Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. Amyloid PET Data
2.4. Structural MRI Data
2.5. Neuropsychological Assessment
2.6. Statistical Analyses
3. Results
3.1. Subject Characteristics
3.2. Feature Combination and Performance of the ML Models
3.3. Feature Selection from Adaptive LASSO
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dementia: A Public Health Priority; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef]
- Plassman, B.L.; Langa, K.M.; Fisher, G.G.; Heeringa, S.G.; Weir, D.R.; Ofstedal, M.B.; Burke, J.R.; Hurd, M.D.; Potter, G.G.; Rodgers, W.L. Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology 2007, 29, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R., Jr.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Silbert, L.C.; Quinn, J.; Moore, M.; Corbridge, E.; Ball, M.; Murdoch, G.; Sexton, G.; Kaye, J. Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 2003, 61, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 2008, 65, 1509–1517. [Google Scholar] [CrossRef]
- Mattsson, N.; Zetterberg, H. Alzheimer’s disease and CSF biomarkers: Key challenges for broad clinical applications. Biomark. Med. 2009, 3, 735–737. [Google Scholar] [CrossRef]
- Curiel, R.E.; Loewenstein, D.; Crocco, E.; Greig-Custo, M.; Rodriquez, R.; Czaja, S.; Rosado, M.; Barker, W.W.; Duara, R. A novel measure of cognitive change in preclinical Alzheimer’s disease and its physiological correlates in normal and MCI elderly. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2015, 11, P822. [Google Scholar] [CrossRef]
- Schindler, S.E.; Jasielec, M.S.; Weng, H.; Hassenstab, J.J.; Grober, E.; McCue, L.M.; Morris, J.C.; Holtzman, D.M.; Xiong, C.; Fagan, A.M. Neuropsychological measures that detect early impairment and decline in preclinical Alzheimer disease. Neurobiol. Aging 2017, 56, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Ihm, J.-J.; Kim, H.-G.; Alzheimer’s Disease Neuroimaging Initiative. Cognitive Profiling Related to Cerebral Amyloid Beta Burden Using Machine Learning Approaches. Front. Aging Neurosci. 2019, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J.; Alzheimer’s Disease Neuroimaging Initiative. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 2015, 104, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, C.; Cerasa, A.; Battista, P.; Gilardi, M.C.; Quattrone, A.; Castiglioni, I. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: A machine learning approach. Front. Neurosci. 2015, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Burnham, S.; Faux, N.; Wilson, W.; Laws, S.; Ames, D.; Bedo, J.; Bush, A.; Doecke, J.; Ellis, K.; Head, R. A blood-based predictor for neocortical Aβ burden in Alzheimer’s disease: Results from the AIBL study. Mol. Psychiatry 2014, 19, 519. [Google Scholar] [CrossRef]
- Haghighi, M.; Smith, A.; Morgan, D.; Small, B.; Huang, S. Identifying cost-effective predictive rules of amyloid-β level by integrating neuropsychological tests and plasma-based markers. J. Alzheimer’s Dis. 2015, 43, 1261–1270. [Google Scholar] [CrossRef]
- Becker, J.A.; Hedden, T.; Carmasin, J.; Maye, J.; Rentz, D.M.; Putcha, D.; Fischl, B.; Greve, D.N.; Marshall, G.A.; Salloway, S. Amyloid-β associated cortical thinning in clinically normal elderly. Ann. Neurol. 2011, 69, 1032–1042. [Google Scholar] [CrossRef]
- Storandt, M.; Mintun, M.A.; Head, D.; Morris, J.C. Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: Cognitive decline associated with Aβ deposition. Arch. Neurol. 2009, 66, 1476–1481. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Aisen, P.; Beckett, L.A.; Donohue, M.; Gamst, A.; Harvey, D.J.; Jack, C.; Jagust, W.; Shaw, L.; Toga, A. Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, D. WMS-R: Wechsler Memory Scale—Revised Manual; Psychological Corp., Harcourt Brace Jovanovich: London, UK, 1987. [Google Scholar]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef] [Green Version]
- Alzheimer’s Disease Neuroimaging Initiative (ADNI). Available online: http://adni.loni.usc.edu (accessed on 1 August 2020).
- Landau, S.M.; Breault, C.; Joshi, A.D.; Pontecorvo, M.; Mathis, C.A.; Jagust, W.J.; Mintun, M.A. Amyloid-β imaging with Pittsburgh compound B and florbetapir: Comparing radiotracers and quantification methods. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 70. [Google Scholar] [CrossRef] [Green Version]
- Landau, S.M.; Mintun, M.A.; Joshi, A.D.; Koeppe, R.A.; Petersen, R.C.; Aisen, P.S.; Weiner, M.W.; Jagust, W.J.; Alzheimer’s Disease Neuroimaging Initiative. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 2012, 72, 578–586. [Google Scholar] [CrossRef]
- Joshi, A.; Koeppe, R.A.; Fessler, J.A. Reducing between scanner differences in multi-center PET studies. Neuroimage 2009, 46, 154–159. [Google Scholar] [CrossRef] [Green Version]
- FreeSurfer. Available online: http://surfer.nmr.mgh.harvard.edu (accessed on 8 August 2020).
- Florbetapir Processing Methods. Available online: https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/UCBERKELEY_AV45_Methods_12.03.15.pdf (accessed on 8 August 2020).
- Alzheimer’s Disease Neuroimaging Initiative (ADNI). Centers and Cores. Available online: http://adni.loni.usc.edu/about/centers-cores/mri-core (accessed on 8 August 2020).
- Hartig, M.; Truran-Sacrey, D.; Raptentsetsang, S.; Simonson, A.; Mezher, A.; Schuff, N.; Weiner, M. UCSF Freesurfer Methods; ADNI Alzheimers Disease Neuroimaging Initiative: San Francisco, CA, USA, 2014. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mohs, R.C.; Knopman, D.; Petersen, R.C.; Ferris, S.H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.; Clark, C. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. Alzheimer Dis. Assoc. Disord. 1997, 11, S13–S21. [Google Scholar] [CrossRef]
- Rey, A. The Clinical Examination in Psychology; Universitaires de France: Paris, France, 1964. [Google Scholar]
- Kaplan, E. The Assessment of Aphasia and Related Disorders; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1983; Volume 2. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery. In The Neuropsychology Handbook: Behavioral and Clinical Perspectives; Wedding, D., Horton, A.M., Jr., Webster, J.S., Eds.; Springer Publishing Co.: Berlin/Heidelberg, Germany, 1986; pp. 134–160. [Google Scholar]
- Morris, J.; Heyman, A.; Mohs, R.; Hughes, J.; Van Belle, G.; Fillenbaum, G.; Mellits, E.; Clark, C. The consortium to establish a registry for Alzheimer’s disease (CERAD): I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39, 1159. [Google Scholar]
- Grober, E.; Sliwinsk, M.; Korey, S.R. Development and validation of a model for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp. Neuropsychol. 1991, 13, 933–949. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N. On the stability of inverse problems. Dokl. Akad. Nauk SSSR 1943, 39, 195–198. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Byun, M.S.; Yi, D.; Choe, Y.M.; Choi, H.J.; Baek, H.; Sohn, B.K.; Lee, J.-Y.; Kim, H.J.; Kim, J.W. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiol. Aging 2017, 58, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; Roe, C.M.; Xiong, C.; Fagan, A.M.; Goate, A.M.; Holtzman, D.M.; Mintun, M.A. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 2010, 67, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortamais, M.; Ash, J.A.; Harrison, J.; Kaye, J.; Kramer, J.; Randolph, C.; Pose, C.; Albala, B.; Ropacki, M.; Ritchie, C.W. Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimer’s Dement. 2017, 13, 468–492. [Google Scholar] [CrossRef]
- Casanova, R.; Varma, S.; Simpson, B.; Kim, M.; An, Y.; Saldana, S.; Riveros, C.; Moscato, P.; Griswold, M.; Sonntag, D. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimer’s Dement. 2016, 12, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Li, C.; Loewenstein, D.A.; Duara, R.; Cabrerizo, M.; Barker, W.; Adjouadi, M. The relationship of brain amyloid load and APOE status to regional cortical thinning and cognition in the ADNI Cohort. J. Alzheimer’s Dis. 2017, 59, 1269–1282. [Google Scholar] [CrossRef]
- Raghavan, N.; Samtani, M.N.; Farnum, M.; Yang, E.; Novak, G.; Grundman, M.; Narayan, V.; DiBernardo, A.; Alzheimer’s Disease Neuroimaging Initiative. The ADAS-Cog revisited: Novel composite scales based on ADAS-Cog to improve efficiency in MCI and early AD trials. Alzheimer’s Dement. 2013, 9, S21–S31. [Google Scholar] [CrossRef] [Green Version]
- Donohue, M.C.; Sperling, R.A.; Salmon, D.P.; Rentz, D.M.; Raman, R.; Thomas, R.G.; Weiner, M.; Aisen, P.S. The preclinical Alzheimer cognitive composite: Measuring amyloid-related decline. JAMA Neurol. 2014, 71, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Buckley, R.F.; Mormino, E.C.; Amariglio, R.E.; Properzi, M.J.; Rabin, J.S.; Lim, Y.Y.; Papp, K.V.; Jacobs, H.I.; Burnham, S.; Hanseeuw, B.J. Sex, amyloid, and APOE ε4 and risk of cognitive decline in preclinical Alzheimer’s disease: Findings from three well-characterized cohorts. Alzheimer’s Dement. 2018, 14, 1193–1203. [Google Scholar] [CrossRef]
- Mormino, E.C.; Papp, K.V.; Rentz, D.M.; Donohue, M.C.; Amariglio, R.; Quiroz, Y.T.; Chhatwal, J.; Marshall, G.A.; Donovan, N.; Jackson, J. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimer’s Dement. 2017, 13, 1004–1012. [Google Scholar] [CrossRef]
- Rubin, E.H.; Storandt, M.; Miller, J.P.; Kinscherf, D.A.; Grant, E.A.; Morris, J.C.; Berg, L. A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 1998, 55, 395–401. [Google Scholar] [CrossRef] [PubMed]
- O’Bryant, S.E.; Mielke, M.M.; Rissman, R.A.; Lista, S.; Vanderstichele, H.; Zetterberg, H.; Lewczuk, P.; Posner, H.; Hall, J.; Johnson, L. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s Dement. 2017, 13, 45–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | CN (N = 170) | SMC (N = 95) | EMCI (N = 169) | LMCI (N = 155) | AD (N = 135) | Total (N = 724) |
---|---|---|---|---|---|---|
Age, years | 73.9 (6.2) | 72.9 (5.7) | 71.6 (7.1) | 72.6 (7.6) | 74.9 (8.1) | 73.2 (7.1) |
No. of females (%) | 91 (51%) | 55 (58%) | 71 (42%) | 71 (46%) | 56 (41%) | 344 (47%) |
Education, years | 16.6 (2.5) | 16.7 (2.6) | 16.2 (2.7) | 16.6 (2.6) | 15.7 (2.6) | 15.7 (2.6) |
No. of APOE ε4 carriers (%) a | 50 (28%) | 29 (31%) | 77 (46%) | 90 (58%) | 93 (69%) | 339 (46%) |
Aβ positivity (%) | 53 (29%) | 33 (35%) | 84 (50%) | 108 (70%) | 122 (90%) | 400 (54%) |
ACC | PRE | REC | F1 | AUC | |
---|---|---|---|---|---|
WHOLE | |||||
LR | 0.75 | 0.78 | 0.76 | 0.77 | 0.84 |
SVM | 0.75 | 0.79 | 0.75 | 0.77 | 0.85 |
BDT | 0.76 | 0.81 | 0.72 | 0.77 | 0.85 |
ANN | 0.74 | 0.77 | 0.74 | 0.76 | 0.81 |
Demo + CV + NA | |||||
LR | 0.76 | 0.80 | 0.76 | 0.78 | 0.84 |
SVM | 0.76 | 0.80 | 0.74 | 0.77 | 0.85 |
BDT | 0.75 | 0.81 | 0.71 | 0.76 | 0.84 |
ANN | 0.73 | 0.77 | 0.73 | 0.75 | 0.81 |
Demo + CT + NA | |||||
LR | 0.75 | 0.79 | 0.75 | 0.77 | 0.84 |
SVM | 0.76 | 0.80 | 0.76 | 0.78 | 0.84 |
BDT | 0.77 | 0.83 | 0.74 | 0.78 | 0.82 |
ANN | 0.75 | 0.77 | 0.78 | 0.78 | 0.82 |
Demo + CV + CT | |||||
LR | 0.77 | 0.82 | 0.76 | 0.79 | 0.84 |
SVM | 0.74 | 0.80 | 0.72 | 0.76 | 0.84 |
BDT | 0.75 | 0.83 | 0.70 | 0.76 | 0.83 |
ANN | 0.71 | 0.85 | 0.58 | 0.69 | 0.81 |
ACC | PRE | REC | F1 | AUC | |
---|---|---|---|---|---|
Deom + NA | |||||
LR | 0.75 | 0.79 | 0.74 | 0.77 | 0.83 |
SVM | 0.75 | 0.80 | 0.73 | 0.76 | 0.83 |
BDT | 0.71 | 0.76 | 0.70 | 0.73 | 0.79 |
ANN | 0.75 | 0.83 | 0.70 | 0.75 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, H.; Park, S.; Kwak, S.; Ihm, J.; for the ADNI Research Group. Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort. J. Pers. Med. 2020, 10, 197. https://doi.org/10.3390/jpm10040197
Ko H, Park S, Kwak S, Ihm J, for the ADNI Research Group. Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort. Journal of Personalized Medicine. 2020; 10(4):197. https://doi.org/10.3390/jpm10040197
Chicago/Turabian StyleKo, Hyunwoong, Seho Park, Seyul Kwak, Jungjoon Ihm, and for the ADNI Research Group. 2020. "Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort" Journal of Personalized Medicine 10, no. 4: 197. https://doi.org/10.3390/jpm10040197
APA StyleKo, H., Park, S., Kwak, S., Ihm, J., & for the ADNI Research Group. (2020). Exploring a Cost-Efficient Model for Predicting Cerebral Aβ Burden Using MRI and Neuropsychological Markers in the ADNI-2 Cohort. Journal of Personalized Medicine, 10(4), 197. https://doi.org/10.3390/jpm10040197