Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy?
Abstract
:1. Introduction
2. Epidemiology
3. Pathophysiology
4. Pathology
5. Precision Medicine in Breast Cancer
6. Clinical Presentation
7. Diagnosis
8. Staging
9. Hereditary Breast Cancer and PABC
10. Monitoring of the Pregnancy
11. Prognosis
12. Treatment of BCP
12.1. Surgery
12.2. Radiotherapy
12.3. Systemic Antitumor Therapy
- Pharmacokinetics and Distribution of Drugs in Pregnancy
- Chemotherapy
- Targeted Treatment
- Endocrine Treatment
- Supportive Care
12.4. Postponement of Treatment
12.5. The Course of Pregnancy, Fetal Monitoring, and Childbirth
13. Infant Outcome
14. Termination of Pregnancy
15. Metastatic BCP
16. Tailoring Treatment of Breast Cancer in Pregnancy
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peccatori, F.A.; Lambertini, M.; Scarfone, G.; Del Pup, L.; Codacci-Pisanelli, G. Biology, staging, and treatment of breast cancer during pregnancy: Reassessing the evidences. Cancer Biol. Med. 2018, 15, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, V.F.; Schedin, P.J. Pregnancy-associated breast cancer: An entity needing refinement of the definition. Cancer 2012, 118, 3226–3228. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, S.K.; Zembutsu, H.; Nakamura, Y. Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer Sci. 2018, 109, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parazzini, F.; Franchi, M.; Tavani, A.; Negri, E.; Peccatori, F.A. Frequency of pregnancy related cancer: A population based linkage study in Lombardy, Italy. Int. J. Gynecol. Cancer 2017, 27, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K. Gestational Breast Cancer: Epidemiology and Diagnosis. 2020. Available online: https://www.uptodate.com/contents/gestational-breast-cancer-epidemiology-and-diagnosis (accessed on 19 November 2020).
- Wohlfahrt, J.; Andersen, P.K.; Mouridsen, H.T.; Melbye, M. Risk of late-stage breast cancer after childbirth. Am. J. Epidemiol. 2001, 153, 1079–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, R.; Herrero, C.; Strasser-Weippl, K.; Touya, D.; St Louis, J.; Bukowski, A.; Goss, P.E. Epidemiology and pathophysiology of pregnancy-associated breast cancer: A review. Breast 2017, 35, 136–141. [Google Scholar] [CrossRef]
- Schedin, P. Pregnancy-associated breast cancer and metastasis. Nat. Rev. Cancer 2006, 6, 281–291. [Google Scholar] [CrossRef]
- Slocum, E.; Craig, A.; Villanueva, A.; Germain, D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res. 2019, 21, 56. [Google Scholar] [CrossRef]
- Callihan, E.G.; Gao, D.; Jindal, S.; Lyons, T.R.; Manthey, E.; Edgerton, S.; Urquhart, A.; Schedin, P.; Borges, V.F. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res. Treat. 2013, 138, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.; Venet, D.; Azim, H.A., Jr.; Brown, D.; Desmedt, C.; Lambertini, M.; Majjaj, S.; Pruneri, G.; Peccatori, F.; Piccart, M.; et al. Breast cancer diagnosed during pregnancy is associated with enrichment of non-silent mutations, mismatch repair deficiency signature and mucin mutations. NPJ Breast Cancer 2018, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, L.P.; Amin, M.; Gwyn, K.; Theriault, R.; Sahin, A. Breast carcinoma in pregnant women: Assessment of clinicopathologic and immunohistochemical features. Cancer 2003, 98, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Reed, W.; Hannisdal, E.; Skovlund, E.; Thoresen, S.; Lilleng, P.; Nesland, J.M. Pregnancy and breast cancer: A population-based study. Virchows Arch. 2003, 443, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.C.; Gelber, S.; Marotti, J.D.; White, S.; Ruddy, K.; Brachtel, E.F.; Schapira, L.; Come, S.E.; Borges, V.F.; Schedin, P.; et al. Molecular phenotype of breast cancer according to time since last pregnancy in a large cohort of young women. Oncologist 2015, 20, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korakiti, A.-M.; Moutafi, M.; Zografos, E.; Dimopoulos, M.A.; Zagouri, F. The genomic profile of pregnancy-associated breast cancer: A systematic review. Front. Oncol. 2020, 10, 1773. [Google Scholar] [CrossRef]
- Ghasemi, M.; Nabipour, I.; Omrani, A.; Alipour, Z.; Assadi, M. Precision medicine and molecular imaging: New targeted approaches toward cancer therapeutic and diagnosis. Am. J. Nuclear Med. Mol. Imaging 2016, 6, 310–327. [Google Scholar]
- Mandrekar, S.J.; Sargent, D.J. Clinical trial designs for predictive biomarker validation: Theoretical considerations and practical challenges. J. Clin. Oncol. 2009, 27, 4027–4034. [Google Scholar] [CrossRef] [Green Version]
- Polley, M.Y.C.; Freidlin, B.; Korn, E.L.; Conley, B.A.; Abrams, J.S.; McShane, L.M. Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl. Cancer Inst. 2013, 105, 1677–1683. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, C.; Neo, S.Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 2003, 100, 10393–10398. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, Q.; Yu, Q.; Zhang, J.; Liu, Z.; Wang, S.; Lv, S.; Niu, Y. A retrospective study of breast cancer subtypes: The risk of relapse and the relations with treatments. Breast Cancer Res. Treat. 2011, 130, 489–498. [Google Scholar] [CrossRef]
- Meehan, J.; Gray, M.; Martínez-Pérez, C.; Kay, C.; Pang, L.Y.; Fraser, J.A.; Poole, A.V.; Kunkler, I.H.; Langdon, S.P.; Argyle, D.; et al. Precision Medicine and the Role of Biomarkers of Radiotherapy Response in Breast Cancer. Front Oncol. 2020, 10, 628. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Speicher, M.R. The biology of circulating tumor cells. Oncogene 2016, 35, 1216–1224. [Google Scholar] [CrossRef]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Pasculli, B.; Barbano, R.; Parrella, P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol. 2018, 51, 22–35. [Google Scholar] [CrossRef]
- Nicolini, A.; Ferrari, P.; Duffy, M.J. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol. 2018, 52, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Lethaby, A.E.; O’Neill, M.A.; Mason, B.H.; Holdaway, I.M.; Harvey, V.J. Overall survival from breast cancer in women pregnant or lactating at or after diagnosis. Auckland Breast Cancer Study Group. Int. J. Cancer 1996, 67, 751–755. [Google Scholar] [CrossRef]
- Byrd, B.F., Jr.; Bayer, D.S.; Robertson, J.C.; Stephenson, S.E., Jr. Treatment of breast tumors associated with pregnancy and lactation. Ann. Surg. 1962, 155, 940–947. [Google Scholar] [CrossRef]
- Yang, W.T.; Dryden, M.J.; Gwyn, K.; Whitman, G.J.; Theriault, R. Imaging of breast cancer diagnosed and treated with chemotherapy during pregnancy. Radiology 2006, 239, 52–60. [Google Scholar] [CrossRef]
- Collins, J.C.; Liao, S.; Wile, A.G. Surgical management of breast masses in pregnant women. J. Reprod. Med. 1995, 40, 785–788. [Google Scholar] [CrossRef]
- Annane, K.; Bellocq, J.P.; Brettes, J.P.; Mathelin, C. Infiltrative breast cancer during pregnancy and conservative surgery. Fetal. Diagn. Ther. 2005, 20, 442–444. [Google Scholar] [CrossRef]
- Case, A.S. Pregnancy-associated Breast Cancer. Clin. Obstet. Gynecol. 2016, 59, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, A.H.; Baker, M.E. Imaging strategies in the pregnant cancer patient. Semin. Oncol. 2000, 27, 623–632. [Google Scholar] [PubMed]
- Chen, M.M.; Coakley, F.V.; Kaimal, A.; Laros, R.K., Jr. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet. Gynecol. 2008, 112, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Prasath, V.; Axilbund, J.; Habibi, M. Concerns of Hereditary Breast Cancer in Pregnancy and Lactation. Adv. Exp. Med. Biol. 2020, 1252, 129–132. [Google Scholar] [CrossRef]
- Cullinane, C.A.; Lubinski, J.; Neuhausen, S.; Ghadirian, P.; Lynch, H.T.; Isaacs, C.; Weber, B.; Moller, P.; Offit, K.; Kim-Sing, C.; et al. Effect of pregnancy as a risk factor for breast cancer in BRCA1/BRCA2 mutation carriers. Int. J. Cancer 2005, 117, 988–991. [Google Scholar] [CrossRef]
- Johansson, O.; Loman, N.; Borg, A.; Olsson, H. Pregnancy-associated breast cancer. Lancet 1998, 352, 1359–1360. [Google Scholar] [CrossRef]
- Azim, H.A., Jr.; Del Mastro, L.; Scarfone, G.; Peccatori, F.A. Treatment of breast cancer during pregnancy: Regimen selection, pregnancy monitoring and more. Breast 2011, 20, 1–6. [Google Scholar] [CrossRef]
- Keyser, E.A.; Staat, B.C.; Fausett, M.B.; Shields, A.D. Pregnancy-associated breast cancer. Rev. Obstet. Gynecol. 2012, 5, 94–99. [Google Scholar]
- Hartman, E.K.; Eslick, G.D. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: A meta-analysis. Breast Cancer Res. Treat. 2016, 160, 347–360. [Google Scholar] [CrossRef]
- Amant, F.; von Mickwitz, G.; Han, S.N.; Bontenbal, M.; Ring, A.E.; Giermek, J.; Wildiers, H.; Fehm, T.; Linn, S.C.; Schlehe, B.; et al. Prognosis of women with primary breast cancer diagnosed during pregnancy: Results from an international collaborative study. J. Clin. Oncol. 2013, 31, 2532–2539. [Google Scholar] [CrossRef] [Green Version]
- Peccatori, F.A.; Azim, H.A., Jr.; Orecchia, R.; Hoekstra, H.J.; Pavlidis, N.; Kesic, V.; Pentheroudakis, G.; ESMO Guidelines Working Group. Cancer, pregnancy and fertility. ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24, vi160–vi170. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Warneke, C.L.; Hahn, K.M.; Palla, S.L.; Kuerer, H.M.; Perkins, G.H.; Mittendorf, E.A.; Barnett, C.; Gonzalez-Angulo, A.M.; Horgobágyi, G.N.; et al. Case control study of women treated with chemotherapy for breast cancer during pregnancy as compared with nonpregnant patients with breast cancer. Oncologist 2013, 18, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azim, H.A.; Santoro, L., Jr.; Russell-Edu, W.; Pentheroudakis, G.; Pavlidis, N.; Peccatori, F.A. Prognosis of pregnancy-associated breast cancer: A meta-analysis of 30 studies. Cancer Treat. Rev. 2012, 38, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Schmidt, A.; Gentilini, O.; Kaufman, B.; Kuhl, C.; Denkert, C.; von Mickwitz, G.; Parokonnaya, A.; Stensheim, H.; Thomssen, C.; et al. Breast cancer diagnosed during pregnancy: Adapting recent advances in breast cancer care for pregnant patients. JAMA Oncol. 2015, 1, 1145–1153. [Google Scholar] [CrossRef]
- Folsom, S.M.; Woodruff, T.K. Good news on the active management of pregnant cancer patients. F1000 Res. 2020, 9. [Google Scholar] [CrossRef]
- Paulsson, A.K.; Braunstein, S.; Phillips, J.; Theodosopoulos, P.V.; McDermott, M.; Sneed, P.K.; Ma, L. Patient-specific fetal dose determinatioin for multi-target gamma knife radiosurgery: Computational model and case report. Cureus 2017, 9, e1527. [Google Scholar]
- Ringley, J.T.; Moore, D.C.; Patel, J.; Rose, M.S. Poly (ADP-ribose) polymerase inhibitors in the management of ovarian cancer: A drug class review. Pharm. Ther. 2018, 32, 549–556. [Google Scholar]
- Litton, J.K. Gestational Breast Cancer: Treatment. 2020. Available online: https://www.uptodate.com/contents/gestational-breast-cancer-treatment (accessed on 19 November 2020).
- Khera, S.Y.; Kiluk, J.V.; Hasson, D.M.; Meade, T.M.; Meyers, M.P.; Dupont, E.L.; Berman, C.G.; Cox, C.E. Pregnancy-associated breast cancer patients can safely undergo lymphatic mapping. Breast J. 2008, 14, 250–254. [Google Scholar] [CrossRef]
- Boere, I.; Lok, C.; Vandenbroucke, T.; Amant, F. Cancer in pregnancy: Safety and efficacy of systemic therapies. Curr. Opin. Oncol. 2017, 29, 328–334. [Google Scholar] [CrossRef]
- Wiebe, V.J.; Sipila, P.E. Pharmacology of antineoplastic agents in pregnancy. Crit. Rev. Oncol. Hematol. 1994, 16, 75–112. [Google Scholar] [CrossRef]
- Gziri, M.M.; Hui, W.; Amant, F.; Van Calsteren, K.; Ottevanger, N.; Kapusta, L.; Mertens, L. Myocardial function in children after fetal chemotherapy exposure. A tissue Doppler and myocardial deformation imaging study. Eur. J. Pediatr. 2013, 172, 163–170. [Google Scholar] [CrossRef]
- Cardonick, E.; Iacobucci, A. Use of chemotherapy during human pregnancy. Lancet Oncol. 2004, 5, 283–291. [Google Scholar] [CrossRef]
- Murthy, R.K.; Theriault, R.L.; Barnett, C.M.; Hodge, S.; Ramirez, M.M.; Milbourne, A.; Rimes, S.A.; Hortobagyi, G.N.; Valero, V.; Litton, J.K. Outcomes of children exposed in utero to chemotherapy for breast cancer. Breast Cancer Res. 2014, 16, 500. [Google Scholar] [CrossRef] [Green Version]
- Amant, F.; Deckers, S.; Van Calsteren, K.; Loibl, S.; Halaska, M.; Brepoels, L.; Beijnen, J.; Cardoso, F.; Gentilini, O.; Lagae, L.; et al. Breast cancer in pregnancy: Recommendations of an international consensus meeting. Eur. J. Cancer 2010, 46, 3158–3168. [Google Scholar] [CrossRef]
- Hahn, K.M.; Johnson, P.H.; Gordon, N.; Kuerer, H.; Middleton, L.; Ramirez, M.; Yang, W.; Perkins, G.; Hortobagyi, N.; Theriault, R.L. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer 2006, 107, 1219–1226. [Google Scholar] [CrossRef]
- Mir, O.; Berveiller, P.; Ropert, S.; Goffinet, F.; Goldwasser, F. Use of platinum derivatives during pregnancy. Cancer 2008, 113, 3069–3074. [Google Scholar] [CrossRef]
- Cardonick, E.; Gilmandyar, D.; Somer, R.A. Maternal and neonatal outcomes of dose-dense chemotherapy for breast cancer in pregnancy. Obstet. Gynecol. 2012, 120, 1267–1272. [Google Scholar] [CrossRef]
- Ring, A.E.; Smith, I.E.; Jones, A.; Shannon, C.; Galani, E.; Ellis, P.A. Chemotherapy for breast cancer during pregnancy: An 18-year experience from five London teaching hospitals. J. Clin. Oncol. 2005, 23, 4192–4197. [Google Scholar] [CrossRef] [Green Version]
- Zagouri, F.; Sergentanis, T.N.; Chrysikos, D.; Papadimitriou, C.A.; Dimopoulos, M.A.; Bartsch, R. Trastuzumab administration during pregnancy: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013, 137, 349–357. [Google Scholar] [CrossRef]
- Lambertini, M.; Martel, S.; Campbell, C.; Guillaume, S.; Hilbers, F.S.; Schuehly, U.; Korde, L.; Azim, H.A.; Di Cosimo, S., Jr.; Tenglin, R.C.; et al. Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials. Cancer 2019, 125, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Kelly, H.; Graham, M.; Humes, E.; Dorflinger, L.J.; Boggess, K.A.; O’Neil, B.H.; Harris, J.; Spector, N.L.; Dees, E.C. Delivery of a healthy baby after first-trimester maternal exposure to lapatinib. Clin. Breast Cancer 2006, 7, 339–341. [Google Scholar] [CrossRef]
- Lambertini, M.; Di Maio, M.; Pagani, O.; Curigliano, G.; Poggio, F.; Del Mastro, L.; Paluch-Shimon, S.; Loibl, S.; Partridge, A.H.; Demeestere, I.; et al. The BCY3/BCC 2017 survey on physicians’ knowledge, attitudes and practice towards fertility and pregnancy-related issues in young breast cancer patients. Breast 2018, 4, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Buonomo, B.; Brunello, A.; Noli, S.; Miglietta, L.; Del Mastro, L.; Lambertini, M.; Peccatori, F.A. Tamoxifen exposure during pregnancy: A systematic review and three more cases. Breast Care 2020, 15, 148–156. [Google Scholar] [CrossRef]
- Bilgin, K.; Yaramiş, A.; Haspolat, K.; Taş, M.A.; Gunbey, S.; Derman, O. A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 2001, 107, 36–41. [Google Scholar] [CrossRef]
- Rojas, K.E.; Bilbro, N.; Manasseh, D.M.; Borgen, P.I.J. A review of pregnancy-associated breast cancer: Diagnosis, local and systemic treatment and prognosis. Womens Health 2019, 28, 778–784. [Google Scholar] [CrossRef]
- Nettleton, J.; Long, J.; Kuban, D.; Wu, R.; Shaeffer, J.; El-Mahdi, A. Breast cancer during pregnancy: Quantifying the risk of treatment delay. Obstet. Gynecol. 1996, 87, 414–418. [Google Scholar] [CrossRef]
- Amant, F.; Vandenbroucke, T.; Verheecke, M.; Fungalli, M.; Halaska, M.J.; Boere, I.; Han, S.; Gziri, M.M.; Peccatori, F.; Rob, L.; et al. Pediatric outcome after maternal cancer diagnosed during pregnancy. N. Engl. J. Med. 2015, 373, 1824–1834. [Google Scholar] [CrossRef]
- de Haan, J.; Verheecke, M.; Van Calsteren, K.; Van Calster, B.; Shmakov, R.G.; Gziri, M.; Halaska, M.J.; Fruscio, R.; Lok, C.A.R.; Boere, I.A.; et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: A 20-year international cohort study of 1170 patients. Lancet Oncol. 2018, 19, 337–346. [Google Scholar] [CrossRef]
- Rodriguez, A.O.; Chew, H.; Cress, R.; Xing, G.; McElvy, S.; Danielsen, B.; Smith, L. Evidence of poorer survival in pregnancy associated breast cancer. Obstet. Gynecol. 2008, 112, 71–78. [Google Scholar] [CrossRef]
- Tang, T.; Liu, Y.; Yang, C.; Ma, L. Diagnosis and treatment of advanced HER2-positive breast cancer in young pregnant female: A case report. Medicine 2020, 99, e22929. [Google Scholar] [CrossRef]
- Kern, R.; Correa, S.C.; Scandolara, T.B.; Carla da Silva, J.; Pires, B.R.; Panis, C. Current advances in the diagnosis and personalized treatment of breast cancer: Lessons from tumor biology. Per. Med. 2020, 17, 399–420. [Google Scholar] [CrossRef] [PubMed]
Tumor Subtype | Luminal A | Luminal B | HER2+ | Triple Negative |
---|---|---|---|---|
Preferred approach | Surgery, postponement of hormone therapy, and radiotherapy after delivery | Surgery, adjuvant/ neoadjuvant chemotherapy, depending on the stage, postponement of hormone therapy, and radiotherapy after delivery | Surgery, adjuvant/ neoadjuvant chemotherapy depending on the stage, postponement of anti-HER2 treatment, and radiotherapy after delivery | Surgery, adjuvant/ neoadjuvant chemotherapy depending on the stage, postponement of radiotherapy after delivery |
Stage | Local | Local Advanced | Metastatic |
---|---|---|---|
Treatment approach | Surgery with subsequent adjuvant chemotherapy, hormone therapy, targeted therapy, and radiotherapy must be postponed after delivery | Neoadjuvant chemotherapy, subsequent surgery usually after delivery, hormone therapy, targeted therapy, and radiotherapy must be postponed after delivery | Palliative chemotherapy in pregnancy, targeted treatment, hormone therapy, must be postponed after delivery |
Stage | Early First Trimester Conception—4 Weeks | First Trimester 4—14 Weeks | Second Trimester 14 Weeks—28 Weeks | Third Trimester 28 Weeks—Delivery |
---|---|---|---|---|
Surgery | 1–2% increased risk of miscarriage | 1–2% increased risk of miscarriage | Premature delivery | Premature delivery |
Radiotherapy | All or none | Gross malformation, microcephaly, mental retardation | Mental and growth retardation, cataracts, microcephaly, sterility, secondary malignancies | Growth retardation, sterility, cataracts, secondary malignancies |
Gamma Knife stereotactic radiosurgery (GKSRS) | Lack of data | Lack of data | Probably safe by a conservative treatment of patients with multiple brain metastases | Probably safe by a conservative treatment of patients with multiple brain metastases |
Chemotherapy | All or none | High risk of severe fetal malformation. Increased risk of miscarriage | Growth restriction, low birth weight, preterm labor, myelosuppression, need for neonatal intensive care unit admission | Growth restriction low birth weight, preterm labor, myelosuppression, need for neonatal intensive care unit admission |
Anti-HER2 | Fetus unaffected in review of limited case reports | Fetus unaffected in review of limited case reports | Oligohydramnios/anhydramnios | Oligohydramnios/anhydramnios |
Hormonal therapy | Possible increased risk of miscarriage | Facial malformations, ambiguous genitalia, possible increased risk of miscarriage, some cases with no adverse effects observed, data limited to animal studies and case reports | Insufficient data | Insufficient data |
Immunotherapy | Increased risk of miscarriage | Increased risk of miscarriage | Increased risk of stillbirth, premature delivery, infant mortality | Increased risk of stillbirth, premature delivery, infant mortality |
Anti-VEGF/VEGFR (Vascular endothelial growth factor/Vascular endothelial growth factor receptor) | All or none | Increased risk of miscarriage, skeletal malformations, abnormal vascular development of the skin, pancreas, kidney, and lung | Intrauterine growth restriction, preeclampsia, hypertension | Intrauterine growth restriction, preeclampsia, hypertension |
PARP inhibitors | Lack of data in pregnant women | Potential to cause embryo-fetal harm, but lack of data | Potential to cause embryo-fetal harm, but lack of data | Potential to cause embryo-fetal harm, but lack of data |
Patient Preference | Request | A Possible Solution |
---|---|---|
Staging | Avoid all imaging methods with radiation | Tumor markers, abdominal ultrasonography, MRI without contrast, until after delivery complete staging using PET-CT (Positron emission tomography—computed tomography) or CT(Computed tomography) |
Termination of pregnancy | To prioritize the life of the mother over the life of the child | Does not bring any benefits in terms of overall survival, subsequent pregnancy is possible but uncertain, interruption must be considered in the first trimester of pregnancy, if the initiation of anticancer treatment cannot be delayed |
Anticancer treatment in pregnancy | Avoid anticancer treatment during pregnancy due to concerns about the baby | Treatment can be delayed with varying degrees of risk of progression and generalization depending on the type of cancer, the patient must be informed of the risks of delay and the fact that properly timed surgery and chemotherapy do not pose a serious risk to the fetus |
Spontaneous vaginal delivery | Avoid a planned cesarean delivery | The reason for the planned delivery is the risk of severe neonatal life-threatening neutropenia of the fetus after chemotherapy, in pregnant women treated with a weekly chemotherapy regimen (e.g., taxol), it is possible to consider spontaneous delivery |
N | Termination Pregnancy | BRCA1+/BRCA2+ | Local Recurrence | De Novo Metastatic | Systemic Recurrence | Median Age |
---|---|---|---|---|---|---|
53 | 3 | 4/2 | 1 | 7 | 14 | 31 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesarova, P.; Pavlista, D.; Parizek, A. Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy? J. Pers. Med. 2021, 11, 18. https://doi.org/10.3390/jpm11010018
Tesarova P, Pavlista D, Parizek A. Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy? Journal of Personalized Medicine. 2021; 11(1):18. https://doi.org/10.3390/jpm11010018
Chicago/Turabian StyleTesarova, Petra, David Pavlista, and Antonin Parizek. 2021. "Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy?" Journal of Personalized Medicine 11, no. 1: 18. https://doi.org/10.3390/jpm11010018
APA StyleTesarova, P., Pavlista, D., & Parizek, A. (2021). Is It Possible to Personalize the Diagnosis and Treatment of Breast Cancer during Pregnancy? Journal of Personalized Medicine, 11(1), 18. https://doi.org/10.3390/jpm11010018