Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription
Abstract
:1. Introduction
2. Methods
3. Vitamin C
4. Zinc
5. Vitamin D
6. Omega-3 Polyunsaturated Fatty Acids
7. Arginine
8. Glutamine
9. Pharmaconutrition in Patients with Diabetes
10. Strengths and Limitations
11. Summary and Recommendations
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- WHO. Coronavirus Disease (COVID-19) Advice for the Public; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, M.F.; DiNicolantonio, J.J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog. Cardiovasc. Dis. 2020, 63, 383–385. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020, 250, 117583. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Aronson, J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Berger, M.M.; Pichard, C. Development and current use of parenteral nutrition in critical care—An opinion paper. Crit. Care 2014, 18, 478. [Google Scholar] [CrossRef] [Green Version]
- Pierre, J.F.; Heneghan, A.F.; Lawson, C.M.; Wischmeyer, P.E.; Kozar, R.A.; Kudsk, K.A. Pharmaconutrition review: Physiological mechanisms. JPEN J. Parenter. Enteral Nutr. 2013, 37 (Suppl. S5), 51S–65S. [Google Scholar] [CrossRef] [Green Version]
- Heyland, D.K.; Dhaliwal, R.; Drover, J.W.; Gramlich, L.; Dodek, P. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J. Parenter. Enteral Nutr. 2003, 27, 355–373. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, R.; Cahill, N.; Lemieux, M.; Heyland, D.K. The Canadian critical care nutrition guidelines in 2013: An update on current recommendations and implementation strategies. Nutr. Clin. Pract. 2014, 29, 29–43. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Kumel, G.; Schrader, S.; Zentgraf, H.; Daus, H.; Brendel, M. The mechanism of the antiherpetic activity of zinc sulphate. J. Gen. Virol. 1990, 71 Pt 12, 2989–2997. [Google Scholar] [CrossRef]
- Gaman, A.M.; Buga, A.M.; Gaman, M.A.; Popa-Wagner, A. The role of oxidative stress and the effects of antioxidants on the incidence of infectious complications of chronic lymphocytic leukemia. Oxid. Med. Cell Longev. 2014, 2014, 158135. [Google Scholar] [CrossRef] [Green Version]
- Tofolean, I.T.; Ganea, C.; Ionescu, D.; Filippi, A.; Garaiman, A.; Goicea, A.; Gaman, M.A.; Dimancea, A.; Baran, I. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells. Pharmacol. Res. 2016, 103, 300–317. [Google Scholar] [CrossRef]
- Brambilla, D.; Mancuso, C.; Scuderi, M.R.; Bosco, P.; Cantarella, G.; Lempereur, L.; Di Benedetto, G.; Pezzino, S.; Bernardini, R. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: A point of view for an assessment of the risk/benefit profile. Nutr. J. 2008, 7, 29. [Google Scholar] [CrossRef]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Marik, P.E. The antiviral properties of vitamin C. Expert Rev. Anti Infect. Ther. 2020, 18, 99–101. [Google Scholar] [CrossRef]
- Hemila, H. Vitamin C and SARS coronavirus. J. Antimicrob. Chemother. 2003, 52, 1049–1050. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Hemila, H.; Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013, 1, CD000980. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lin, H.; Lin, B.W.; Lin, J.D. Effects of different ascorbic acid doses on the mortality of critically ill patients: A meta-analysis. Ann. Intensive Care 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Santos, H.O.; Teixeira, F.J.; Schoenfeld, B.J. Dietary vs. pharmacological doses of zinc: A clinical review. Clin. Nutr. 2019, 39, 1345–1353. [Google Scholar] [CrossRef]
- Santos, H.O.; Teixeira, F.J. Use of medicinal doses of zinc as a safe and efficient coadjutant in the treatment of male hypogonadism. Aging Male 2019, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, W.; Fang, X.; Chen, L.; Rink, L.; Min, J.; Wang, F. Zinc supplementation improves glycemic control for diabetes prevention and management: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 110, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Wang, M.Q.; Hu, R.; Yang, Y.; Huang, Y.S.; Xian, S.X.; Lu, L. Effect of zinc supplementation on maintenance hemodialysis patients: A systematic review and meta-analysis of 15 randomized controlled trials. Biomed. Res. Int. 2017, 2017, 1024769. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Wathurapatha, W.S.; Ishara, M.H.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 2015, 12, 26. [Google Scholar] [CrossRef]
- Guo, J.; Xie, J.; Zhou, B.; Găman, M.-A.; Kord-Varkaneh, H.; Clark, C.C.T.; Salehi-Sahlabadi, A.; Li, Y.; Han, X.; Hao, Y.; et al. The influence of zinc supplementation on IGF-1 levels in humans: A systematic review and meta-analysis. J. King Saud Uni. 2020, 32, 1824–1830. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020, 80, e14–e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te Velthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef] [PubMed]
- Hemila, H.; Petrus, E.J.; Fitzgerald, J.T.; Prasad, A. Zinc acetate lozenges for treating the common cold: An individual patient data meta-analysis. Br. J. Clin. Pharmacol. 2016, 82, 1393–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Snell, D.; Fitzgerald, J.T. Duration and severity of symptoms and levels of plasma interleukin-1 receptor antagonist, soluble tumor necrosis factor receptor, and adhesion molecules in patients with common cold treated with zinc acetate. J. Infect. Dis. 2008, 197, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Fitzgerald, J.T.; Bao, B.; Beck, F.W.; Chandrasekar, P.H. Duration of symptoms and plasma cytokine levels in patients with the common cold treated with zinc acetate. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2000, 133, 245–252. [Google Scholar] [CrossRef]
- Petrus, E.J.; Lawson, K.A.; Bucci, L.R.; Blum, K. Randomized, double-masked, placebo-controlled clinical study of the effectiveness of zinc acetate lozenges on common cold symptoms in allergy-tested subjects. Curr. Ther. Res. 1998, 59, 595–607. [Google Scholar] [CrossRef]
- Hemila, H. Zinc lozenges and the common cold: A meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open 2017, 8, 2054270417694291. [Google Scholar] [CrossRef]
- Mossad, S.B.; Macknin, M.L.; Medendorp, S.V.; Mason, P. Zinc gluconate lozenges for treating the common cold. A randomized, double-blind, placebo-controlled study. Ann. Intern. Med. 1996, 125, 81–88. [Google Scholar] [CrossRef]
- Turner, R.B.; Cetnarowski, W.E. Effect of treatment with zinc gluconate or zinc acetate on experimental and natural colds. Clin. Infect. Dis. 2000, 31, 1202–1208. [Google Scholar] [CrossRef]
- Godfrey, J.C.; Conant Sloane, B.; Smith, D.S.; Turco, J.H.; Mercer, N.; Godfrey, N.J. Zinc gluconate and the common cold: A controlled clinical study. J. Int. Med. Res. 1992, 20, 234–246. [Google Scholar] [CrossRef]
- Eby, G.A.; Davis, D.R.; Halcomb, W.W. Reduction in duration of common colds by zinc gluconate lozenges in a double-blind study. Antimicrob. Agents Chemother. 1984, 25, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Matthews, L.R.; Ahmed, Y.; Wilson, K.L.; Griggs, D.D.; Danner, O.K. Worsening severity of vitamin D deficiency is associated with increased length of stay, surgical intensive care unit cost, and mortality rate in surgical intensive care unit patients. Am. J. Surg. 2012, 204, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockman-Schneider, R.A.; Pickles, R.J.; Gern, J.E. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS ONE 2014, 9, e86755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telcian, A.G.; Zdrenghea, M.T.; Edwards, M.R.; Laza-Stanca, V.; Mallia, P.; Johnston, S.L.; Stanciu, L.A. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017, 137, 93–101. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and chronic diseases. Aging Dis. 2017, 8, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, X.; Li, X.; Gaman, M.A.; Kord-Varkaneh, H.; Rahmani, J.; Salehi-Sahlabadi, A.; Day, A.S.; Xu, Y. Serum vitamin D levels and risk of liver cancer: A systematic review and dose-response meta-analysis of cohort studies. Nutr. Cancer 2020, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Ding, S. Serum 25-Hydroxyvitamin D and the risk of mortality in adult patients with Sepsis: A meta-analysis. BMC Infect. Dis. 2020, 20, 189. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Schnedl, C.; Holl, A.; Riedl, R.; Christopher, K.B.; Pachler, C.; Urbanic Purkart, T.; Waltensdorfer, A.; Munch, A.; Warnkross, H.; et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: The VITdAL-ICU randomized clinical trial. JAMA 2014, 312, 1520–1530. [Google Scholar] [CrossRef] [Green Version]
- Langlois, P.L.; Szwec, C.; D’Aragon, F.; Heyland, D.K.; Manzanares, W. Vitamin D supplementation in the critically ill: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 1238–1246. [Google Scholar] [CrossRef]
- Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr. 2020, 14, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Kohn, A.; Gitelman, J.; Inbar, M. Interaction of polyunsaturated fatty acids with animal cells and enveloped viruses. Antimicrob. Agents Chemother. 1980, 18, 962–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, A.; Gitelman, J.; Inbar, M. Unsaturated free fatty acids inactivate animal enveloped viruses. Arch. Virol. 1980, 66, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [Green Version]
- Koekkoek, W.K.; Panteleon, V.; van Zanten, A.R. Current evidence on omega-3 fatty acids in enteral nutrition in the critically ill: A systematic review and meta-analysis. Nutrition 2019, 59, 56–68. [Google Scholar] [CrossRef]
- Langlois, P.L.; D’Aragon, F.; Hardy, G.; Manzanares, W. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Nutrition 2019, 61, 84–92. [Google Scholar] [CrossRef]
- Tao, W.; Li, P.S.; Shen, Z.; Shu, Y.S.; Liu, S. Effects of omega-3 fatty acid nutrition on mortality in septic patients: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2016, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, R.D.; Martin, T.R.; Weiss, N.S.; Crowley, J.J.; Gundel, S.J.; Nathens, A.B.; Akhtar, S.R.; Ruzinski, J.T.; Caldwell, E.; Curtis, J.R.; et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit. Care Med. 2011, 39, 1655–1662. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, W.; Liu, C.; Wang, B.; Wang, J.; Yin, Y. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [Google Scholar] [CrossRef]
- Zhou, M.; Martindale, R.G. Arginine in the critical care setting. J. Nutr. 2007, 137 (Suppl. S2), 1687S–1692S. [Google Scholar] [CrossRef]
- Yu, Y.M.; Ryan, C.M.; Castillo, L.; Lu, X.M.; Beaumier, L.; Tompkins, R.G.; Young, V.R. Arginine and ornithine kinetics in severely burned patients: Increased rate of arginine disposal. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E509–E517. [Google Scholar] [CrossRef] [PubMed]
- King, N.E.; Rothenberg, M.E.; Zimmermann, N. Arginine in asthma and lung inflammation. J. Nutr. 2004, 134 (Suppl. S10), 2830S–2836S, discussion 2853S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837, 837a-837d. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Kaneko, F.T.; Zheng, S.; Comhair, S.A.; Janocha, A.J.; Goggans, T.; Thunnissen, F.B.; Farver, C.; Hazen, S.L.; Jennings, C.; et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004, 18, 1746–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasemann, H.; Schwiertz, R.; Grasemann, C.; Vester, U.; Racke, K.; Ratjen, F. Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respir. Res. 2006, 7, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.R.; Morris, S.M., Jr.; Hagar, W.; Van Warmerdam, J.; Claster, S.; Kepka-Lenhart, D.; Machado, L.; Kuypers, F.A.; Vichinsky, E.P. Arginine therapy: A new treatment for pulmonary hypertension in sickle cell disease? Am. J. Respir. Crit. Care Med. 2003, 168, 63–69. [Google Scholar] [CrossRef]
- Nicholas, J.; Kenyon, M.L.; Jennifer, M.; Bratt, V.; Kwan, W.; O’Roark, E.; Linderholm, A. l-Arginine Supplementation and Metabolism in Asthma. Pharmaceuticals 2011, 4, 187–201. [Google Scholar]
- Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment Coronavirus (COVID-19). In Statpearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- McNeal, C.J.; Meininger, C.J.; Wilborn, C.D.; Tekwe, C.D.; Wu, G. Safety of dietary supplementation with arginine in adult humans. Amino Acids 2018, 50, 1215–1229. [Google Scholar] [CrossRef]
- Andrews, F.J.; Griffiths, R.D. Glutamine: Essential for immune nutrition in the critically ill. Br. J. Nutr. 2002, 87 (Suppl. S1), S3–S8. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.D. Outcome of critically ill patients after supplementation with glutamine. Nutrition 1997, 13, 752–754. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020, 8, E46–E47. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Kahana, M.; Wolfson, R.; Ren, H.; Musch, M.M.; Chang, E.B. Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock 2001, 16, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Coeffier, M.; Marion, R.; Ducrotte, P.; Dechelotte, P. Modulating effect of glutamine on IL-1beta-induced cytokine production by human gut. Clin. Nutr. 2003, 22, 407–413. [Google Scholar] [CrossRef]
- Stehle, P.; Ellger, B.; Kojic, D.; Feuersenger, A.; Schneid, C.; Stover, J.; Scheiner, D.; Westphal, M. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: A systematic evaluation of randomised controlled trials. Clin. Nutr. ESPEN 2017, 17, 75–85. [Google Scholar] [CrossRef]
- Dupertuis, Y.M.; Raguso, C.A.; Pichard, C. Basics in clinical nutrition: Nutrients which influence immunity—Clinical and experimental data. Clin. Nutr. ESPEN 2008, 4, e7–e9. [Google Scholar] [CrossRef] [Green Version]
- Savy, G.K. Enteral glutamine supplementation: Clinical review and practical guidelines. Nutr. Clin. Pract. 1997, 12, 259–262. [Google Scholar] [CrossRef]
- Van Zanten, A.R.; Dhaliwal, R.; Garrel, D.; Heyland, D.K. Enteral glutamine supplementation in critically ill patients: A systematic review and meta-analysis. Crit. Care 2015, 19, 294. [Google Scholar] [CrossRef] [Green Version]
- Stehle, P.; Kuhn, K.S. Glutamine: An obligatory parenteral nutrition substrate in critical care therapy. Biomed. Res. Int. 2015, 2015, 545467. [Google Scholar] [CrossRef] [Green Version]
- Ramezani Ahmadi, A.; Rayyani, E.; Bahreini, M.; Mansoori, A. The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials. Clin. Nutr. 2019, 38, 1076–1091. [Google Scholar] [CrossRef]
- Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020, 31, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Samocha-Bonet, D.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. Glycemic effects and safety of L-Glutamine supplementation with or without sitagliptin in type 2 diabetes patients-a randomized study. PLoS ONE 2014, 9, e113366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashor, A.W.; Werner, A.D.; Lara, J.; Willis, N.D.; Mathers, J.C.; Siervo, M. Effects of vitamin C supplementation on glycaemic control: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2017, 71, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Ranasinghe, P.; Galappatthy, P.; Malkanthi, R.; Constantine, G.; Katulanda, P. Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2012, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechelotte, P.; Hasselmann, M.; Cynober, L.; Allaouchiche, B.; Coeffier, M.; Hecketsweiler, B.; Merle, V.; Mazerolles, M.; Samba, D.; Guillou, Y.M.; et al. L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: The French controlled, randomized, double-blind, multicenter study. Crit. Care Med. 2006, 34, 598–604. [Google Scholar] [CrossRef]
- Marreiro, D.D.; Cruz, K.J.; Morais, J.B.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R. Zinc and oxidative stress: Current mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J. 2012, 12, 5–18. [Google Scholar] [CrossRef]
- Santos, H.O.; da Silva, G.A.R. To what extent does cinnamon administration improve the glycemic and lipid profiles? Clin. Nutr. ESPEN 2018, 27, 1–9. [Google Scholar] [CrossRef]
- Santos, H.O.; Bueno, A.A.; Mota, J.F. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res. 2018, 137, 170–178. [Google Scholar] [CrossRef]
- Santos, H.O.; Macedo, R.C.O. Cocoa-induced (Theobroma cacao) effects on cardiovascular system: HDL modulation pathways. Clin. Nutr. ESPEN 2018, 27, 10–15. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feingold, K.R.; Anawalt, B.; Boyce, A.; Chrousos, G.; de Herder, W.; Dungan, K.; Grossman, A.; Hershman, J.; Hofland, H.; Kaltsas, G.; et al. Dietary reference intakes (DRIs): Tolerable upper intake levels (UL a) for vitamins (130) food and nutrition board, Institute of Medicine, National Academies. Tables 17 and 18. In Dietary Treatment of Obesity; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Peter, S.; Navis, G.; de Borst, M.H.; von Schacky, C.; van Orten-Luiten, A.C.B.; Zhernakova, A.; Witkamp, R.F.; Janse, A.; Weber, P.; Bakker, S.J.L.; et al. Public health relevance of drug-nutrition interactions. Eur. J. Nutr. 2017, 56 (Suppl. S2), 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrica, E.C.; Gaman, M.A.; Cozma, M.A.; Bratu, O.G.; Pantea Stoian, A.; Diaconu, C.C. Polypharmacy in type 2 diabetes mellitus: Insights from an internal medicine department. Medicina 2019, 55, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Interventions | Conditions | Estimated Enrollment (n) | Phase | Country | Clinical Trial ID |
---|---|---|---|---|---|
Vitamin C 2-h infusion daily (for 6 d), escalating dose (0.3 g/kg, 0.6 g/kg, 0.9 g/kg). | Hospitalized patients with COVID-19 | 66 | Recruiting | USA | NCT04363216 |
50 mg/kg vitamin C infusion given every 6 h for 4 d (16 total doses) | COVID-19 and hypoxia | 20 | Recruiting | USA | NCT04357782 |
10 g of IV vitamin C in addition to conventional therapy | Hospitalized patients with COVID-19 pneumonia | 500 | Recruiting | Italy | NCT0432351 |
Inpatients: IV vitamin C (Sodium Ascorbate) 50 mg/kg every 6 h on d 1 followed by 100 mg/kg every 6 h (4×/d; 400 mg/kg/d) for 7 d (average 28g/d). Outpatients: 200 mg/kg ×1 IV vitamin C, then 1 g PO 3×/d for 7 d. Plus active comparator: 400 mg PO 2×/d Hydroxychloroquine, followed by 200mg PO 2×/d for 6 d. 500 mg/d PO azithromycin followed by 250 mg/d PO for 4 d. 30 mg/d PO (elemental dose) zinc citrate. 5000 IU/d PO vitamin D3 for 14 d. 500 mcg/d PO vitamin B12 for 14 d. | COVID-19 | 200 | Not yet recruiting | Australia | NCT04395768 |
IV vitamin C: 50 mg/kg every 6 h for 96 h (16 doses). | Hospitalized patients with COVID-19 | 800 | Not yet recruiting | Canada | NCT04401150 |
Methylene blue, vitamin C, N-acetyl cysteine | COVID-19 | 20 | Recruiting | Iran | NCT04370288 |
Drug: hydroxychloroquine Dietary supplements: vitamin C, vitamin D and zinc. Use as a prophylaxis treatment for COVID-19 | COVID-19 | 600 | Not yet recruiting | USA | NCT04335084 |
100 mg/kg intravenous vitamin C infusion every 8 h for up to 72 h | COVID-19 Lung Injury, Acute | 200 | Not yet recruiting | USA | NCT04344184 |
Experimental: oral loading dose of 800 mg followed by once weekly oral hydroxychloroquine 400 mg for 3 mo. Active comparator: oral vitamin C 1 g/d for 3 mo. | COVID-19 | 1212 | Not yet recruiting | USA | NCT04347889 |
12 g vitamin C 2×/d for 7 d with infused pump speed of 12 mL/h. | COVID-19 pneumonia, ventilator-associated | 140 | Recruiting | China | NCT04264533 |
Comparator: ascorbic acid 500 mg orally daily for 3, then 250 mg orally daily for 11 d Experimental: hydrochloroquine 400 mg orally daily for 3 days, then 200 mg orally daily for an additional 11 days | COVID-19 | 2000 | Not yet recruiting | USA | NCT04328961 |
Quintuple therapy for 24 weeks Drugs: hydroxychloroquine and azithromycin Dietary supplements: vitamin C, vitamin D, zinc | COVID-19 | 600 | Not yet recruiting | USA | NCT04334512 |
Plaquenil 200 mg tablet. Proflaxis using hydroxychloroquine + Vitamin C, D and zinc (Not specified dosage) | COVID-19 | 80 | Recruiting | Turkey | NCT04326725 |
Daily oral nutrition supplement with: 1.1 g EPA, 450 mg DHA, 950 mg GLA, 2840 IU vitamin A as 1.2 mg β-carotene, 205 mg vitamin C, 75 IU vitamin E, 18 µg selenium, and 5.7 mg zinc. Taken 3 h after breakfast. | COVID-19 | 30 | Not yet recruiting | Saudi Arabia | NCT04323228 |
Vitamin C: 50 mg/kg every 6 h for 96 h. | COVID-19, Sepsis, ICU | 800 | Recruiting | Canada | NCT03680274 |
8000 mg of ascorbic acid divided into 2–3 doses/d with food. 50 mg of zinc gluconate to be taken daily at bedtime. Combined and single treatment. | COVID-19 | 520 | Enrolling by invitation | USA | NCT04342728 |
Vitamin C 3 g/d, 400 mg tiamine, selenium, omega-3500 mg/d, Vit A, Vit D, Azithromycine, Ceftriaxone, Kaletra 2×/d for 10 d. | COVID-19 | 80 | Recruiting | Iran | NCT04360980 |
Single dose of 25,000 UI of vitamin D supplement in addition to prescription of NSAIDs, ACE2 inhibitor, ARB or thiazolidinediones, according to clinician criteria. Vitamin D supplementation will be taken in the morning together with a toast with olive oil. | COVID-19 | 200 | Not yet recruiting | Spain | NCT04334005 |
Experimental: 400,000 IU vitamin D3 in a single oral dose. Active Comparator: 50,000 IU in vitamin D supplementation a single oral dose | COVID-19 | 260 | Not yet recruiting | France | NCT04344041 |
Author, Year (Reference) | Supplement, Route | Dose | Duration | Condition | Trials (n) | Patients (n) | I2 | Main Results |
---|---|---|---|---|---|---|---|---|
Hemilä and Chalker, 2013 [18] | Vitamin C, oral | ≥0.2 g/d | According to mean of cold episodes | General community | 29 | 11,306 | 38% | In adults, the duration of colds was reduced by 8% and in children by 14% |
Wang et al., 2019 [19] | Vitamin C, intravenous | 450 mg/d to 66 mg/kg/h | 12 h to 28 days | Critically ill | 12 | 1210 | 0% | Reduced the duration of vasopressor support and mechanical ventilation. 3–10 g vitamin C resulted in lower overall mortality rates |
Hemilä et al., 2016 [28] | Zinc, oral | 80–92 mg/d elemental zinc dose, acetate lozenges | According to cold episodes | Common cold | 3 | 199 | 61% | 36% (3 days) estimates for the reduction of common cold duration |
Hemilä, 2017 [32] | Zinc, oral | 80–207 mg/d zinc acetate or gluconate | According to cold episodes | Common cold | 7 | 575 | 77% | Common cold duration was 33% shorter for the zinc groups |
Langlois et al., 2018 [45] | Vitamin D, oro-enteral or parenteral | 50,000–540,000 IU | Single dose to 5 days | Critically ill | 6 | 695 | 0% | No differences in ICU and hospital LOS, infection rate and ventilation day |
Tao et al., 2016 [52] | Omega-3, parenteral or enteral | According to commercially available omega-3 fatty acids enriched nutrition (Omegaven®, Oxepa®, Lipolus®) | Varied across different trials | Sepsis | 11 | 11,808 | 40% for mechanical ventilation and 0% for mortality | Reduced mechanical ventilation duration but not mortality |
Koekkoek et al., 2019 [50] | Omega-3, enteral | 0.68–16.5 g/L | Varied across different trials | Critically ill | 24 | 3574 | 2% for overall mortality and 0% for mortality in patients with ARDS | Enteral fish oil supplementation did not change 28-d mortality in general, but reduced mortality in patients with ARDS |
Langlois et al., 2019 [51] | Omega-3, enteral or parenteral | According to commercially available omega-3 fatty acids enriched nutrition (Omegaven®, Oxepa®, Ultimate Omega®). Overall, 1.3 g/d to 10.2 g/formula | Varied across different trials | Critically ill patients with ARDS | 20 | 1280 | 69% for PaO2-to-FiO2 ratio | Improved early and late PaO2-to-FiO2 ratio |
van Zanten et al., 2015 [74] | Glutamine, enteral | 0.27 to 0.5 g/kg/d | Varied across different trials | Critically ill | 11 | 1079 | 52% for LOS | There was no reduction of hospital mortality, infectious complications, or stay in the ICU, but there was a significant reduction in LOS (~5 days) |
Stehle et al. 2017, [71] | Glutamine dipeptide, parenteral | 0.4–0.5 g/kg/d alanylglutamine (alanine-glutamine) | 3–21 days | Critically ill | 16 | 842 | 0% for hospital mortality, 31% for infectious complication, 0% for LOS | Reduced hospital mortality, infectious complication rates, and hospital LOS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, H.O.; Tinsley, G.M.; da Silva, G.A.R.; Bueno, A.A. Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription. J. Pers. Med. 2020, 10, 145. https://doi.org/10.3390/jpm10040145
Santos HO, Tinsley GM, da Silva GAR, Bueno AA. Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription. Journal of Personalized Medicine. 2020; 10(4):145. https://doi.org/10.3390/jpm10040145
Chicago/Turabian StyleSantos, Heitor O., Grant M. Tinsley, Guilherme A. R. da Silva, and Allain A. Bueno. 2020. "Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription" Journal of Personalized Medicine 10, no. 4: 145. https://doi.org/10.3390/jpm10040145
APA StyleSantos, H. O., Tinsley, G. M., da Silva, G. A. R., & Bueno, A. A. (2020). Pharmaconutrition in the Clinical Management of COVID-19: A Lack of Evidence-Based Research But Clues to Personalized Prescription. Journal of Personalized Medicine, 10(4), 145. https://doi.org/10.3390/jpm10040145