triptolide mitigates radiation-induced pneumonitis via inhibition of alveolar macrophages and related inflammatory molecules. Oncotarget 2017, 8, 45133–45142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Chen, S.H.; Lu, H.J.; Tan, Y. Predictive values of TNF-beta1, IL-6, IL-10 for radiation pneumonitis. Int. J. Radiat. Res. 2016, 14, 173–179. [Google Scholar]
- Refahi, S.; Pourissa, M.; Zirak, M.R.; Hadadi, G. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid. J. Med. Phys. 2015, 40, 95–101. [Google Scholar] [PubMed]
- Zhang, M.; Qian, J.; Xing, X.; Kong, F.-M.; Zhao, L.; Chen, M.; Theodore, S.; Lawrence, T.D. Inhibition of the Tumor Necrosis Factor-α Pathway is Radioprotective for the Lung. Clin. Cancer Res. 2008, 14, 1868–1876. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, P.M.; Shukla, S.; Ray, P.; Mehra, R.; Nyati, M.K.; Lawrence, T.S.; Ray, D. Involvement of p38-βTrCP-Tristetraprolin-TNFα axis in radiation pneumonitis. Oncotarget 2017, 8, 47767–47779. [Google Scholar] [CrossRef]
- Christofidou-Solomidou, M.; Pietrofesa, R.A.; Arguiri, E.; Koumenis, C.; Segal, R. Radiation Mitigating Properties of Intranasally Administered KL4 Surfactant in a Murine Model of Radiation-Induced Lung Damage. Radiat. Res. 2017, 188, 491–504. [Google Scholar] [CrossRef]
- Yamagishi, T.; Kodaka, N.; Kurose, Y.; Watanabe, K.; Nakano, C.; Kishimoto, K.; Oshio, T.; Niitsuma, K.; Matsuse, H. Analysis of predictive parameters for the development of radiation-induced pneumonitis. Ann. Thorac. Med. 2017, 2, 252–258. [Google Scholar]
- Yamashita, H.; Takahashi, W.; Nakagawa, K. Radiation pneumonitis after stereotactic radiation therapy for lung cancer. World J. Radiol. 2014, 6, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Jiang, J.; Li, Y.; Zhang, L.; Li, Z.; Xian, J.; Jiang, C.; Diao, Y.; Su, X.; Xu, H.; et al. Genetic variants of SP-D confer susceptibility to radiation pneumonitis in lung cancer patients undergoing thoracic radiation therapy. Cancer Med. 2019, 8, 2599–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, H.; Aibe, N.; Nakamura, S.; Sasaki, N.; Suzuki, G.; Yoshida, K.; Yamada, K.; Koizumi, M.; Arimoto, T.; Iwasaki, Y.; et al. Measurement of exhaled nitric oxide and serum surfactant protein D levels for monitoring radiation pneumonitis following thoracic radiotherapy. Oncol. Lett. 2017, 14, 4190–4196. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Soejima, T.; Matsumoto, A.; Maruta, T.; Yamada, K.; Ota, Y.; Kawabe, T.; Nishimura, H.; Sakai, E.; Ejima, Y.; et al. Clinical Significance of Serum Pulmonary Surfactant Proteins A and D for the Early Detection of Radiation Pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 301–307. [Google Scholar] [CrossRef]
- Esteves, F.; Calé, S.S.; Badura, R.; De Boer, M.G.; Maltez, F.; Calderón, E.J.; Van der Reijden, T.J.; Márquez-Martín, E.F.; Antunes, F.; Matos, O. Diagnosis of Pneumocystis Pneumonia: Evaluation of Four Serologic Biomarkers. Clin. Microbiol. Infect. 2015, 21, 379.e1–379.e10. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Kato, T.; Abe, K.; Hanaoka, T.; Yano, Y.; Kurosaki, A.; Yasuda, M.; Sekino, T.; Fujiwara, K.; Hasegawa, K. Pre-operative evaluation of circulating KL-6 levels as a biomarker for epithelial ovarian carcinoma and its correlation with tumor MUC1 expression. Oncol. Lett. 2017, 14, 776–786. [Google Scholar] [CrossRef]
- Ohyabu, N.; Hinou, H.; Matsushita, T.; Izumi, R.; Shimizu, H.; Kawamoto, K.; Numata, Y.; Togame, H.; Takemoto, H.; Kondo, H.; et al. An Essential Epitope of anti-MUC1 Monoclonal Antibody KL-6 Revealed by Focused Glycopeptide Library. J. Am. Chem. Soc. 2009, 131, 17102–17109. [Google Scholar] [CrossRef]
- Jeremic, B. Advances in Radiation Oncology in Lung Cancer; Springer Science & Business Media: Berlin, Germany, 2011; pp. 121–122. [Google Scholar]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Tanaka, S.; Nishino, R.; Yoshioka, K.; Ohshimo, S.; Fujitaka, K.; Ohnishi, H.; Hamada, H.; et al. Usefulness of monitoring the circulating Krebs von den Lungen-6 levels to predict the clinical outcome of patients with advanced non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Int. J. Cancer 2008, 122, 2612–2620. [Google Scholar] [CrossRef]
- Iwata, H.; Shibamoto, Y.; Baba, F.; Sugie, C.; Ogino, H.; Murata, R.; Yanagi, T.; Otsuka, S.; Kosaki, K.; Murai, T.; et al. Correlation between the serum KL-6 level and the grade of radiation pneumonitis after stereotactic body radiotherapy for stage I lung cancer or small lung metastasis. Radiother. Oncol. 2011, 101, 267–270. [Google Scholar] [CrossRef]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A.; Tsurugai, Y.; Sanuki, N.; Enomoto, T.; Shinkai, M.; Mizuno, T.; Aoki, Y.; Oku, Y.; Akiba, T.; Hara, Y.; et al. Clarithromycin mitigates radiation pneumonitis in patients with lung cancer treated with stereotactic body radiotherapy. J. Thorac. Dis. 2018, 10, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.S.; Taylor, J.; Valentine, H.R.; Irlam, J.; Eustace, A.; Hoskin, P.J.; Miller, C.J.; West, C.M.L. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br. J. Cancer 2012, 107, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.P.; He, C.Y.; Zhu, Z.T. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget 2017, 8, 23675–23689. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhao, J.; Hu, W.; Yang, G.; Yu, H.; Wang, R.; Wang, L.; Zhang, G.; Fu, W.; Dai, L.; et al. Disturbance of the let-7/LIN28 double-negative feedback loop is associated with radio- and chemo-resistance in non-small cell lung cancer. PLoS ONE 2017, 12, e0172787. [Google Scholar] [CrossRef]
- Weidhaas, J.B.; Babar, I.; Nallur, S.M.; Trang, P.; Roush, S.; Boehm, M.; Gillespie, E.; Slack, F.J. MicroRNAs as Potential Agents to Alter Resistance to Cytotoxic Anticancer Therapy. Cancer Res. 2007, 67, 11111–11116. [Google Scholar] [CrossRef] [Green Version]
- Arora, H.; Qureshi, R.; Jin, S.; Park, A.K.; Park, W.Y. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp. Mol. Med. 2011, 43, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Grosso, S.; Doyen, J.; Parks, S.K.; Bertero, T.; Paye, A.; Cardinaud, B.; Gounon, P.; Lacas-Gervais, S.; Noël, A.; Pouysségur, J.; et al. MiR-210 Promotes a Hypoxic Phenotype and Increases Radioresistance in Human Lung Cancer Cell Lines. Cell Death Dis. 2013, 4, e544. [Google Scholar] [CrossRef]
- Lou, Y.L.; Guo, F.; Liuetal, F. MiR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol. Cell. Biochem. 2012, 370, 45–51. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, X.; Guo, H.; Wang, T.; Wei, L.; Zhang, Y.; Zhao, J.; Ma, X.; Zhang, N. MicroRNA-125a-5p modulates radioresistance in LTEP-a2 non-small cell lung cancer cells by targeting SIRT7. Cancer Biomark. 2020, 27, 39–49. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, T.; Li, G.; Guo, X.; Liu, X. Regulation of miR-125a expression by rs12976445 single-nucleotide polymorphism is associated with radiotherapy-induced pneumonitis in lung carcinoma patients. J. Cell. Biochem. 2019, 120, 4485–4493. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wang, H.; Liu, J.; Wang, Z.X. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol. Cell. Biochem. 2013, 372, 35–45. [Google Scholar] [CrossRef]
- Yamada, K.M.; Araki, M. Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci. 2001, 114, 2375–2382. [Google Scholar] [PubMed]
- Kwon, O.S.; Kim, K.T.; Lee, E.; Kim, M.; Choi, S.H.; Li, H.; Fornace, A.J., Jr.; Cho, J.H.; Lee, Y.S.; Lee, J.S.; et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE 2016, 11, e0154942. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Kim, J.J.; Byun, J.Y.; Kim, I.A. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells with Activation of K-Ras. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Wang, W.; Zhang, Z.B.; Zhao, J.; Tan, X.G.; Luo, J.C. Overexpression of miRNA-21 Promotes Radiation-Resistance of Non-Small Cell Lung Cancer. Radiat. Oncol. 2013, 8, 146. [Google Scholar] [PubMed] [Green Version]
- Balça-Silva, J.; Sousa Neves, S.; Gonçalves, A.C.; Abrantes, A.M.; Casalta-Lopes, J.; Botelho, M.F.; Sarmento-Ribeiro, A.B.; Silva, H.C. Effect of miR-34b overexpression on the radiosensitivity of non-small celllung cancer cell lines. Anticancer Res. 2012, 32, 1603–1609. [Google Scholar] [PubMed]
- Yang, H.; Tang, Y.; Guo, W.; Du, Y.; Wang, Y.; Li, P.; Zang, W.; Yin, X.; Wang, H.; Chu, H.; et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol. 2014, 35, 6557–6565. [Google Scholar] [CrossRef]
- Chen, G.; Yu, L.; Dong, H.; Liu, Z.; Sun, Y. MiR-182 Enhances Radioresistance in Non-Small Cell Lung Cancer Cells by Regulating FOXO3. Clin. Exp. Pharmacol. Physiol. 2019, 46, 137–143. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Ng, W.L.; Curran, W.J.; Wang, Y. Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1524–1529. [Google Scholar] [CrossRef]
Eight Edition TNM Staging System | Treatment Options | |||
---|---|---|---|---|
Stage IA1 | T1a | N0 | M0 | surgery alone |
Stage IA2 | T1b | N0 | M0 | |
Stage IA3 | T1c | N0 | M0 | |
Stage IB | T2a | N0 | M0 | <4 cm surgery alone |
>4 cm surgery followed by adjuvant chemotherapy | ||||
Stage IIA | T2b | N0 | M0 | Surgery followed by adjuvant chemotherapy |
There is no role of postoperative radiation therapy in patients following resection of stage I or II NSCLC with negative margins | ||||
Stage IIB | T1a-T2b | N1 | M0 | Patients with stage I and II disease who refuse or are not suitable candidates for surgery should be considered for radiation therapy with curative intent |
T3 | N0 | M0 | ||
Stage IIIA | T1-2b | N2 | M0 | N0 or N1 nodes—Surgery followed by adjuvant chemotherapy |
T3 | N1 | M0 | N2 or N3 nodes—No surgery, treatment with combined chemoradiation therapy | |
T4 | N0/N1 | M0 | The optimal treatment strategy has not been clearly defined; despite many potential treatment options, none yields a very high probability of cure; stage III is highly heterogeneous, and no single treatment approach can be recommended for all patients | |
Stage IIIB | T1-2b | N3 | M0 | |
T3/T4 | N0/N1 | M0 | ||
T3/T4 | N3 | M0 | ||
Stage IVA | Any T | Any N | M1a/M1b | Use of pain medications and the appropriate use of radiotherapy and systemic therapy, which may compromise of traditional cytotoxic chemotherapy, targeted therapy, and immunotherapy depending on the specific diagnosis and molecular subtype |
Stage IVB | Any T | Any N | M1c |
Biological Marker | Function in Radiation-Induced Lung Injury (RILI) | Research Studies | Conclusions | Reference |
---|---|---|---|---|
TGFβ1 | TGFβ stimulates the differentiation of fibroblasts into myofibroblasts and promotes goblet cell hyperplasia, subepithelial fibrosis, epithelial damage, and airway smooth muscle hypertrophy | Higher TGF-β 2w/pre ratio (the ratio between TGFβ plasma level before and two weeks after RT) is associated with higher risk of RILI; the persistent high level of TGFβ after therapy suggests the occurrence of symptoms of radiation-induced inflammation | TGFβ plasma levels may identify individuals at high risk for the development of RILI | [39,43,44,45,46,47] |
Il-6 | Il-6 holds effects on the regulation of cellular functions such as growth, proliferation, differentiation, metabolism, the acute-phase reaction, angiogenesis, hematopoiesis, and apoptosis | Higher concentrations of Il-6, before and after treatment, are connected with the development of inflammation; overproduction of Il-6 in the acute radiation-induced process is associated with the risk and occurrence of severe RP | Il-6 can be used as a predictive marker of the RP development | [15,43,44,46,48] |
Il-8 | Il-8 is a neutrophil-, basophil-, and T-lymphocyte-activator and chemoattractant; Il-8 induces collagen synthesis and cell proliferation and has an anti-inflammatory effect | Lower baseline level of Il-8 is associated with higher risk of RILI (patients without inflammatory symptoms have about 4 times higher levels of Il-8 than the group of patients with the presence of symptoms) | The evaluation of Il-8 before therapy can be a good predictor for the risk of complications | [13,45,46,48,49] |
Il-10 | Il-10 downregulates inflammation by inhibiting the production of pro-inflammatory cytokines and reducing the activity of antigen-presenting cells | Levels of Il-10 are remained low in patients with RP throughout the treatment; a consistent increase of circulating Il-10 is observed at 2 weeks of treatment in patients without RP | The evaluation of Il-10 throughout the treatment may be a good predictor of RP | [50] |
TNFα | TNFα stimulates the fibroblasts growth, secretion of ECM proteins, production of collagenases, and activation of cascades of other pro-inflammatory cytokines (IL-1, IL-6, IFN) | The early release of TNFα is a critical factor after lung irradiation; blocking of TNFα signaling via knockdown or using antisense oligonucleotides against the TNFα receptor can protect mouse lung from radiation injury; treatment with a recombinant TNFα receptor results in the regression of fibrinolytic lesions within damaged lungs | TNFα may indicate RP in its initial phase; correlation between the occurrence of RILI and the level of TNFα | [43,53,54,55,56] |
SP-A and SP-D | Degradation of type II pneumocytes results in facilitated passage of SP-A and SP-D to the systemic circulation and increased levels of circulating SPs; SPs stimulate macrophages to production of pro-inflammatory cytokines (TGFβ, interleukins) and ROS | Serum and plasma levels of SP-D are elevated in patients with RP | Serum SP-D monitoring is a practical and useful method for the early detection of RP | [46,59,60,61,62] |
KL-6 | KL-6 demonstrates proliferative and anti-apoptotic effects and contributes in pulmonary fibrotic processes | An increased level of KL-6 at least 1.5 values of the upper limit of the reference range before radiotherapy correlates with a high risk of complications; serum KL-6 level correlates with severity and response to therapy in pulmonary fibrosis | Monitoring of the severity of RP; useful biomarker of pulmonary fibrosis activity | [46,59,66,68,69,70] |
MicroRNA | Effects | Reference |
---|---|---|
PI3K/AKT and MAPK signaling pathways | ||
miR-21 let-7 family |
| [72,73,74,83] |
Cell-cycle progression checkpoints | ||
miR-21 miR-34b miR-138 |
| [84,85,86] |
Double-strand break repair | ||
miR-101 miR-182 |
| [87,88] |
HIF-dependent transcriptional regulation | ||
miR-210 |
| [76] |
Inhibition of NFκB1 | ||
miR-9 |
| [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwińska-Mossoń, M.; Wadowska, K.; Trembecki, Ł.; Bil-Lula, I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J. Pers. Med. 2020, 10, 72. https://doi.org/10.3390/jpm10030072
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. Journal of Personalized Medicine. 2020; 10(3):72. https://doi.org/10.3390/jpm10030072
Chicago/Turabian StyleŚliwińska-Mossoń, Mariola, Katarzyna Wadowska, Łukasz Trembecki, and Iwona Bil-Lula. 2020. "Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review" Journal of Personalized Medicine 10, no. 3: 72. https://doi.org/10.3390/jpm10030072
APA StyleŚliwińska-Mossoń, M., Wadowska, K., Trembecki, Ł., & Bil-Lula, I. (2020). Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. Journal of Personalized Medicine, 10(3), 72. https://doi.org/10.3390/jpm10030072